
"Son, no matter how far you travel, or how smart you
get, always remember this: Someday, somewhere, a guy
is going to show you a nice brand-new deck of cards on
which the seal is never broken, and this guy is going
to offer to bet you that the jack of spades will jump
out of this deck and squirt cider in your ear. But,
son, do not bet him, for as sure as you do you are
going to get an ear full of cider."

-- Damon Runyon1
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Abstract

After sketching the conflict between objectivists and
subjectivists on the foundations of statistics, this paper
discusses an issue facing statisticians of both schools, namely,
model validation. Statistical models originate in the study of
games of chance, and have been successfully applied in the
physical and life sciences. However, there are basic problems in
applying the models to social phenomena; some of the difficulties
will be pointed out. Hooke’s law will be contrasted with
regression models for salary discrimination, the latter being a
fairly typical application in the social sciences.
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1. What is probability?

For a contemporary mathematician, probability is easy to
define, as a countably additive set function on a σ-field, with a
total mass of 1. This definition, perhaps cryptic for non-
mathematicians, was introduced by A. N. Kolmogorov around 1930,
and has been extremely convenient for mathematical work;
theorems can be stated with clarity, and proved with rigor.2

For applied workers, the definition is less useful;
countable additivity and σ-fields are not observed in nature.
The issue is of a familiar type-- What objects in the world
correspond to probabilities? This question divides statisticians
into two camps:

(i) the "objectivist" school, also called the
"frequentists";

(ii) the "subjectivist" school, also called the "Bayesians,"
after the Reverend Thomas Bayes (England, c.1701-1761).

Other positions have now largely fallen into disfavor; for
example, there were "fiducial" probabilities introduced by R. A.
Fisher (England, 1890-1962). Fisher was one of the two great
statisticians of the century; the other, Jerzy Neyman (b. Russia,
1894; d. U.S.A. 1981), turned to objectivism after a Bayesian
start. Indeed, the objectivist position now seems to be the
dominant one in the field, although the subjectivists are still a
strong presence. Of course, the names are imperfect descriptors.
Furthermore, statisticians agree amongst themselves about as well
as philosophers; many shades of opinion will be represented in
each school.
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2. The objectivist position

Objectivists hold that probabilities are inherent properties
of the systems being studied. For a simple example, like the
toss of a coin, the idea seems quite clear at first. You toss
the coin, it will land heads or tails, and the probability of
heads is around 50%. A more exact value can be determined
experimentally, by tossing the coin repeatedly and taking the
long run relative frequency of heads. In one such experiment,
John Kerrich (a South African mathematician interned by the
Germans during World War II) tossed a coin 10,000 times and got
5,067 heads: the relative frequency was 5,067/10,000 = 50.67%.
For an objectivist such as myself, the probability of Kerrich’s
coin landing heads has its own existence, separate from the data;
the latter enable us to estimate the probability, or test
hypothesis concerning it.

The objectivist position exposes one to certain famous
difficulties. As Keynes said, In the long run, we are all dead.
Heraclitus’ epigram (also out of context) is even more severe:
You can’t step into the same river twice. Still, the tosses of a
coin, like the throws of a die and the results of other such
chance processes, do exhibit remarkable statistical regularities.
These regularities can be described, predicted, analyzed by
technical probability theory. Using Kolmogorov’s axioms (or more
primitive definitions), we can construct statistical models that
correspond to empirical phenomena; although verification of the
correspondence is not the easiest of tasks.
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3. The subjectivist position

For the subjectivist, probabilities describe "degrees of
belief." There are two camps within the subjectivist school, the
"classical" and the "radical." For a "classical" subjectivist,
like Bayes himself or Laplace-- although such historical readings
are quite tricky-- there are objective "parameters" which are
unknown and to be estimated from the data. (A parameter is a
numerical characteristic of a statistical model for data-- for
instance, the probability of a coin landing heads; other examples
will be given below.) Even before data collection, the classical
subjectivist has information about the parameters, expressed in
the form of a "prior probability distribution."

The crucial distinction between a classical subjectivist and
an objectivist: the former will make probability statements
about parameters-- for example, in a certain coin-tossing
experiment, there is a 25% chance that the probability of heads
exceeds .67. However, objectivists usually do not find that such
statements are meaningful; they view the probability of heads as
an unknown constant, which either is-- or is not-- bigger than
.67. In replications of the experiment, the probability of heads
will always exceed .67, or never; 25% cannot be relevant. As a
technical matter, if the parameter has a probability distribution
given the data, it must have a "marginal" distribution-- that is,
a prior. On this point, objectivists and subjectivists agree;
the hold-out was R. A. Fisher, whose fiducial probabilities come
into existence only after data collection.

"Radical" subjectivists, like Bruno de Finetti or Jimmie
Savage, differ from classical subjectivists and objectivists;
radical subjectivists deny the very existence of unknown
parameters. For such statisticians, probabilities express
degrees of belief about observables. You pull a coin out of
your pocket, and-- Damon Runyon notwithstanding-- they can assign
a probability to the event that it will land heads when you toss
it. The braver ones can even assign a probability to the event
that you really will toss the coin. (These are "prior"
probabilities, or "opinions.") Subjectivists can also "update"
opinions in the light of the data; for example, if the coin is
tossed 10 times, landing heads 6 times and tails 4 times, what is
the chance that it will land heads on the 11th toss? This
involves computing a "conditional" probability using Kolmogorov’s
calculus, which applies whether the probabilities are subjective
or objective.
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Here is an example with a different flavor: What is the
chance that a republican will be president of the U.S. in the
year 2025? For many subjectivists, this is a meaningful
question, which can in principle be answered by introspection.
For many objectivists, this question is beyond the scope of
statistical theory. As best I can judge, however, complications
will be found on both sides of the divide. Some subjectivists
will not have quantifiable opinions about remote political
events; likewise, there are objectivists who might develop
statistical models for presidential elections, and compute
probabilities on that basis.3

The difference between the radical and classical
subjectivists rides on the distinction between parameters and
observables; this distinction is made by objectivists too and is
often quite helpful. (In some cases, of course, the issue may be
rather subtle.) The radical subjectivist denial of parameters
exposes them to certain rhetorical awkwardness; for example, they
are required not to understand the idea of a tossing a coin with
an unknown probability of heads. Indeed, if they admit the coin,
they will soon be stuck with all the unknown parameters that were
previously banished.4
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Probability and relative frequency

In ordinary language, "probabilities" are not distinguished
at all sharply from empirical percentages-- "relative
frequencies." In statistics, the distinction may be more
critical. With Kerrich’s coin, the relative frequency of heads
in 10,000 tosses, 50.67%, is unlikely to be the exact probability
of heads; but it is unlikely to be very far off. For an example
with a different texture, suppose you see the following sequence
of 10 heads and 10 tails:

T H T H T H T H T H T H T H T H T H T H.

What is the probability that the next observation will be a head?
In this case, relative frequency and probability are quite
different.5

One more illustration along that line: United Airlines
flight 140 operates daily from San Francisco to Philadelphia. In
192 out of the last 365 days, flight 140 landed on time. You are
going to take this flight tomorrow. Is your probability of
landing on time given by 192/365? For a radical subjectivist,
the question is clear; not so for an objectivist or a classical
subjectivist. Whatever the question really means, 192/365 is the
wrong answer-- if you are flying on the Friday before Christmas.
This is Fisher’s "relevant subset" issue; and he seems to have
been anticipated by von Mises. Of course, if you pick a day at
random from the data set, the chance of getting one with an on-
time landing is indeed 192/365; that would not be controversial.
The difficulties come with (i) extrapolation and (ii) judging the
exchangeability of the data, in a useful Bayesian phrase.
Probability is a subtler idea than relative frequency.6

Labels do not settle the issue

Objectivists sometimes argue that they have the advantage,
because science is objective. This is not serious; "objectivist"
statistical analysis must often rely on judgment and experience:
subjective elements come in. Likewise, subjectivists may tell
you that (i) objectivists use "prior information" and (ii) are
therefore closet Bayesians. Point (i) may be granted. The issue
for (ii) is how prior information enters the analysis, and
whether this information can be quantified or updated the way
subjectivists insist it must be. The real questions are not to
be settled on the basis of labels.
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4. A critique of the subjectivist position

The subjectivist position seems to be internally consistent,
and fairly immune to logical attack from the outside. Perhaps as
a result, scholars of that school have been quite energetic in
pointing out the flaws in the objectivist position. From an
applied perspective, however, the subjectivist position is not
free of difficulties. What are subjective degrees of belief,
where do they come from, and why can they be quantified? No
convincing answers have been produced. At a more practical
level, a Bayesian’s opinion may be of great interest to himself,
and he is surely free to develop it in any way that pleases him;
but why should the results carry any weight for others?

To answer the last question, Bayesians often cite theorems
showing "inter-subjective agreement:" under certain
circumstances, as more and more data become available, two
Bayesians will come to agree: the data swamp the prior. Of
course, other theorems show that the prior swamps the data, even
when the size of the data set grows without bounds-- particularly
in complex, high-dimensional situations. (For a review, see
Diaconis and Freedman, 1986.) Theorems do not settle the issue,
especially for those who are not Bayesians to start with.

My own experience suggests that neither decision-makers nor
their statisticians do in fact have prior probabilities. A large
part of Bayesian statistics is about what you would do if you had
a prior.7 For the rest, statisticians make up priors that are
mathematically convenient or attractive. Once used, priors
become familiar; therefore, they come to be accepted as "natural"
and are liable to be used again; such priors may eventually
generate their own technical literature.

7



Other arguments for the Bayesian position

Coherence. There are well-known theorems, including one by
(Freedman & Purves, 1969), showing that stubborn non-Bayesian
behavior has costs. They can make a "dutch book," and extract
your last penny-- if you are generous enough to cover all the
bets needed to prove the results.8 However, most of us don’t bet
at all; even the professionals bet on relatively few events.
Thus, coherence has little practical relevance. (Its rhetorical
power is undeniable-- who wants to be incoherent?)

Rationality. It is often urged that to be rational is to be
Bayesian. Indeed, there are elaborate axiom systems about
preference orderings, acts, consequences, and states of nature,
whose conclusion is-- that you are a Bayesian. The empirical
evidence shows, fairly clearly, that those axioms do not describe
human behavior at all well. The theory is not descriptive;
people do not have stable, coherent prior probabilities.

Now the argument shifts to the "normative:" if you were
rational, you would obey the axioms, and be a Bayesian. This,
however, assumes what must be proved. Why would a rational
person obey those axioms? The axioms represent decision problems
in schematic and highly stylized ways. Therefore, as I see it,
the theory addresses only limited aspects of rationality. Some
Bayesians have tried to win this argument on the cheap: to be
rational is, by definition, to obey their axioms. (Objectivists
do not always stay on the rhetorical high road either.)

Detailed examination of the flaws in the normative argument
is a complicated task, beyond the scope of the present article.
In brief, my position is this. Many of the axioms, on their own,
have considerable normative force. For example, if I am found to
be in violation of the "sure thing principle," I would probably
reconsider.9 On the other hand, taken as a whole, decision
theory seems to have about the same connection to real decisions
as war games played on a table do to real wars.

What are the main complications? For some events, I may
have a rough idea of likelihood: one event is very likely,
another is unlikely, a third is uncertain. However, I may not be
able to quantify these likelihoods, even to one or two decimal
places; and there will be many events whose probabilities are
simply unknown-- even if definable.10 Likewise, there are some
benefits that can be assessed with reasonable accuracy; others
can be estimated only to rough orders of magnitude; in some
cases, quantification may not be possible at all. Thus,
utilities may be just as problematic as priors.
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The theorems that derive probabilities and utilities from
axioms push the difficulties back one step.11 In real examples,
the existence of many states of nature must remain unsuspected.
Only some acts can be contemplated; others are not imaginable
until the moment of truth arrives. Of the acts that can be
imagined, the decision-maker will have preferences between some
pairs but not others. Too, common knowledge suggests that
consequences are often quite different in the foreseeing and in
the experiencing.

Intransitivity would be an argument for revision, although
not a decisive one; for example, a person choosing among several
job offers might well have intransitive preferences, which it
would be a mistake to ignore. By way of contrast, an arbitrageur
who trades bonds intransitively is likely to lose a lot of money.
(There is an active market in bonds, while the market in job
offers-- largely non-transferable-- must be rather thin; the
practical details make a difference.) The axioms do not capture
the texture of real decision making. Therefore, the theory has
little normative force.

The fallback defense. Some Bayesians will concede much of what I
have said: the axioms are not binding; rational decision-makers
may have neither priors nor utilities. Still, the following
sorts of arguments can be heard. The decision-maker must have
some ideas about relative likelihoods for a few events; a prior
probability can be made up to capture such intuitions, at least
in gross outline. The details (for instance, that distributions
are normal) can be chosen on the basis of convenience. A utility
function can be put together using similar logic: the
decision-maker must perceive some consequences as very good, and
big utility numbers can be assigned to these; he must perceive
some other consequences as trivial, and small utilities can be
assigned to those; in between is in between. The Bayesian engine
can now be put to work, using such approximate priors and
utilities. Even with these fairly crude approximations, Bayesian
analysis is held to dominate other forms of inference: that is
the fallback defense.
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Here is my reaction to such arguments. Approximate Bayesian
analysis may in principle be useful. That this mode of analysis
dominates other forms of inference, however, seems quite
debatable. In a statistical decision problem, where the model
and loss function are given, Bayes procedures are often hard to
beat, as are objectivist likelihood procedures; with many of the
familiar textbook models, objectivist and subjectivist procedures
should give similar results if the data set is large. There are
sharp mathematical theorems to back up such statements.12 On the
other hand, in real problems-- where models and loss functions
are mere approximations-- the optimality of Bayes procedures
cannot be a mathematical proposition. And empirical proof is
conspicuously absent.

If we could quantify breakdowns in model assumptions, or
degrees of error in approximate priors and loss functions, the
balance of argument might shift considerably. The rhetoric of
"robustness" may suggest that such error analyses are routine.
This is hardly the case even for the models. For priors and
utilities, the position is even worse, since the entities being
approximated do not have any independent existence-- outside the
Bayesian framework that has been imposed on the problem.

de Finetti’s theorem. Suppose you are a radical subjectivist,
watching a sequence of 0’s and 1’s. In your prior opinion, this
sequence is exchangeable: permuting the order of the variables
will not change your opinion about them. A beautiful theorem of
de Finetti’s asserts that your opinion can be represented as coin
tossing, the probability of heads being selected at random from a
suitable prior distribution. This theorem is often said to
"explain" subjective or objective probabilities, or justify one
system in terms of the other.13

Such claims cannot be right. What the theorem does is
this: it enables the subjectivist to discover features of his
prior by mathematical proof, rather than introspection. For
example, suppose you have an exchangeable prior about those 0’s
and 1’s. Before data collection starts, de Finetti will prove to
you by pure mathematics that in your own opinion the relative
frequency of 1’s among the first n observations will almost
surely converge to a limit as n→∞. (Of course, the theorem has
other consequences too, but all have the same logical texture.)
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This notion of "almost surely," and the limiting relative
frequency, are features of your opinion not of any external
reality. ("Almost surely" means with probability 1, and the
probability in question is your prior.) Indeed, if you had not
noticed these consequences of your prior by introspection, and
now do not like them, you are free to revise your opinion-- which
will have no impact outside your head. What the theorem does is
to show how various aspects of your prior opinion are related to
each other. That is all the theorem can do, because the
conditions of the theorem are conditions on the prior alone.

To illustrate the difficulty, I cite an old friend rather
than a new enemy. According to Jeffrey (1983, p.199), de
Finetti’s result proves "your subjective probability measure [is]
a certain mixture or weighted average of the various possible
objective probability measures"-- an unusually clear statement of
the interpretation that I deny. Each of Jeffrey’s "objective"
probability measures governs the tosses of a p-coin, where p is
your limiting relative frequency of 1’s. (Of course, p has a
probability distribution of its own, in your opinion.) Thus, p is
a feature of your opinion, not of the real world: the mixands in
de Finetti’s theorem are "objective" only by terminological
courtesy. In short, the "p-coins" that come out of de Finetti’s
theorem are just as subjective as the prior that went in.

To sum up. The theory-- as developed by Ramsey, von Neumann and
Morgenstern, de Finetti, and Savage, among others-- is great
work. They solved an important historical problem, of interest
to economists, mathematicians, statisticians, and philosophers
alike. On a more practical level, the language of subjective
probability is evocative; some investigators find the consistency
of Bayesian statistics to be a useful discipline; for some
(including me), the Bayesian approach can suggest statistical
procedures whose behavior is worth investigating. But the theory
is not a complete account of rationality, or even close. Nor is
it the prescribed solution for any large number of problems in
applied statistics, at least as I see matters.
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5. Statistical models

Of course, statistical models are applied not only to coin
tossing but also to more complex systems. For example,
"regression models" are widely used in the social sciences, as
indicated below; such applications raise serious epistemological
questions. (This idea will be developed from an objectivist
perspective, but similar issues are felt in the other camp.)

The problem is not purely academic. The census suffers an
undercount, more severe in some places than others; if certain
statistical models are to be believed, the undercount can be
corrected-- moving seats in Congress and millions of dollars a
year in entitlement funds (Survey Methodology, vol. 18, no. 1,
1992; Jurimetrics, vol. 34, no. 1, 1993; Statistical Science,
vol. 9, no. 4, 1994). If yet other statistical models are to be
believed, the veil of secrecy can be lifted from the ballot box,
enabling the experts to determine how racial or ethnic groups
have voted-- a crucial step in litigation to enforce minority
voting rights (Evaluation Review, vol. 15, no. 6, 1991; Klein and
Freedman, 1993).

Here, I begin with a (relatively) non-controversial example
from physics-- Hooke’s law: strain is proportional to stress.
(This law is named after Robert Hooke, England, 1653-1703.) We
will have some number n of observations. For the ith
observation, indicated by the subscript i, we hang weighti on a
spring. The length of the spring is measured as lengthi. The
regression model says that (for quite a large range of
weights14),

(1) lengthi = a + b × weighti + εi.

The "error" term εi is needed because measured length will not be
exactly equal to a + b × weight. If nothing else, measurement
error must be reckoned with. We model εi as a sequence of draws,
made at random with replacement from a box of tickets; each
ticket shows a potential error-- the εi that will be realized if
that ticket is the ith one drawn. The average of all the
potential errors in the box is assumed to be 0. In more standard
terminology, the εi are assumed to be "independent and
identically distributed, with mean 0." Such assumptions can
present difficult scientific issues, because error terms are not
observable.
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In equation (1), a and b are parameters, unknown constants
of nature that characterize the spring: a is the length of the
spring under no load, and b is stretchiness-- the increase in
length per unit increase in weight. These parameters are not
observable, but they can be estimated by "the method of least
squares," developed by Adrien-Marie Legendre (France, 1752-1833)
and Carl Friedrich Gauss (Germany, 1777-1855) to fit astronomical
orbits. Basically, you choose the values of â and b̂ to minimize
the sum of the squared "prediction errors", ∑i ei2, where ei is
the prediction error for the ith observation:15

(2) ei = lengthi - â - b̂ × weighti.

These prediction errors are often called "residuals:" they
measure the difference between the actual length and the
predicted length, the latter being â + b̂ × weight.

No one really imagines there to be a box of tickets hidden
in the spring. However, the variability of physical measurements
(under many but by no means all circumstances) does seem to be
remarkably like the variability in draws from a box. This is
Gauss’ model for measurement error. In short, statistical models
can be constructed that correspond rather closely to empirical
phenomena.

I turn now to social-science applications. A case study
would take us too far afield, but a stylized example-- regression
analysis used to demonstrate sex discrimination in salaries,
adapted from (Kaye and Freedman, 1994)-- may give the idea. We
use a regression model to predict salaries (dollars per year) of
employees in a firm from:

·education (years of schooling completed),

·experience (years with the firm),

·the dummy variable "man," which takes the value 1 for men
and 0 for women.

Employees are indexed by the subscript i; for example, salaryi is
the salary of the ith employee.
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The equation is16

(3) salaryi = a + b × educationi + c × experiencei + d × mani + εi.

Equation (3) is a statistical model for the data, with unknown
parameters a, b, c, d; here, a is the "intercept" and the others
are "regression coefficients"; εi is an unobservable error term.
This is a formal analog of Hooke’s law (1); the same assumptions
are made about the errors. In other words, an employee’s salary
is determined as if by computing

(4) a + b × education + c × experience + d × man,

then adding an error drawn at random from a box of tickets. The
display (4) is the expected value for salary given the
explanatory variables (education, experience, man); the error
term in (3) represents deviations from the expected.

The parameters in (3) are estimated from the data using
least squares. If the estimated coefficient d for the dummy
variable turns out to be positive and "statistically significant"
(by a "t-test"), that would be taken as evidence of disparate
impact: men earn more than women, even after adjusting for
differences in background factors that might affect productivity.
Education and experience are entered into equation (3) as
"statistical controls," precisely in order to claim that
adjustment has been made for differences in backgrounds.

Suppose the estimated equation turns out as follows:

(5) predicted salary = $7,100 + $1,300 × education +
$2,200 × experience + $700 × man.

That is, â = $7,100, b̂ = $1,300, and so forth. According to
equation (5), every extra year of education is worth on average
$1,300; similarly, every extra year of experience is worth on
average $2,200; and, most important, men get an premium of $700
over women with the same education and experience, on average.

A numerical example will illustrate (5). A male employee
with 12 years of education (high school) and 10 years of
experience would have a predicted salary of

(6) $7,100 + $1,300 × 12 + $2,200 × 10 + $700 × 1 =
$7,100 + $15,600 + $22,000 + $700 = $45,400.
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A similarly situated female employee has a predicted salary of
only

(7) $7,100 + $1,300 × 12 + $2,200 × 10 + $700 × 0 =
$7,100 + $15,600 + $22,000 + $0 = $44,700.

Notice the impact of the dummy variable: $700 is added to (6),
but not to (7).

A major step in the argument is establishing that the
estimated coefficient d̂ of the dummy variable in (3) is
"statistically significant." This step turns out to depend on
the statistical assumptions built into the model. For instance,
each extra year of education is assumed to be worth the same (on
average) across all levels of experience, both for men and women.
Similarly, each extra year of experience is worth the same across
all levels of education, both for men and women. Furthermore,
the premium paid to men does not depend systematically on
education or experience. Ability, quality of education, or
quality of experience are assumed not to make any systematic
difference to the predictions of the model.

The story about the error term-- that the ε’s are
independent and identically distributed from person to person in
the data set-- turns out to be critical for computing statistical
significance. Discrimination cannot be proved by regression
modeling unless statistical significance can be established, and
statistical significance cannot be established unless
conventional presuppositions are made about unobservable error
terms.

Lurking behind the typical regression model will be found a
host of such assumptions; without them, legitimate inferences
cannot be drawn from the model. There are statistical procedures
for testing some of these assumptions. However, the tests often
lack the power to detect substantial failures. Furthermore,
model testing may become circular; breakdowns in assumptions are
detected, and the model is redefined to accommodate. In short,
hiding the problems can become a major goal of model building.
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Using models to make predictions of the future, or the
results of interventions, would be a valuable corrective.
Testing the model on a variety of data sets-- rather than fitting
refinements over and over again to the same data set-- might be a
good second-best (Ehrenberg and Bound, 1993). With Hooke’s law
(1), the model makes predictions that are relatively easy to test
experimentally. For the salary discrimination model (3),
validation seems much more difficult. Thus, built into the
equation is a model for non-discriminatory behavior: the
coefficient d vanishes. If the company discriminates, that part
of the model cannot be validated at all.

Regression models like (3) are widely used by social
scientists to make causal inferences; such models are now almost
a routine way of demonstrating counter-factuals. However, the
"demonstrations" generally turn out to be depend on a series of
untested, even unarticulated, technical assumptions. Under the
circumstances, reliance on model outputs may be quite
unjustified. Making the ideas of validation somewhat more
precise is a serious problem in the philosophy of science. That
models should correspond to reality is, after all, a useful but
not totally straightforward idea-- with some history to it.
Developing models, and testing their connection to the phenomena,
is a serious problem in statistics.17
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Standard errors, t-statistics, and statistical significance

The "standard error" of d̂ measures the likely difference
between d̂ and d, due to the action of the error terms in equation
(3). The "t-statistic" is d̂ divided by its standard error.
Under the "null hypothesis" that d = 0, there is only about a 5%
chance that t > 2. Such a large value of t would demonstrate
"statistical significance." Of course, the parameter d is only a
construct in a model. If the model is wrong, the standard error,
t-statistic, and significance level are rather difficult to
interpret.

Even if the model is granted, there is a further issue: the
5% is a probability for the data given the model, namely,
P{ t > 2 d = 0}. However, the 5% is often misinterpreted as
P{d = 0 data}. Indeed, this misinterpretation is a commonplace
in the social-science literature, and seems to have been picked
up by the courts from expert testimony.18 For an objectivist,
P{d = 0 data} makes no sense: parameters do not exhibit chance
variation. For a subjectivist, P{d = 0 data} makes good sense,
but its computation via the t-test is grossly wrong, because the
prior probability that d = 0 has not been taken into account: the
calculation exemplifies the "base rate fallacy."

(The single vertical bar " " is standard notation for
conditional probability. The double vertical bar " " is not
standard; Bayesians might want to read this as a conditional
probability; for an objectivist, is intended to mean "computed
on the assumption that....")
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Statistical models and the problem of induction

How do we learn from experience? What makes us think that
the future will be like the past? With contemporary modeling
techniques, such questions are easily answered-- in form if not
in substance.

·The objectivist invents a regression model for the data,
and assumes the error terms to be independent and
identically distributed; "iid" is the conventional
abbreviation. It is this assumption of iid-ness that
enables us to predict data we have not seen from a training
sample-- without doing the hard work of validating the
model.

·The classical subjectivist invents a regression model for
the data, assumes iid errors, and then makes up a prior for
unknown parameters.

·The radical subjectivist adopts an exchangeable or
partially exchangeable prior, and calls you irrational or
incoherent (or both) for not following suit.

In our days, serious arguments have been made from data.
Beautiful, delicate theorems have been proved; although the
connection with data analysis often remains to be established.
And an enormous amount of fiction has been produced, masquerading
as rigorous science.
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6. Conclusions

I have sketched two main positions in contemporary
statistics, objectivist and subjectivist, and tried to indicate
the difficulties. Some questions confront statisticians from
both camps: How do statistical models connect with reality?
What areas lend themselves to investigation by statistical
modeling? When are such investigations likely to be sterile?

These questions have philosophical components as well as
technical ones. I believe model validation to be a central
issue. Of course, many of my colleagues will be found to
disagree. For them, fitting models to data, computing standard
errors, and performing significance tests is "informative," even
though the basic statistical assumptions (linearity, independence
of errors, etc.) cannot be validated. This position seems
indefensible, nor are the consequences trivial. Perhaps it is
time to reconsider.
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Notes

1. From ’The Idyll of Miss Sarah Brown’, Collier’s Magazine,
1933. Reprinted in Guys and Dolls: The Stories of Damon Runyon.
Penguin Books, New York, 1992, pp.14-26. The quote is edited
slightly, for continuity.

2. This note will give a compact statement of Kolmogorov’s
axioms. Let Ω be a set. By definition, a σ-field is a
collection of subsets of Ω, which has Ω itself as a member.
Furthermore,

i) is closed under complementation (if A∈ then Ac∈ ), and

ii) is closed under the formation of countable unions: if
Ai ∈ for i=1,2,...., then ∪ i Ai ∈ .

A probability P is a non-negative, real-valued function on Ω,
such that P(Ω) = 1 and P is countably additive: if Ai ∈ for
i=1,2,...., and the sets are pairwise disjoint, in the sense that
Ai ∩ Aj = ∅ for i≠j, then P(∪ i Ai) = ∑i P(Ai). A random variable X
is an -measurable function on Ω. Informally, probabilists might
say that Nature chooses ω ∈ Ω according to P, and shows you X(ω);
the latter would be the "observed value" of X.

3. Models will be discussed in section 5. Those for
presidential elections may not be compelling. For genetics,
however, chance models are well established; and many statistical
calculations are therefore on a secure footing. Much controversy
remains, for example, in the area of DNA identification
(Jurimetrics, vol. 34, no. 1, 1993).

4. The distinction between classical and radical subjectivists
made here is not often discussed in the statistical literature;
the terminology is not standard. See, for instance, Diaconis and
Freedman (1980a), Efron (1986), Jeffrey (1983, sec. 12.6).

5. Some readers may say to themselves that here, probability is
just the relative frequency of transitions. However, a similar
but slightly more complicated example can be rigged up for
transition counts; an infinite regress lies just ahead. My point
is only this: relative frequencies are not probabilities. Of
course, if circumstances are favorable, the two are strongly
connected-- that is one reason why chance models are useful for
applied work.
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6. To illustrate the objectivist way of handling probabilities
and relative frequencies, I consider repeated tosses of a fair
coin: the probability of heads is 50%. In a sequence of 10,000
tosses, the chance of getting between 49% and 51% heads is about
95%. In replications of this (large) experiment, about 95% of
the time, there will be between 49% and 51% heads. On each
replication, however, the probability of heads stays the same--
namely, 50%.

The strong law of large numbers provides another illustration.
Consider n repeated tosses of a fair coin. With probability 1,
as n→∞, the relative frequency of heads in the first n tosses
eventually gets trapped inside the interval from 49% to 51%;
ditto, for the interval from 49.9% to 50.1%; ditto, for the
interval from 49.99% to 50.01%; and so forth. No matter what the
relative frequency of heads happens to be at any given moment,
the probability of heads stays the same-- namely, 50%.
Probability is not relative frequency.

7. Similarly, a large part of objectivist statistics is about
what you do if you had a model; and all of us spend enormous
amounts of energy finding out what would happen if the data kept
pouring in. I wish we could learn to look at the data more
directly, without the fictional models and priors. On the same
wish-list: we stop pretending to fix bad designs and inadequate
measurements by modeling.

8. A "dutch book" is a collection of bets on various events such
that the bettor makes money, no matter what the outcome.

9. According to the "sure thing principle," if I prefer A to B
given that C occurs, and I also prefer A to B given that C does
not occur, I must prefer A to B when I am in doubt as to the
occurrence of C.

10. Although one-sentence concessions in a book are not binding,
Savage (1954, p.59) does say that his theory "is a code of
consistency for the person applying it, not a system of
predictions about the world"; and personal probabilities can be
known "only roughly."
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Another comment on this book may be in order. According to
Savage (1954, pp.61-62), "on no ordinary objectivistic view would
it be meaningful, let alone true, to say that on the basis of the
available evidence it is very improbable, though not impossible,
that France will become a monarchy within the next decade." As
anthropology of science, this seems wrong. I make qualitative
statements about likelihoods and possibilities, and expect to be
understood; I find such statements meaningful when others make
them. Only the quantification seems problematic: What would it
mean to say that P(France will become a monarchy) = .0032? Many
objectivists of my acquaintance share such views; although
caution is in order when extrapolating from such a sample of
convenience.

11. The argument in the text is addressed to readers who have
some familiarity with the axioms. This note gives a very brief
review; Kreps (1988) has a chatty and sympathetic discussion
(although some of the details are not quite in focus); Le Cam
(1977) is more technical and critical.

In the axiomatic setup, there is a space of "states of nature,"
like the possible orders in which horses finish a race. There is
another space of "consequences"; these can be pecuniary or non-
pecuniary (win $1,000, lose $5,000, win a weekend in
Philadelphia, etc.). Mathematically, an "act" is a function
whose domain is the space of states of nature, and whose values
are consequences. You have to choose an act: that is the
decision problem. Informally, if you choose the act f, and the
state of nature happens to be s, you enjoy (or suffer) the
consequence f(s). For example, if you bet on those horses, the
payoff depends on the order in which they finish: the bet is an
act, and the consequence depends on the state of nature. The set
of possible states of nature, the set of possible consequences,
and the set of possible acts are all viewed as fixed and known.
You are supposed to have a transitive preference ordering on the
acts, not just the consequences. The sure thing principle is an
axiom in Savage’s setup.

12. Wald’s idea of a statistical decision problem can be
sketched, as follows. There is an unobservable parameter.
Corresponding to each parameter value θ, there is a known
probability distribution Pθ for an observable random quantity X.
(This family of probability distributions is a "statistical
model" for X, with parameter θ.) There is a set of possible
"decisions"; there is a "loss function" L(d,θ) which tells you
how much is lost by making the decision d when the parameter is
really θ. (For example, d might be an estimate of θ, and loss
might be squared error.) You have to choose a "decision rule,"
which is a mapping from observed values of X to decisions. Your
objective is to minimize "risk," that is, expected loss.
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A comparison with the setup in note 11 may be useful. The "state
of nature" seems to consist of the observable value of X,
together with the unobservable value θ of the parameter. The
"consequences" are the decisions, and "acts" are decision rules.
(The conflict in terminology is regrettable, but there is no
going back.) The utility function is replaced by L, which is
given but depends on θ as well as d.

The risk of a Bayes’ procedure cannot be reduced for all values
of θ; any "admissible" procedure is a limit of Bayes’ procedures
("the complete class theorem"). The maximum likelihood estimator
is "efficient"; and its sampling distribution is close to the
posterior distribution of θ by the "Bernstein-von Mises theorem,"
which is actually due to Laplace. More or less stringent
regularity conditions must be imposed to prove any of these
results, and some of the theorems must be read rather literally;
Stein’s paradox and Bahadur’s example should at least be
mentioned.

Standard monographs and texts include Berger (1985), Berger and
Wolpert (1988), Bickel and Doksum (1977), Casella and Berger
(1990), Ferguson (1967), Le Cam (1986), Lehmann (1983, 1986), and
Rao (1973). The Bernstein-von Mises theorem is discussed in Le
Cam and Yang (1990) and Prakasa Rao (1987).

Of course, in many contexts, Bayes procedures and frequentist
procedures will go in opposite directions; for a review, see
Diaconis and Freedman (1986). These references are all fairly
technical.

13. Diaconis and Freedman (1980ab, 1981) review the issues and
the mathematics. The first-cited paper is relatively informal;
the second gives a version of de Finetti’s theorem applicable to
a finite number of observations, with bounds; the last gives a
fairly general mathematical treatment of partial exchangeability,
with numerous examples; it is more technical. More recent work
is described in Diaconis and Freedman (1988, 1990).

The usual hyperbole can be sampled in Kreps (1988, p.145): de
Finetti’s theorem is "the fundamental theorem of statistical
inference-- the theorem that from a subjectivist point of view
makes sense out of most statistical procedures." This
interpretation of the theorem fails to distinguish between what
is assumed and what is proved. It is the assumption of
exchangeability that enables you to predict the future from the
past, at least to your own satisfaction, not the conclusions of
the theorem or the elegance of the proof (and see section 5). If
you pretend to have an exchangeable prior, the statistical world
is your oyster, de Finetti or no de Finetti.
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14. With large-enough weights, a quadratic term will be needed
in equation (1). Moreover, beyond some point, the spring passes
its "elastic limit" and snaps.

15. The residual ei is observable, but is only an approximation
to the disturbance term εi in (1); that is because the estimates
â and b̂ are only approximations to the parameters a and b.

16. Such equations are suggested, somewhat loosely, by "human
capital theory." However, there remains considerable uncertainty
about which variables to put into the equation, what functional
form to assume, and how error terms are supposed to behave.
Adding more variables is no panacea: Freedman (1983), Clogg and
Haritou (1994).

17. For more discussion in the context of real examples, with
citations to the literature of model validation, see Freedman
(1985, 1987, 1991, 1994). Many recent issues of Sociological
Methodology have essays on this topic. Also see Oakes (1990),
who discusses modeling issues, significance tests, and the
objectivist-subjectivist divide.

18. Some legal citations may be of interest (Kaye and Freedman,
1994): Waisome v. Port Authority, 948 F.2d 1370, 1376 (2d Cir.
1991) ("Social scientists consider a finding of two standard
deviations significant, meaning there is about 1 chance in 20
that the explanation for a deviation could be random"); Rivera
v. City of Wichita Falls, 665 F.2d 531, 545 n.22 (5th Cir. 1982)
("A variation of two standard deviations would indicate that the
probability of the observed outcome occurring purely by chance
would be approximately five out of 100; that is, it could be said
with a 95% certainty that the outcome was not merely a fluke.");
Vuyanich v. Republic Nat’l Bank, 505 F. Supp. 224, 271 (N.D. Tex.
1980), vacated and remanded, 723 F.2d 1195 (5th Cir. 1984) ("if a
5% level of significance is used, a sufficiently large t-
statistic for the coefficient indicates that the chances are less
than one in 20 that the true coefficient is actually zero.").

An example from the underlying technical literature may also be
of interest. According to (Fisher, 1980, p.717), "in large
samples, a t-statistic of approximately two means that the
chances are less than one in twenty that the true coefficient is
actually zero and that we are observing a larger coefficient just
by chance.... A t-statistic of approximately two and one half
means the chances are only one in one hundred that the true
coefficient is zero...." No. If the true coefficient is zero,
there is only one chance in one hundred that t > 2.5. (Frank
Fisher is a well known econometrician who often testifies as an
expert witness, although I do not believe he figures in any of
the cases cited above.)
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What is the normative argument? Kreps, p.4, sets up a problem
where you or a friend have to choose among three lotteries; he
remarks that "the choice is not an easy one." Then, he
continues,

But if you examine the five axioms, you might be able to conclude
that in this particular choice situation you want your choice
behavior to conform to the axioms. (Alternatively, you might be
able to convicne your friend that the five axioms are reasonable
guides to how a choice should be made in this circumstance.) If
you do come to this conclusion then the theorems guarantee that
you want your choice behavior to conform to expected utility
maximization.... That is, you solve the problem by analysis: (a)
Decide that you want to obey the axioms because they seem
reasonable guides to behavior. (b) Assess your utility function
.... "

In other words, the normative argument comes down to this: you
should obey the axioms if, after careful reflection, you decide
that you want to obey the axioms.
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