"Son, no matter how far you travel, or how smart you
get, always renenber this: Soneday, sonmewhere, a guy
is going to show you a nice brand-new deck of cards on
whi ch the seal is never broken, and this guy is going
to offer to bet you that the jack of spades will junp
out of this deck and squirt cider in your ear. But,
son, do not bet him for as sure as you do you are
going to get an ear full of cider."”

-- Danpn Runyon!
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Abstr act

After sketching the conflict between objectivists and
subj ectivists on the foundations of statistics, this paper
di scusses an issue facing statisticians of both schools, nanely,
nodel validation. Statistical nodels originate in the study of
ganmes of chance, and have been successfully applied in the
physical and life sciences. However, there are basic problens in
applying the nodels to social phenonena; sone of the difficulties
will be pointed out. Hooke’'s law will be contrasted with
regression nodels for salary discrimnation, the latter being a
fairly typical application in the social sciences.
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1. What is probability?

For a contenporary mathematician, probability is easy to
define, as a countably additive set function on a o-field, with a
total mass of 1. This definition, perhaps cryptic for non-
mat hemat i ci ans, was introduced by A. N Kol nogorov around 1930,
and has been extrenmely convenient for mathematical work;
theorens can be stated with clarity, and proved with rigor.?2

For applied workers, the definition is |ess useful;
countable additivity and o-fields are not observed in nature.
The issue is of a famliar type-- \What objects in the world
correspond to probabilities? This question divides statisticians
into two canps:

(i) the "objectivist" school, also called the
"frequentists”;

(ii) the "subjectivist” school, also called the "Bayesians,"
after the Reverend Thomas Bayes (Engl and, c.1701-1761).

O her positions have now | argely fallen into disfavor; for
exanple, there were "fiducial"™ probabilities introduced by R A
Fi sher (Engl and, 1890-1962). Fisher was one of the two great
statisticians of the century; the other, Jerzy Neyman (b. Russia,
1894; d. U S. A 1981), turned to objectivismafter a Bayesian
start. Indeed, the objectivist position now seens to be the

dom nant one in the field, although the subjectivists are still a
strong presence. O course, the nanes are inperfect descriptors.
Furthernore, statisticians agree anongst thensel ves about as wel |
as phil osophers; many shades of opinion will be represented in
each school .



2. The objectivist position

oj ectivists hold that probabilities are inherent properties

of the systens being studied. For a sinple exanple, like the
toss of a coin, the idea seens quite clear at first. You toss
the coin, it will land heads or tails, and the probability of

heads is around 50% A nore exact value can be determ ned
experinmentally, by tossing the coin repeatedly and taking the
long run rel ative frequency of heads. In one such experinent,
John Kerrich (a South African mathematician interned by the
Germans during Wrld War 11) tossed a coin 10,000 tines and got
5,067 heads: the relative frequency was 5,067/10,000 = 50.67%
For an objectivist such as nyself, the probability of Kerrich's
coin |landing heads has its own existence, separate fromthe data;
the latter enable us to estimate the probability, or test

hypot hesi s concerning it.

The objectivist position exposes one to certain fanous
difficulties. As Keynes said, In the long run, we are all dead.
Heraclitus’ epigram (al so out of context) is even nore severe:
You can't step into the sanme river twice. Still, the tosses of a
coin, like the throws of a die and the results of other such
chance processes, do exhibit remarkable statistical regularities.
These regularities can be described, predicted, analyzed by
techni cal probability theory. Using Kol nogorov’'s axions (or nore
primtive definitions), we can construct statistical nodels that
correspond to enpirical phenonena; although verification of the
correspondence is not the easiest of tasks.



3. The subjectivist position

For the subjectivist, probabilities describe "degrees of
belief." There are two canps within the subjectivist school, the
"classical" and the "radical."” For a "classical" subjectivist,

i ke Bayes hinmself or Laplace-- although such historical readings
are quite tricky-- there are objective "paraneters” which are
unknown and to be estimated fromthe data. (A paraneter is a
nuneri cal characteristic of a statistical nodel for data-- for

i nstance, the probability of a coin |anding heads; other exanples
will be given below. ) Even before data collection, the classica
subj ectivist has information about the paraneters, expressed in
the formof a "prior probability distribution.”

The crucial distinction between a classical subjectivist and
an objectivist: the former will nmake probability statenents
about paraneters-- for exanple, in a certain coin-tossing
experinment, there is a 25% chance that the probability of heads
exceeds .67. However, objectivists usually do not find that such
statenments are neaningful; they view the probability of heads as
an unknown constant, which either is-- or is not-- bigger than
.67. In replications of the experinent, the probability of heads
wi |l always exceed .67, or never; 25% cannot be relevant. As a
technical matter, if the paraneter has a probability distribution
given the data, it nust have a "marginal"” distribution-- that is,
a prior. On this point, objectivists and subjectivists agree;
the hol d-out was R A Fisher, whose fiducial probabilities cone
into existence only after data collection.

"Radi cal " subjectivists, |ike Bruno de Finetti or Jimme
Savage, differ fromcl assical subjectivists and objectivists;
radi cal subjectivists deny the very existence of unknown
paranmeters. For such statisticians, probabilities express

degrees of belief about observabl es. You pull a coin out of
your pocket, and-- Danon Runyon notw t hstandi ng-- they can assign
a probability to the event that it wll |and heads when you toss

it. The braver ones can even assign a probability to the event
that you really will toss the coin. (These are "prior"
probabilities, or "opinions.") Subjectivists can al so "update”
opinions in the light of the data; for exanple, if the coinis
tossed 10 tines, landing heads 6 tinmes and tails 4 tinmes, what is
the chance that it will land heads on the 11th toss? This

i nvol ves conputing a "conditional"™ probability using Kol nogorov’s
cal cul us, which applies whether the probabilities are subjective
or objective.



Here is an exanple with a different flavor: \What is the
chance that a republican will be president of the U S. in the
year 2025? For many subjectivists, this is a neaningful
guestion, which can in principle be answered by introspection.
For many objectivists, this question is beyond the scope of
statistical theory. As best | can judge, however, conplications
will be found on both sides of the divide. Sone subjectivists
wi |l not have quantifiabl e opinions about renote political
events; |ikew se, there are objectivists who m ght devel op
statistical nodels for presidential elections, and conpute
probabilities on that basis.3

The difference between the radi cal and cl assi cal
subj ectivists rides on the distinction between paraneters and
observables; this distinction is made by objectivists too and is
often quite helpful. (In some cases, of course, the issue may be
rather subtle.) The radical subjectivist denial of paraneters
exposes themto certain rhetorical awkwardness; for exanple, they
are required not to understand the idea of a tossing a coin with
an unknown probability of heads. |Indeed, if they admt the coin,
they will soon be stuck with all the unknown paraneters that were
previ ously bani shed. 4



Probability and rel ative frequency

In ordinary | anguage, "probabilities" are not distinguished

at all sharply fromenpirical percentages-- "relative
frequencies.” In statistics, the distinction may be nore
critical. Wth Kerrich’s coin, the relative frequency of heads

in 10,000 tosses, 50.67% is unlikely to be the exact probability
of heads; but it is unlikely to be very far off. For an exanple
with a different texture, suppose you see the foll ow ng sequence
of 10 heads and 10 tails:

THTHTHTHTHTHTHTHTHTH

VWhat is the probability that the next observation will be a head?
In this case, relative frequency and probability are quite
different.?>

One nore illustration along that line: United Airlines
flight 140 operates daily from San Francisco to Philadel phia. In
192 out of the last 365 days, flight 140 | anded on tine. You are
going to take this flight tomorrow. |s your probability of
anding on tinme given by 192/365? For a radical subjectivist,
the question is clear; not so for an objectivist or a classical
subjectivist. Wlatever the question really neans, 192/365 is the
wong answer-- if you are flying on the Friday before Chri stnas.
This is Fisher’s "relevant subset” issue; and he seens to have
been anticipated by von Mses. O course, if you pick a day at
random from the data set, the chance of getting one with an on-
time landing is indeed 192/ 365; that would not be controversial.
The difficulties conme with (i) extrapolation and (ii) judging the
exchangeability of the data, in a useful Bayesian phrase.
Probability is a subtler idea than relative frequency.

Label s do not settle the issue

hj ectivists sonetinmes argue that they have the advant age,
because science is objective. This is not serious; "objectivist”
statistical analysis nust often rely on judgnment and experience:
subj ective elenments cone in. Likew se, subjectivists may tel
you that (i) objectivists use "prior information” and (ii) are
therefore closet Bayesians. Point (i) may be granted. The issue
for (ii) is how prior information enters the analysis, and
whet her this information can be quantified or updated the way
subjectivists insist it nmust be. The real questions are not to
be settled on the basis of |abels.



4. A critique of the subjectivist position

The subjectivist position seens to be internally consistent,
and fairly imune to | ogical attack fromthe outside. Perhaps as
a result, scholars of that school have been quite energetic in
pointing out the flaws in the objectivist position. From an
appl i ed perspective, however, the subjectivist position is not
free of difficulties. Wat are subjective degrees of belief,
where do they conme from and why can they be quantified? No
convi nci ng answers have been produced. At a nore practi cal
| evel, a Bayesian's opinion may be of great interest to hinself,
and he is surely free to develop it in any way that pleases him
but why should the results carry any weight for others?

To answer the |ast question, Bayesians often cite theorens
showi ng "inter-subjective agreenent:" under certain
circunstances, as nore and nore data becone avail able, two
Bayesians will conme to agree: the data swanp the prior. O
course, other theorens show that the prior swanps the data, even
when the size of the data set grows w thout bounds-- particularly
in conpl ex, high-dinmensional situations. (For a review, see
D aconis and Freedman, 1986.) Theorens do not settle the issue,
especially for those who are not Bayesians to start wth.

My own experience suggests that neither decision-makers nor
their statisticians do in fact have prior probabilities. A large
part of Bayesian statistics is about what you would do if you had
a prior.’ "For the rest, statisticians make up priors that are
mat hematically convenient or attractive. Once used, priors
beconme famliar; therefore, they cone to be accepted as "natural”
and are liable to be used again; such priors may eventually
generate their own technical literature.



O her argunents for the Bayesian position

Coherence. There are well-known theorens, including one by
(Freedman & Purves, 1969), show ng that stubborn non-Bayesi an
behavi or has costs. They can nmake a "dutch book," and extract

your |ast penny-- if you are generous enough to cover all the
bets needed to prove the results.® However, mpst of us don’t bet
at all; even the professionals bet on relatively few events.

Thus, coherence has little practical relevance. (Its rhetorical
power is undeniable-- who wants to be incoherent?)

Rationality. It is often urged that to be rational is to be
Bayesi an. | ndeed, there are el aborate axi om systens about
preference orderings, acts, consequences, and states of nature,
whose conclusion is-- that you are a Bayesian. The enpirical

evi dence shows, fairly clearly, that those axions do not describe
human behavior at all well. The theory is not descriptive;
peopl e do not have stable, coherent prior probabilities.

Now t he argunent shifts to the "normative:" if you were
rational, you would obey the axions, and be a Bayesian. This,
however, assumes what nust be proved. Wy would a rationa
person obey those axions? The axions represent decision problens
in schematic and highly stylized ways. Therefore, as | see it,
the theory addresses only limted aspects of rationality. Sone
Bayesi ans have tried to win this argunent on the cheap: to be
rational is, by definition, to obey their axions. (QObjectivists
do not always stay on the rhetorical high road either.)

Detai |l ed exam nation of the flaws in the normative argunent
is a conplicated task, beyond the scope of the present article.
In brief, ny positionis this. Mny of the axions, on their own,
have consi derable normative force. For exanple, if | amfound to
be in violation of the "sure thing principle,” | would probably
reconsider.? On the other hand, taken as a whol e, decision
theory seens to have about the sanme connection to real decisions
as war ganmes played on a table do to real wars.

What are the main conplications? For sone events, | may
have a rough idea of |ikelihood: one event is very likely,
another is unlikely, a third is uncertain. However, | may not be

able to quantify these |ikelihoods, even to one or two deci ma
pl aces; and there will be many events whose probabilities are
si mply unknown-- even if definable.10 Likewise, there are sone
benefits that can be assessed with reasonabl e accuracy; others
can be estimated only to rough orders of magnitude; in sone
cases, quantification may not be possible at all. Thus,
utilities may be just as problematic as priors.



The theorens that derive probabilities and utilities from
axi oms push the difficulties back one step.1l In real exanples,
t he exi stence of many states of nature nust remain unsuspected.
Only sonme acts can be contenpl ated; others are not imagi nable
until the nmoment of truth arrives. O the acts that can be
i magi ned, the decision-maker will have preferences between sone
pairs but not others. Too, comobn know edge suggests that
consequences are often quite different in the foreseeing and in
t he experi enci ng.

Intransitivity would be an argunent for revision, although
not a decisive one; for exanple, a person choosing anong sever al
job offers mght well have intransitive preferences, which it
woul d be a mstake to ignore. By way of contrast, an arbitrageur
who trades bonds intransitively is likely to |l ose a | ot of noney.
(There is an active market in bonds, while the market in job
offers-- largely non-transferable-- nust be rather thin; the
practical details nake a difference.) The axions do not capture
the texture of real decision making. Therefore, the theory has
l[ittle normative force.

The fall back defense. Sonme Bayesians will concede much of what |
have said: the axions are not binding; rational decision-makers
may have neither priors nor utilities. Still, the follow ng
sorts of argunments can be heard. The deci sion-nmaker nust have
some ideas about relative likelihoods for a few events; a prior
probability can be made up to capture such intuitions, at |east
in gross outline. The details (for instance, that distributions
are normal) can be chosen on the basis of convenience. A utility
function can be put together using simlar logic: the

deci si on- maker nust perceive sonme consequences as very good, and
big utility nunbers can be assigned to these; he nust perceive
sonme ot her consequences as trivial, and small utilities can be
assigned to those; in between is in between. The Bayesi an engi ne
can now be put to work, using such approximate priors and
utilities. Even with these fairly crude approxi mati ons, Bayesi an
analysis is held to domnate other forns of inference: that is

t he fall back defense.



Here is nmy reaction to such argunents. Approximte Bayesi an

analysis may in principle be useful. That this node of analysis
dom nates other fornms of inference, however, seens quite
debatable. In a statistical decision problem where the nodel

and |l oss function are given, Bayes procedures are often hard to
beat, as are objectivist |likelihood procedures; with many of the
fam liar textbook nodels, objectivist and subjectivist procedures
should give simlar results if the data set is large. There are
sharp mathematical theorens to back up such statenents.12 On the
ot her hand, in real problens-- where nodels and | oss functions
are nmere approximations-- the optinmality of Bayes procedures
cannot be a mathematical proposition. And enpirical proof is
conspi cuousl y absent.

I f we could quantify breakdowns in nodel assunptions, or
degrees of error in approximate priors and | oss functions, the
bal ance of argument m ght shift considerably. The rhetoric of
"robustness” may suggest that such error anal yses are routine.
This is hardly the case even for the nodels. For priors and
utilities, the position is even worse, since the entities being
approxi mat ed do not have any independent exi stence-- outside the
Bayesi an framework that has been inposed on the problem

de Finetti’s theorem Suppose you are a radical subjectivist,

wat chi ng a sequence of 0's and 1's. |In your prior opinion, this
sequence i s exchangeable: pernuting the order of the variables
wi || not change your opinion about them A beautiful theorem of
de Finetti’s asserts that your opinion can be represented as coin
tossing, the probability of heads being selected at randomfrom a
suitable prior distribution. This theoremis often said to

"expl ain" subjective or objective probabilities, or justify one
systemin ternms of the other.13

Such cl aims cannot be right. VWhat the theorem does is
this: it enables the subjectivist to discover features of his
prior by mathematical proof, rather than introspection. For
exanpl e, suppose you have an exchangeabl e prior about those 0's
and 1's. Before data collection starts, de Finetti will prove to
you by pure mathematics that in your own opinion the relative
frequency of 1's anong the first n observations w |l al nost
surely converge to a limt as n-o (O course, the theorem has
ot her consequences too, but all have the sane |ogical texture.)

10



This notion of "alnobst surely,” and the limting relative
frequency, are features of your opinion not of any external
reality. ("A nost surely” nmeans with probability 1, and the
probability in question is your prior.) Indeed, if you had not
noti ced these consequences of your prior by introspection, and
now do not |ike them you are free to revise your opinion-- which
wi || have no inpact outside your head. What the theorem does is
to show how vari ous aspects of your prior opinion are related to
each other. That is all the theoremcan do, because the
conditions of the theoremare conditions on the prior alone.

To illustrate the difficulty, I cite an old friend rather
than a new eneny. According to Jeffrey (1983, p.199), de
Finetti’s result proves "your subjective probability neasure [is]
a certain mxture or weighted average of the various possible
obj ective probability measures"-- an unusually clear statenent of
the interpretation that | deny. Each of Jeffrey’ s "objective"
probability neasures governs the tosses of a p-coin, where p is
your limting relative frequency of 1's. (O course, p has a
probability distribution of its own, in your opinion.) Thus, pis
a feature of your opinion, not of the real world: the mxands in
de Finetti’s theoremare "objective" only by term nol ogi cal
courtesy. In short, the "p-coins"” that come out of de Finetti’s
theorem are just as subjective as the prior that went in.

To sumup. The theory-- as devel oped by Ransey, von Neumann and
Morgenstern, de Finetti, and Savage, anong others-- is great

wor k. They solved an inportant historical problem of interest
to econom sts, mathematicians, statisticians, and phil osophers
alike. On a nore practical level, the |language of subjective
probability is evocative; sone investigators find the consistency
of Bayesian statistics to be a useful discipline; for sone

(i ncluding nme), the Bayesi an approach can suggest statisti cal
procedures whose behavior is worth investigating. But the theory
is not a conplete account of rationality, or even close. Nor is
it the prescribed solution for any |arge nunber of problens in
applied statistics, at least as | see matters.

11



5. Statistical nodels

O course, statistical nodels are applied not only to coin
tossing but also to nore conplex systens. For exanple,
"regression nodel s" are wdely used in the social sciences, as
i ndi cated bel ow; such applications raise serious epistenol ogi cal
guestions. (This idea wll be devel oped from an objectivi st
perspective, but simlar issues are felt in the other canp.)

The problemis not purely academ c. The census suffers an
undercount, nore severe in sone places than others; if certain
statistical nodels are to be believed, the undercount can be
corrected-- noving seats in Congress and mllions of dollars a
year in entitlement funds (Survey Methodol ogy, vol. 18, no. 1,
1992; Jurinmetrics, vol. 34, no. 1, 1993; Statistical Science,
vol. 9, no. 4, 1994). |If yet other statistical nodels are to be
believed, the veil of secrecy can be lifted fromthe ball ot box,
enabling the experts to determ ne how racial or ethnic groups
have voted-- a crucial step in litigation to enforce mnority
voting rights (Evaluation Review, vol. 15, no. 6, 1991; Kl ein and
Freedman, 1993).

Here, | begin with a (relatively) non-controversial exanple
from physi cs-- Hooke's law. strain is proportional to stress.
(This law is named after Robert Hooke, England, 1653-1703.) W
wi |l have some nunber n of observations. For the ith
observation, indicated by the subscript i, we hang weight; on a
spring. The length of the spring is neasured as length;. The
regressi on nodel says that (for quite a | arge range of
wei ght s14) |

(1) length; = a + bxweight; + .

The "error"” termeg; is needed because neasured length will not be
exactly equal to a + bxweight. |If nothing el se, neasurenent
error nmust be reckoned with. W nodel g as a sequence of draws,
made at randomw th replacenent froma box of tickets; each
ticket shows a potential error-- the g that will be realized if
that ticket is the ith one drawmn. The average of all the

potential errors in the box is assuned to be 0. 1In nore standard
term nol ogy, the g are assunmed to be "independent and
identically distributed, with nmean 0." Such assunptions can

present difficult scientific issues, because error terns are not
observabl e.

12



In equation (1), a and b are paraneters, unknown constants
of nature that characterize the spring: a is the length of the
spring under no load, and b is stretchiness-- the increase in
 ength per unit increase in weight. These paraneters are not
observabl e, but they can be estimated by "the nmethod of | east
squares, " devel oped by Adrien-Marie Legendre (France, 1752-1833)
and Carl Friedrich Gauss (CGermany, 1777-1855) to fit astronom cal
orbits. Basically, you choose the values of & and D to m nim ze
the sum of the squared "prediction errors”, zheiz, where e; is
the prediction error for the ith observation:1®

(2) e; = length; - & - bxweight;.

These prediction errors are often called "residuals:" they
nmeasure the difference between the actual |ength and the
predicted length, the latter being & + b x wei ght.

No one really inmagines there to be a box of tickets hidden
in the spring. However, the variability of physical neasurenents
(under many but by no neans all circunstances) does seemto be
remarkably like the variability in draws froma box. This is
Gauss’ nodel for neasurenent error. |In short, statistical nodels
can be constructed that correspond rather closely to enpirical
phenonena.

| turn now to social-science applications. A case study
woul d take us too far afield, but a stylized exanple-- regression
anal ysis used to denonstrate sex discrimnation in salaries,
adapted from (Kaye and Freedman, 1994)-- may give the idea. W
use a regression nodel to predict salaries (dollars per year) of
enpl oyees in a firmfrom

-education (years of schooling conpleted),
-experience (years with the firm,

-the dummy variable "man," which takes the value 1 for nen
and 0 for wonen.

Enpl oyees are indexed by the subscript i; for exanple, salary; is
the salary of the ith enpl oyee.

13



The equation is16
3) salary; = a + bxeducation, + ¢ xexperience; + dxman, + € .
| | | | |

Equation (3) is a statistical nodel for the data, with unknown
paranmeters a, b, ¢, d; here, ais the "intercept"” and the others
are "regression coefficients"; ¢ is an unobservable error term
This is a formal anal og of Hooke's law (1); the sane assunptions
are made about the errors. |In other words, an enployee’s salary
is determned as if by conputing

(4) a + bxeducation + c xexperience + dx man,

t hen adding an error drawn at random froma box of tickets. The
display (4) is the expected value for salary given the

expl anatory variabl es (education, experience, man); the error
termin (3) represents deviations fromthe expected.

The paraneters in (3) are estimated fromthe data using
| east squares. |If the estimated coefficient d for the dummy
variable turns out to be positive and "statistically significant"”
(by a "t-test"), that would be taken as evi dence of disparate
impact: nmen earn nore than wonen, even after adjusting for
di fferences in background factors that m ght affect productivity.
Educati on and experience are entered into equation (3) as
"statistical controls,” precisely in order to claimthat
adj ust nent has been nmade for differences in backgrounds.

Suppose the estinmated equation turns out as foll ows:

(5) predicted salary = $7,100 + $1, 300 x educati on +
$2, 200 x experi ence + $700 x nman.

That is, & = $7,100, b = $1,300, and so forth. According to
equation (5), every extra year of education is worth on average
$1,300; simlarly, every extra year of experience is worth on
average $2,200; and, nost inportant, nen get an prenm um of $700
over wonen with the same educati on and experience, on average.

A nunerical exanple will illustrate (5). A nale enployee
with 12 years of education (high school) and 10 years of
experience woul d have a predicted sal ary of

(6) $7,100 + $1,300 x 12 + $2,200 x 10 + $700 x 1 =
$7,100 + $15, 600 + $22, 000 + $700 = $45, 400.

14



Asimlarly situated femal e enpl oyee has a predicted salary of
only

(7) $7,100 + $1,300x12 + $2,200x 10 + $700 x0 =
$7,100 + $15,600 + $22,000 + $0 = $44, 700.

Notice the inpact of the dummy variable: $700 is added to (6),
but not to (7).

A major step in the argunent is establishing that the
estimated coefficient 88 of the dummy variable in (3) is
"statistically significant.” This step turns out to depend on
the statistical assunptions built into the nodel. For instance,
each extra year of education is assunmed to be worth the same (on
average) across all levels of experience, both for men and wonen.
Simlarly, each extra year of experience is worth the same across
all levels of education, both for nen and wonen. Furthernore,
the premumpaid to nen does not depend systematically on
education or experience. Ability, quality of education, or
qual ity of experience are assuned not to nake any systematic
difference to the predictions of the nodel.

The story about the error term- that the ¢ s are
i ndependent and identically distributed from person to person in
the data set-- turns out to be critical for conmputing statistical
significance. Discrimnation cannot be proved by regression
nodel i ng unl ess statistical significance can be established, and
statistical significance cannot be established unless
conventional presuppositions are nmade about unobservabl e error
terms.

Lurki ng behind the typical regression nodel will be found a
host of such assunptions; without them legitimte inferences
cannot be drawn fromthe nodel. There are statistical procedures
for testing sonme of these assunptions. However, the tests often
| ack the power to detect substantial failures. Furthernore,
nodel testing may becone circul ar; breakdowns in assunptions are
detected, and the nodel is redefined to acconmodate. |In short,
hi ding the probl ens can becone a maj or goal of nodel building.

15



Usi ng nodel s to make predictions of the future, or the
results of interventions, would be a val uable corrective.
Testing the nodel on a variety of data sets-- rather than fitting
refinements over and over again to the sane data set-- might be a
good second-best (Ehrenberg and Bound, 1993). Wth Hooke' s | aw
(1), the nodel mekes predictions that are relatively easy to test
experinmentally. For the salary discrimnation nodel (3),
val i dation seens nuch nore difficult. Thus, built into the
equation is a nodel for non-discrimnatory behavior: the
coefficient d vanishes. |If the conpany discrimnates, that part
of the nodel cannot be validated at all.

Regression nodels like (3) are widely used by soci al
scientists to nmake causal inferences; such nodels are now al nost
a routine way of denonstrating counter-factuals. However, the
"denonstrations"” generally turn out to be depend on a series of
unt ested, even unarticul ated, technical assunptions. Under the
ci rcunst ances, reliance on nodel outputs may be quite
unjustified. Mking the ideas of validation sonmewhat nore
precise is a serious problemin the philosophy of science. That
nodel s should correspond to reality is, after all, a useful but
not totally straightforward idea-- with sone history to it.
Devel opi ng nodel s, and testing their_connection to the phenonena,
is a serious problemin statistics.’
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Standard errors, t-statistics, and statistical significance

The "standard error” of @ neasures the likely difference
between @ and d, due to the action of the error terns in equation
(3). The "t-statistic" is @ divided by its standard error.

Under the "null hypothesis" that d=0, there is only about a 5%
chance that | tl >2. Such a large value of t would denonstrate
"statistical significance.” O course, the paraneter d is only a
construct in a nodel. |If the nodel is wong, the standard error,
t-statistic, and significance |evel are rather difficult to
interpret.

Even if the nodel is granted, there is a further issue: the
5%is a probability for the data given the nodel, nanely,
P{ltl >2 | d=0}. However, the 5%is often msinterpreted as
P{d=0 | data}. Indeed, this misinterpretation is a commonpl ace
in the social-science literature, and seens to have been picked
up by the courts fromexpert testinony.® For an objectivist,
P{d=0 | data} nakes no sense: paraneters do not exhibit chance
variation. For a subjectivist, P{[d=0 | data} makes good sense,
but its conputation via the t-test is grossly wong, because the
prior probability that d =0 has not been taken into account: the
calcul ation exenplifies the "base rate fallacy."

(The single vertical bar "|" is standard notation for
conditional probability. The double vertical bar "|" is not
st andard; Bayesians m ght want to read this as a conditional
probability; for an objectivist, | is intended to nmean "conputed
on the assunption that....")
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Statistical nodels and the probl em of induction

How do we | earn from experience? Wat nmakes us think that
the future will be like the past? Wth contenporary nodeling
t echni ques, such questions are easily answered-- in formif not
i n substance.

- The objectivist invents a regression nodel for the data,
and assunes the error terns to be independent and
identically distributed; "iid" is the conventional
abbreviation. It is this assunption of iid-ness that
enabl es us to predict data we have not seen froma training
sanpl e-- w thout doing the hard work of validating the
nodel .

- The cl assi cal subjectivist invents a regression nodel for
the data, assunes iid errors, and then makes up a prior for
unknown paraneters.

- The radi cal subjectivist adopts an exchangeabl e or
partial |y exchangeable prior, and calls you irrational or
i ncoherent (or both) for not follow ng suit.

I n our days, serious argunments have been nmade from dat a.
Beautiful, delicate theorens have been proved; although the
connection wth data analysis often remains to be established.
And an enornous anount of fiction has been produced, masqueradi ng
as rigorous science.
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6. Concl usi ons

| have sketched two main positions in contenporary
statistics, objectivist and subjectivist, and tried to indicate
the difficulties. Sone questions confront statisticians from
both canps: How do statistical nodels connect with reality?
What areas | end thensel ves to investigation by statistical
nodel i ng? Wen are such investigations likely to be sterile?

These questions have phil osophi cal conponents as well as
technical ones. | believe nodel validation to be a central
issue. O course, many of ny colleagues will be found to
di sagree. For them fitting nodels to data, conputing standard
errors, and perform ng significance tests is "informative," even
t hough the basic statistical assunptions (linearity, independence
of errors, etc.) cannot be validated. This position seens
i ndefensi ble, nor are the consequences trivial. Perhaps it is
time to reconsider.
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Not es

1. From’The Idyll of Mss Sarah Brown’, Collier’s Magazine,
1933. Reprinted in Guys and Dolls: The Stories of Danon Runyon.
Pengui n Books, New York, 1992, pp.14-26. The quote is edited
slightly, for continuity.

2. This note will give a conpact statenent of Kol nogorov’'s
axionms. Let Q be a set. By definition, a o-field 7 is a
col l ection of subsets of Q which has Q itself as a nenber.
Fur t her nore,

i) 7#is closed under conplenentation (if AJZ then A°0¥), and

i1) Zis closed under the formation of countable unions: if
A O7for i=1,2,...., then O A OJ5.

A probability P is a non-negative, real-valued function on Q
such that P(Q) =1 and P is countably additive: if A OF for

i=1,2,...., and the sets are pairwise disjoint, in the sense that
A nA =0for i#j, then P(0; A) = 3; P(A). A randomvariable X
is an Z-nmeasurable function on Q. Informally, probabilists m ght

say that Nature chooses w[Q according to P, and shows you X(w);
the latter would be the "observed val ue" of X

3. Mddels will be discussed in section 5. Those for

presidential elections may not be conpelling. For genetics,
however, chance nodels are well established; and many statisti cal
calculations are therefore on a secure footing. Mich controversy
remai ns, for exanple, in the area of DNA identification
(Jurimetrics, vol. 34, no. 1, 1993).

4. The distinction between classical and radical subjectivists
made here is not often discussed in the statistical literature;
the termnology is not standard. See, for instance, D aconis and
Freedman (1980a), Efron (1986), Jeffrey (1983, sec. 12.6).

5. Sone readers may say to thenselves that here, probability is
just the relative frequency of transitions. However, a simlar
but slightly nore conplicated exanple can be rigged up for
transition counts; an infinite regress lies just ahead. M point
isonly this: relative frequencies are not probabilities. O
course, if circunstances are favorable, the two are strongly
connected-- that is one reason why chance nodels are useful for
appl i ed work.
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6. To illustrate the objectivist way of handling probabilities
and relative frequencies, | consider repeated tosses of a fair
coin: the probability of heads is 50% In a sequence of 10,000
tosses, the chance of getting between 49% and 51% heads i s about
95% In replications of this (large) experinent, about 95% of
the tine, there will be between 49% and 51% heads. On each
replication, however, the probability of heads stays the same--
namel y, 50%

The strong | aw of |arge nunbers provides another illustration.
Consi der n repeated tosses of a fair coin. Wth probability 1,
as n-o, the relative frequency of heads in the first n tosses
eventual ly gets trapped inside the interval from49%to 51%
ditto, for the interval from49.9%to 50.1% ditto, for the
interval from49.99%to 50.01% and so forth. No matter what the
relative frequency of heads happens to be at any gi ven nonent,
the probability of heads stays the sane-- nanely, 50%
Probability is not relative frequency.

7. Simlarly, a large part of objectivist statistics is about
what you do if you had a nodel; and all of us spend enornous
anounts of energy finding out what woul d happen if the data kept
pouring in. | wsh we could learn to | ook at the data nore
directly, wthout the fictional nodels and priors. On the same
wish-list: we stop pretending to fix bad designs and i nadequate
nmeasur enent s by nodel i ng.

8. A "dutch book" is a collection of bets on various events such
that the bettor makes noney, no matter what the outcone.

9. According to the "sure thing principle,” if | prefer Ato B
given that C occurs, and | also prefer Ato B given that C does
not occur, | nust prefer Ato B when | amin doubt as to the
occurrence of C.

10. Al though one-sentence concessions in a book are not binding,
Savage (1954, p.59) does say that his theory "is a code of

consi stency for the person applying it, not a system of

predi ctions about the world"; and personal probabilities can be
known "only roughly."
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Anot her comment on this book may be in order. According to
Savage (1954, pp.61-62), "on no ordinary objectivistic view would
it be nmeaningful, let alone true, to say that on the basis of the
avai l abl e evidence it is very inprobable, though not inpossible,
that France will becone a nonarchy within the next decade."” As
ant hr opol ogy of science, this seenms wong. | nmake qualitative
statenments about |ikelihoods and possibilities, and expect to be
understood; | find such statenents neani ngful when ot hers nake
them Only the quantification seens problematic: Wat would it
mean to say that P(France will becone a nonarchy) = .0032? Many
obj ectivists of ny acquai ntance share such views; although
caution is in order when extrapolating fromsuch a sanpl e of
conveni ence.

11. The argunent in the text is addressed to readers who have
some famliarity with the axionms. This note gives a very brief
review, Kreps (1988) has a chatty and synpathetic di scussion
(al though sonme of the details are not quite in focus); Le Cam
(1977) is nore technical and critical.

In the axiomatic setup, there is a space of "states of nature,”
i ke the possible orders in which horses finish a race. There is
anot her space of "consequences"; these can be pecuniary or non-
pecuni ary (wn $1, 000, |ose $5,000, win a weekend in

Phi | adel phia, etc.). Mathematically, an "act"” is a function
whose domain is the space of states of nature, and whose val ues
are consequences. You have to choose an act: that is the

deci sion problem Informally, if you choose the act f, and the
state of nature happens to be s, you enjoy (or suffer) the
consequence f(s). For exanple, if you bet on those horses, the
payoff depends on the order in which they finish: the bet is an
act, and the consequence depends on the state of nature. The set
of possible states of nature, the set of possible consequences,
and the set of possible acts are all viewed as fixed and known.
You are supposed to have a transitive preference ordering on the
acts, not just the consequences. The sure thing principle is an
axiomin Savage' s setup

12. Wald' s idea of a statistical decision problemcan be
sketched, as follows. There is an unobservabl e paraneter.
Corresponding to each paraneter value 6, there is a known
probability distribution Pg for an observable random quantity X
(This famly of probability distributions is a "statistical
nodel " for X, with paraneter 6.) There is a set of possible
"decisions"; there is a "loss function" L(d, 8) which tells you
how much is | ost by nmaking the decision d when the paranmeter is
really 6. (For exanple, d mght be an estimate of 6, and | oss
m ght be squared error.) You have to choose a "decision rule,"”
which is a mapping from observed val ues of X to decisions. Your
objective is to mnimze "risk," that is, expected | oss.
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A conparison with the setup in note 11 nmay be useful. The "state
of nature" seenms to consist of the observable value of X
together with the unobservable value 6 of the paraneter. The
"consequences" are the decisions, and "acts" are decision rules.
(The conflict in termnology is regrettable, but there is no
going back.) The utility function is replaced by L, which is

gi ven but depends on 6 as well as d.

The risk of a Bayes' procedure cannot be reduced for all val ues
of 0; any "adm ssible" procedure is alimt of Bayes’  procedures
("the conplete class theoremt'). The maxi mum |ikelihood esti mator
is "efficient”; and its sanpling distribution is close to the
posterior distribution of 0 by the "Bernstein-von Mses theorem"”
which is actually due to Laplace. Mre or |less stringent
regularity conditions nust be inposed to prove any of these
results, and sone of the theorenms nust be read rather literally;
Stein’s paradox and Bahadur’s exanple should at |east be
ment i oned.

St andard nonographs and texts include Berger (1985), Berger and
Wl pert (1988), Bickel and Doksum (1977), Casella and Berger
(1990), Ferguson (1967), Le Cam (1986), Lehmann (1983, 1986), and
Rao (1973). The Bernstein-von Mses theoremis discussed in Le
Cam and Yang (1990) and Prakasa Rao (1987).

O course, in many contexts, Bayes procedures and frequenti st
procedures will go in opposite directions; for a review, see
D aconis and Freedman (1986). These references are all fairly
t echni cal

13. Diaconis and Freedman (1980ab, 1981) review the issues and
the mat hematics. The first-cited paper is relatively infornal

t he second gives a version of de Finetti’s theoremapplicable to
a finite nunber of observations, with bounds; the last gives a
fairly general mathematical treatnent of partial exchangeability,
Wi th nunmerous exanples; it is nore technical. More recent work
is described in D aconis and Freedman (1988, 1990).

The usual hyperbol e can be sanpled in Kreps (1988, p.145): de
Finetti’s theoremis "the fundanental theorem of statistica
inference-- the theoremthat froma subjectivist point of view

makes sense out of nost statistical procedures.” This
interpretation of the theoremfails to distinguish between what
is assuned and what is proved. It is the assunption of

exchangeability that enables you to predict the future fromthe
past, at |east to your own satisfaction, not the concl usions of
the theoremor the el egance of the proof (and see section 5). |If
you pretend to have an exchangeable prior, the statistical world
is your oyster, de Finetti or no de Finetti.
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14. Wth | arge-enough weights, a quadratic termw || be needed
in equation (1). Mreover, beyond some point, the spring passes
its "elastic limt" and snaps.

15. The residual e; is observable, but is only an approximtion
to the disturbance termeg; in (1); that is because the estimtes
a and b are only approximations to the paraneters a and b.

16. Such equations are suggested, sonmewhat |oosely, by "human
capital theory." However, there renmains considerable uncertainty
about which variables to put into the equation, what functional
formto assune, and how error terns are supposed to behave.
Addi ng nore variables is no panacea: Freedman (1983), C ogg and
Haritou (1994).

17. For nore discussion in the context of real exanples, with
citations to the literature of nodel validation, see Freednman
(1985, 1987, 1991, 1994). Many recent issues of Soci ol ogi cal
Met hodol ogy have essays on this topic. Also see Oakes (1990),
who di scusses nodeling issues, significance tests, and the

obj ectivi st-subjectivist divide.

18. Sone legal citations may be of interest (Kaye and Freedman,
1994): Waisonme v. Port Authority, 948 F.2d 1370, 1376 (2d Cr
1991) ("Social scientists consider a finding of two standard
deviations significant, nmeaning there is about 1 chance in 20
that the explanation for a deviation could be randont'); R vera

v. City of Wchita Falls, 665 F.2d 531, 545 n.22 (5th Gr. 1982)
("A variation of two standard devi ati ons woul d indicate that the
probability of the observed outcone occurring purely by chance
woul d be approximately five out of 100; that is, it could be said
with a 95% certainty that the outcone was not nerely a fluke.");
Vuyani ch v. Republic Nat’'l Bank, 505 F. Supp. 224, 271 (N.D. Tex.
1980), vacated and remanded, 723 F.2d 1195 (5th Cr. 1984) ("if a
5% | evel of significance is used, a sufficiently large t-
statistic for the coefficient indicates that the chances are | ess
than one in 20 that the true coefficient is actually zero.").

An exanmple fromthe underlying technical literature may al so be
of interest. According to (Fisher, 1980, p.717), "in |large
sanples, a t-statistic of approximtely two neans that the
chances are |l ess than one in twenty that the true coefficient is
actually zero and that we are observing a | arger coefficient just

by chance.... At-statistic of approximately two and one half
means the chances are only one in one hundred that the true
coefficient is zero...." No. |If the true coefficient is zero,

there is only one chance in one hundred that [tl >2.5. (Frank

Fisher is a well known econonetrician who often testifies as an
expert w tness, although I do not believe he figures in any of

the cases cited above.)
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VWhat is the normative argunent? Kreps, p.4, sets up a problem
where you or a friend have to choose anobng three lotteries; he
remarks that "the choice is not an easy one."™ Then, he

conti nues,

But if you exami ne the five axions, you m ght be able to concl ude
that in this particular choice situation you want your choice
behavior to conformto the axions. (Alternatively, you m ght be
able to convicne your friend that the five axions are reasonabl e
gui des to how a choice should be nmade in this circunstance.) |If
you do conme to this conclusion then the theorens guarantee that
you want your choice behavior to conformto expected utility

maxi m zation.... That is, you solve the problem by analysis: (a)
Deci de that you want to obey the axi ons because they seem
reasonabl e gui des to behavior. (b) Assess your utility function

In other words, the normative argunment cones down to this: you
shoul d obey the axions if, after careful reflection, you decide
that you want to obey the axions.
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