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Abstract

Model diagnostics are shown to have little power unless alternative hypothe-
ses can be narrowly defined. For example, independence of observations cannot
be tested against general forms of dependence. Thus, the basic assumptions in
regression models cannot be inferred from the data. Equally, the proportionality
assumption in proportional-hazards models is not testable. Specification error is a
primary source of uncertainty in forecasting, and this uncertainty will be difficult
to resolve without external calibration. Model-based causal inference is even more
problematic.
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1. Introduction

The object here is to sketch a demonstration that, unless additional regularity
conditions are imposed, model diagnostics have power only against a circumscribed
class of alternative hypotheses. The paper is organized around the familiar require-
ments of statistical models. Theorems 1 and 2, for example, consider the hypothesis
that distributions are continuous and have densities. According to the theorems,
such hypotheses cannot be tested without additional structure.

Let us agree, then, that distributions are smooth. Can we test independence?
Theorems 3 and 4 indicate the difficulty. Next, we grant independence and consider
tests that distinguish between (i) independent and identically distributed random
variables on the one hand, and (ii) independent but differently distributed variables
on the other. Theorem 5 shows that, in general, power is lacking.

For ease of exposition, we present results for the unit interval; transformation
to the positive half-line or the whole real line is easy. At the end of the paper, we spe-
cialize to more concrete situations, including regression and proportional-hazards
models. We consider the implications for forecasting, mention some pertinent lit-
erature, and make some recommendations.
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Definitions. A randomized test function is a measurable function φ with 0 ≤
φ(x) ≤ 1 for all x. A non-randomized test function φ has φ(x) = 0 or 1. The
size of φ is the supremum of

∫
φ dµ over µ that satisfy the null hypothesis, a set

of probabilities that will be specified in Theorems 1–5 below. The power of φ at
a particular µ satisfying the alternative hypothesis is

∫
φ dµ. A simple hypothesis

describes just one µ; otherwise, the hypothesis is composite. Write λ for Lebesgue
measure on the Borel subsets of [0, 1].

Interpretation. Given a test φ and data x, we reject the null with probability
φ(x). Size is the maximal probability of rejection at µ that satisfy the null. Power
at µ is the probability of rejection, defined for µ that satisfy the alternative.

Theorem 1. Consider probabilities µ on the Borel unit interval. Consider
testing the simple null hypothesis

N: µ = λ

against the composite alternative

A: µ is a point mass at some (unspecified) point.

Under these circumstances, any test of size α has power at most α against some
alternatives.

Proof. Let φ be a randomized test function. If φ(x) > α for all x ∈ [0, 1],
then

∫
φ(x) dx > α. We conclude that φ(x) ≤ α for some x, indeed, for a set of

x’s of positive Lebesgue measure. QED

Comments. (i) If we restrict φ to be non-randomized, then φ(x) = 0 for
some x. In other words, power would be 0 rather than α. (ii) The conclusions hold
not just for some alternatives, but for many of them.

Theorem 2 requires some additional terminology. A “continuous” probability
assigns measure 0 to each point. A “singular” probability on [0, 1] concentrates on
a set of Lebesgue measure 0.

Theorem 2. Consider probabilities µ on the Borel unit interval. Consider
testing the simple null hypothesis

N: µ = λ

against the composite alternative

A: µ is continuous and singular.

Under these circumstances, any test of size α has power at most α against some
alternatives.

Proof. We identify 0 and 1, then visualize [0, 1) as the additive group modulo 1
with convolution operator ∗. If µ is any probability, then λ ∗ µ = λ. Let φ be a
randomized test function of size α. Then α ≥ ∫

φ dλ = ∫ ∫
φ(x + y)µ(dx) dy.

Hence, there are y with α ≥ ∫
φ(x + y)µ(dx) = ∫

φ(x)µy(dx), where µy is the
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translation of µ by y. If µ is continuous and singular, so is µy ; but φ only has power
α against µy . QED

Comments. (i) If we restrict φ to be non-randomized, then λ{φ = 0} ≥
1 − α > 0; the trivial case α = 1 must be handled separately. Hence, power
would be 0 rather than α. (ii) There are tests with high power against any particular
alternative. Indeed, if ν is singular, it concentrates on a Borel set B with λ(B) = 0;
let φ be the indicator function of B. This test has size 0, and power 1 at ν. The
problem lies in distinguishing λ from the cloud of all alternatives.

A little more terminology may help. If µ and ν are two probabilities on the
same σ -field, then µ is equivalent to ν if they have the same null sets. By the
Radon-Nikodym theorem, this is tantamount to saying that the derivative of µ with
respect to ν is positive and finite a.e.

Write λ2 for Lebesgue measure on the Borel subsets of the unit square. Let ξ1
and ξ2 be the coordinate functions, so that ξ1(x, y) = x and ξ2(x, y) = y. More
generally, we write λk for Lebesgue measure on the Borel subsets of [0, 1]k and ξi
for the coordinate functions, so ξi(x1, x2, . . .) = xi .

If µ is a probability on the unit square, let ρµ be the correlation between ξ1
and ξ2, computed according to µ. This is well-defined unless µ concentrates on a
horizontal or vertical line.

For the proof of Theorem 3, if f is an integrable Borel function on the unit
interval, then λ-almost all x ∈ (0, 1) are Lebesgue points, in the sense that

lim
h→0

1

h

∫ x+h

x

f dλ → f (x). (1)

The result extends to k-dimensional space. See, for instance, Dunford and Schwartz
(1958, p. 215).

Theorem 3. Consider probabilities µ on the Borel unit square that are equiv-
alent to λ2. Consider testing the simple null hypothesis

N: µ = λ2

against the composite alternative

A: ρµ �= 0.

Under these circumstances, a non-randomized test of size α < 1/2 has power arbi-
trarily close to 0 at some alternative µ with |ρµ| arbitrarily close to 1; furthermore,
µ can be chosen to have a continuous positive density.

Proof. Consider a non-randomized test function φ with size α. Let G be the
subset of the unit square where φ = 0. So λ2(G) ≥ 1 −α > 1/2. Let G∗ be the set
of pairs (1 − x, 1 − y) with (x, y) ∈ G. So λ2(G∗) > 1/2 and λ2(G ∩ G∗) > 0.
We can find u, v with u �= 1/2, v �= 1/2 and (u, v) a Lebesgue point of G ∩ G∗.
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Thus, (u, v) is a Lebesgue point of G, and so is (1 − u, 1 − v). These two points
are different, and lie on a line of non-zero slope; if we put mass 1/2 at each point,
the correlation between ξ1 and ξ2 would be ±1.

Now construct a continuous positive density f that puts mass nearly 1/2 in
a small neighborhood of (u, v), and mass nearly 1/2 in a small neighborhood of
(1 − u, 1 − v). With respect to f , the correlation between ξ1 and ξ2 is essentially
±1. Moreover,

∫
G
f dλ2 is nearly 1, so

∫
φf dλ2 is nearly 0. QED

Comment. The correlation is used to pick out alternatives that are quite different
from independence.

Let D be the set of densities on [0, 1]k that can be represented as a finite sum∑
j cj gj , where cj ≥ 0,

∑
j cj = 1, x = (x1, . . . , xk), and

gj (x) =
k∏

i=1

gij (xi), (2)

the gij being continuous densities on [0, 1]. Unless otherwise specified, densities
are with respect to Lebesgue measure.

Lemma 1. The uniform closure of D is the set of all continuous densities
on [0, 1]k .

Proof. This is easily done, using k-dimensional Bernstein polynomials. See
Lorentz (1986, p. 51). QED

Lemma 2. Let φ be a randomized test function on [0, 1]k . Suppose
∫
φ dµ ≤ α

for all probabilitiesµ on [0, 1]k that make the coordinate functions independent with
continuous positive densities. Then ess. sup. φ ≤ α.

Proof. The condition is

∫
[0,1]k

φ×
( k∏

i=1

fi

)
dλk ≤ α (3)

for all continuous positive densities fi on [0, 1]. By an easy passage to the limit,
inequality (3) holds for all continuous densities; that is, fi ≥ 0 rather than fi > 0.

A convexity argument shows that

∫
φϕ dλk ≤ α (4)

for anyϕ ∈ D , hence for any continuous densityϕ on [0, 1]k by Lemma 1. A density
on [0, 1]k can be approximated in L1 by a continuous density. Thus, inequality (4)
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holds for all densities ϕ on [0, 1]k . Let B = {φ > α}. Suppose λk(B) > 0. Let
ϕ = 1/λk(B) on B, and let ϕ vanish off B. Then α ≥ ∫

φϕ dλk ≥ ∫
B
φϕ dλk >

α
∫
B
ϕ dλk = α, a contradiction showing that λk(B) = 0. QED

Theorem 4. Consider probabilities µ on the Borel unit hypercube [0, 1]k that
are equivalent to λk . Consider testing the composite null hypothesis

N: the coordinate functions are independent with respect to µ, each coordi-
nate having a continuous positive density

against any alternative set A of µ’s. Under these circumstances, any test of size α

has power at most α.

Proof. This is immediate from Lemma 2. QED

Comment. The alternative A can consist of a single density f that is posi-
tive a.e. but is otherwise badly behaved. The null hypothesis can be substantially
restricted, say to polynomial densities.

Theorem 5 is couched in terms of remote alternatives, which are distant from
the null hypothesis. For rigor, we would have to metrize the space of probabilities
on [0, 1]k . This can be done in several ways without changing the argument. Here
are three possibilities. (i) Variation distance can be used; remote alternatives will be
nearly singular with respect to the probability satisfying the (simple) null hypothesis.
(ii) The sup norm on distribution functions is another possibility; remote alternatives
will be at a distance nearly 1 from the null. (iii) Distance can also be defined so as to
metrize the weak-star topology; remote alternatives will be at a substantial distance
from the null, with details depending a little on the metric that is used. Recall that
λk is Lebesgue measure on the Borel subsets of [0, 1]k .

Theorem 5. Fix α with 0 < α < 1. Fix δ with δ > 0 and α + δ < 1. Let µ
be a probability on [0, 1]k , and let ξ1, . . . , ξk be the coordinate functions. Consider
testing the simple null hypothesis

N: µ = λk

against the composite alternative

A: µ makes the coordinate functions independent with different distributions,
each distribution having a continuous positive density on [0, 1].

There is a fixed positive integer k0 such for any k > k0, and any randomized test
φk of size α, there is a remote alternative µ where power is less than α + δ. The
alternative µ makes ξi independent with continuous positive density fi , but each fi

is arbitrarily concentrated near some point ci in (0, 1). Moreover,

(i) ci < 1/3 for more than k/4 of the indices i = 1, . . . , k, and
(ii) ci > 2/3 for more than k/4 of the indices i = 1, . . . , k.
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Proof. Step 1. Let φk be a randomized test function of size α on [0, 1]k , so∫
φk dλ

k ≤ α. (5)

Apply Markov’s inequality to 1 − φk , to see that for all k,

P(Bk) ≥ δ

α + δ
, where Bk = {φk < α + δ}. (6)

Step 2. Write 1Q for the indicator function of the set Q. Let Ck be the subset
of [0, 1]k where ξi < 1/3 for more than k/4 of the indices i = 1, . . . , k. Formally,

Ck =
{

k∑
i=1

1{ξi<1/3} > k/4

}
. (7)

Similarly, let

Dk =
{

k∑
i=1

1{ξi>2/3} > k/4

}
. (8)

The ξi are independent and λk{ξi < 1/3} = 1/3 > 1/4. So λk(Ck) → 1 by the law
of large numbers, and likewise for Dk .

Step 3. Choose k0 so that

λk(Ck ∩ Dk) ≥ 1 − 1

2

δ

α + δ
for k > k0. (9)

Then

λk(Bk ∩ Ck ∩ Dk) ≥ 1

2

δ

α + δ
for k > k0. (10)

Step 4. There must be ci ∈ (0, 1) with c = (c1, . . . , ck) a Lebesgue point of
Bk ∩ Ck ∩ Dk . For each i, we construct a continuous positive density fi on [0, 1]
that is concentrated around ci , with∫

[0,1]k
φk×

(∏k
i=1 fi

)
dλk ≤ φk(c) + δ ≤ α + δ. (11)

To get the densities, start by putting the uniform distribution on a small hypercube
centered at (c1, . . . , ck). Then smooth each edge separately. QED

Comments

(i) If the test function is not randomized, we get power approaching 0 at remote
alternatives, by the same argument.
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(ii) The alternatives are remote from the null λk . They are also radically different
from any power measure θk .

(iii) What if we have a suite of diagnostics? Let φ be the final result: 1 if the
model is rejected, 0 if accepted, and 0 < φ < 1 if results are ambiguous or the
decision is randomized. Thus, it suffices to consider a single test function.

(iv) Lehmann and Romano (2005, §14.6) discuss statistical literature on limits to
diagnostic power, the chief result being due to Janssen (2000). Even with
IID data and a simple null hypothesis, goodness-of-fit tests have little power
unless the set of alternative hypotheses can be substantially restricted. The
context, however, is “local alternatives” that are const./

√
k away from the

null; such alternatives tend to the null as the sample size k increases. There are
also some relevant papers in the game-theory literature: for instance, Lehrer
(2001), Olszewski and Sandroni (2008).

(v) By way of comparison, with IID data, the Kolmogorov-Smirnov test (among
others) has power approaching 1 at any fixed alternative when testing the simple
null hypothesis that the common distribution is uniform on [0, 1]. In Theorem 5
above, the data are IID under the null not the alternative, and the sample size
k is fixed.

2. Specific models

In regression models, a key assumption is exogeneity: variables included in
the model should be independent of error terms. Theorems 3 and 4 indicate the
difficulty of testing this assumption. For many purposes, errors may be required to
be independent, or independent and identically distributed. Theorems 3–5 indicate
the difficulties. Requiring orthogonality rather than independence will not solve the
problem, and may not suffice for the usual asymptotics.

Rather than pursuing such topics, we turn to the proportional-hazards model,
where subjects have failure times and censoring times. These are positive random
variables, and only the smaller of the two is observed. These variables are generally
assumed to be independent, or conditionally independent in a suitable sense given
certain information. For a review of the model, see Freedman (2008).

As shown by Tsiatis (1975), independence of failure times and censoring times
is not testable in the usual data structures. Without that assumption, marginal distri-
butions are not identifiable. Also see Clifford (1977). Furthermore, what happens
after the end of a study is plainly unknowable. This already puts severe limits on
the power of diagnostics. Therefore, let us assume that all failure times are fully
observable, and see what can done in that context.

In the model, failure times τi are independent positive variables with absolutely
continuous distribution functions Fi . The density is fi = Fi

′ and the hazard rate is
hi = fi/(1 − Fi). According to the model, there is a baseline hazard rate h, and
hi = h exp(Xiβ), where β is a parameter, or parameter vector if Xi is a vector. For
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present purposes, the covariate Xi is allowed to depend on i but not on time, and
Xi is non-stochastic; we require 0 < hi < ∞ a.e. More general forms of the model
relax these restrictions.

Theorems 1 and 2 show that we cannot tell whether failure times have densities
and hazard rates—unless we restrict the class of alternatives, or impose additional
assumptions, qualifications that will not be repeated. Theorems 3 and 4 shows that
we cannot determine whether failure times are independent or dependent.

Let us therefore assume that failure times have continuous positive densities.
Even so, Theorem 5 shows that we cannot test the proportional-hazards assumption;
this takes some mathematical effort to verify. Let us begin with the null hypothesis
that the baseline hazard rate is identically 1, corresponding to a standard exponential
failure time, and all the covariates are identically 0.

We can reduce to the IID uniform case covered by the theorem. All it takes is a
change of variables: replace the failure time τi by exp(−τi). The conclusion is that
any test of size α will have power barely above α against certain remote alternatives;
the latter make the τi independent with continuous positive densities on (0,∞), but
highly concentrated.

More general null hypotheses follow the same pattern. Suppose the covariates
Xi are linearly independent p-vectors. The parameter vector β is a p-vector too.
The null hypothesis specifies that the baseline hazard rate is 1, but allows the ith
subject to have the hazard rate exp(Xiβ), where β is free to vary—although it must
be constant across i’s.

We can again replace τi by exp(−τi). Theorem 5 will give independent τi with
highly concentrated densities at which power is low. Over 1/4 of these densities
will be concentrated at values larger than log 3, and will be quite different from any
exponential density.

Comments

(i) According to the theorem, for each large k, there are remote alternatives that
are nearly indistinguishable from the null.

(ii) Replacing the baseline hazard rate by an unknown h does not change the
position.

(iii) Usual tests of the proportional-hazards model involve adding another covariate,
or stratifying on that covariate; the implied alternatives are tamer than the ones
constructed here.

(iv) Altman and de Stavola (1994) discuss some of the practical problems in testing
proportional-hazards models, and note that power is generally limited—even
with conventional alternatives.

Theorem 6. Suppose τi : i = 1, . . . , k are positive random variables, each hav-
ing a distribution with a continuous positive density on (0,∞). Suppose the τi are
independent. Under these circumstances, the τ ’s obey a proportional-hazards model
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with a pre-specified baseline hazard rate h0. The covariates are non-stochastic but
time-dependent.

Proof. We construct the model as follows. Let hi be the hazard rate of τi .
The covariate are Xit = loghi(t) − logh0(t) for i = 1, 2, 3, . . . . Furthermore,
hi(t) = h0(t) exp(Xitβ) with β = 1. QED

Comment. Unless we restrict the set of covariates, the proportional-hazards
model includes all distributions for failure times.

It would seem that Theorem 5 can be modified to handle time-varying non-
stochastic covariates. But that includes all distributions, according to Theorem 6.
To resolve the air of paradox, let φ be a randomized test function on [0, 1]k with∫

[0,1]k
φ×

(∏k
i=1 fi

)
dλk ≤ α (12)

for all continuous, positive densities fi . By Lemma 2, ess. sup. φ ≤ α. There is no
contradiction, because there are no non-trivial tests.

3. Discussion

A Google search (performed on March 18, 2008) gave 53,000 hits on the phrase
“regression diagnostics,” so this is a topic of some interest. Amazon.com gave 1300
hits on the phrase, the two most relevant books being Belsley et al. (2004) and
Fox (1991). These texts do not reach the issues discussed here. Diagnostics for
the proportional hazards model are frequently mentioned, but standard references
do not indicate the limitations on power; see, for instance, Andersen and Keiding
(2006).

Models are frequently used to make causal inferences from observational data.
See Scandinavian Journal of Statistics 2004, vol. 31, no. 2, for a recent survey. In
brief,

“Fortunately, the days of ‘statistics can only tell us about association, and
association is not causation’ seem to be permanently over.” [p. 161]

For causal inference, the crucial assumption is “invariance to intervention:” statisti-
cal relationships, including parameter values, that obtain in an observational setting
will also obtain under intervention. For discussion and some historical background,
see Freedman (2005).

The invariance assumption is not entirely statistical. Absent special circum-
stances, it does not appear that the assumption can be tested with the data that are
used to fit the model. Indeed, it may be difficult to test the assumption without an
experiment, either planned or natural. Such tests are beyond the scope of this paper.
They are also beyond the scope of conventional diagnostic procedures.
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4. What about forecasting?

In principle, forecasting should be easier than making causal inferences from
observational data, because forecasts are more readily calibrated against outcomes.
On the other hand, the system that we are forecasting may be unstable, or we may be
interested in forecasting rare events, or we may need the forecast before calibration
data are available.

Conventional models seem to offer abundant ways to measure forecast uncer-
tainty, just based on the data at hand. We can compute R2 or the standard error of
regression (40,000 hits on the latter phrase in Google); we can use cross-validation
(1,000,000 hits) and so forth. However, as recent economic history makes clear,
a major source of uncertainty in forecasts is specification error in the forecasting
models. Specification error is extremely difficult to evaluate using internal evidence.
That is the message of the present paper.

Standard econometric texts, like Greene (2007) or Kennedy (2003), spend many
pages discussing specification error, regression diagnostics (aka specification tests,
model checking), robust estimation, and similar topics. Caution is in order. Unless
the relevant class of specification errors can be narrowly delimited by prior theory
and experience, diagnostics have limited power, and the robust procedures may
be robust only against irrelevant departures from assumptions. “Robust standard
errors” are particularly misleading, since these ignore bias (Freedman, 2006).

5. Recommendations

Model diagnostics are seldom reported in applied papers. My recommendation,
which may seem paradoxical at first, is this. Diagnostics should be reported more
often, but a skeptical attitude should be adopted toward the results. Diagnostics
should be reported more often because they can yield helpful information, picking
up specification errors if these are sufficiently gross. Such errors might be corrected
by adding explanatory variables, or modifying assumptions about disturbance terms,
or changing the functional form of the equation. Furthermore, greater transparency
in model development would eventually make the whole enterprise more credible.
On the other hand, skepticism about diagnostics is warranted. As shown by the
theorems presented here, a model can pass diagnostics with flying colors yet be
ill-suited for the task at hand.
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