
Notes on the Dutch Book Argument
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The object here is to sketch the mathematics behind de Finetti’s (1931, 1937)
argument for the Bayesian position. Suppose a bookie sets odds on all subsets of
a set, accepting bets in any amount (positive or negative) on any combination of
subsets. Unless the odds are computed from a prior probability, dutch book can
be made: for some system of bets, the clever gambler wins a dollar or more, no
matter what the outcome may be. The extension by Freedman and Purves (1969)
to statistical inference is also considered. Finally, there is a dutch-book argument
for countable additivity.

1. De Finetti’s argument

Let � be a finite set with card(�) > 1. A bookie posts oddsλA onA, for
every properA ⊂ �; odds are positive and finite. If you betbA onA, andA occurs,
then you winbA/λA; if A does not occur, then you win−bA. Your net payoff is

(1) φA = 1A
bA

λA
−

(
1 − 1A

)
bA = bA

1 + λA

λA

(
1A − λA

1 + λA

)
.

The stakesbA are finite, but may be positive, 0, or negative. Corresponding to each
set of stakes there is a payoff function,

(2)
∑
A

φA,

whereA runs over the proper subsets of�. For now, we take the odds as fixed, and
consider various gamblers who bet against the bookie: each gambler generates a
payoff function.

If λA = π(A)/[1 − π(A)] for some probabilityπ on�, i.e.,

π(A) = λA/(1 + λA),

we say the bookie is a Bayesian with priorπ . Obviously, all payoff functions then
have expectation 0 relative toπ . In particular,

Proposition 1. Dutch book cannot be made against a Bayesian bookie.
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Let V be the set of all real-valued functions on�, soV is a linear space of
dimension card(�).

Theorem 1. For each bookie, there are only two possibilities:(i) the set of
payoff functions coincides withV ; or (ii) the bookie is a Bayesian with priorπ ,
whereπ is a probability on� assigning positive mass to everyω ∈ �.

Proof. If case (i) does not obtain, there is a non-trivial functionπ on� such
that for allφA, ∑

ω∈�
π(ω)φA(ω) = 0,

which is to say, by (1),

π(A) = π(�)λA/(1 + λA),

where
π(B) =

∑
ω∈B

π(ω)

for all B ⊂ �. If π(�) = 0 thenπ(ω) = 0 for all ω, as one sees by taking
A = {ω}. This is a contradiction, soπ(�) �= 0. Renormalizeπ so thatπ(�) = 1,
i.e., replaceπ by π/π(�). Now π(A) = λA/(1 + λA), soπ > 0 and case (ii)
obtains.

Theorem 2. For the Bayesian bookie with priorπ , the set of payoff functions
coincides with the set of functions having expectation0 relative toπ .

Proof. Otherwise, there is a non-trivialν, not a multiple ofπ , such that all
payoff functions are orthogonal toν as well asπ . Arguing as before, we find that
ν(�) �= 0. We renormalize soν(�) = 1, and thenν(A) = λA/(1 + λA) = π(A),
a contradiction.

Corollary 1. The following are equivalent.

(i) The payoff functions are all ofV .
(ii) The bookie is not a Bayesian.

(iii) Dutch book can be made against the bookie.

Proof. (i)⇒ (iii): obvious. (iii) ⇒ (ii): Proposition 1. (ii)⇒ (i): if the
payoff functions were not all ofV , the bookie would be a Bayesian (Theorem 1).
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Corollary 2. The following are equivalent.

(i) The payoff functions are not all ofV .
(ii) The bookie is a Bayesian.

(iii) Dutch book cannot be made against the bookie.

In this case, the payoff functions consist of all functions with expectation0, relative
to the bookie’s prior.

Proof. (i)⇒ (ii): Theorem 1. (ii)⇒ (iii): Proposition 1. (iii)⇒ (i): obvious.
The final assertion follows from Theorem 2.

Example 1. Negative stakes are needed for the theorems. Suppose� =
{0,1}, the bookie puts 2:1 on 0 and 3:1 on 1, but accepts only positive bets on
events. If you putx ≥ 0 on 0 andy ≥ 0 on 1, the payoff isx/2 − y on 0 and
y/3 − x on 1. If both are positive,x/2 > y > 3x, sox > 6x, a contradiction.
This bookie – although not a Bayesian – is immune from dutch book, being clever
enough to set favorable odds and require positive stakes.

2. The extension to statistical inference

In this section, we discuss the principal result in Freedman and Purves (1969).
In essence, a bookie has to post odds on subsets of a parameter space� after
seeing an observationx drawn fromp(• |θ): dutch book can be made against the
non-Bayesian bookie. In view of the previous section, the bookie will use an
‘estimating probability’q(• |x) on� to set the odds. The only question is, how do
these probabilities fit together?

A ‘finite estimation problem’ consists of (i) a finite setX , and (ii) a finite set
of parametric models{p(• |θ) : θ ∈ �} specifying probability distributions onX.
Allowing p(x|θ) = 0 creates one technical nuisance after another, so we assume

(3) p(x|θ) > 0 for all x ∈ X andθ ∈ �.

An ‘estimating probability’q(• |x) is a probability on� for eachx ∈ X.
Consider subsetsC1, . . . , Ck of �. After x is observed, allow the gambler to pay
bi(x)q(Ci |x) in order to getbi(x) dollars ifθ ∈ Ci . The gambler is allowed to use
any boundedbi . Bets are settled separately, and then summed.

The net payoff to a gambler who uses the sets{C1, . . . , Ck} and the functions
{bi : i = 1, . . . , k} is

(4) φ(x, θ) =
k∑

i=1

bi(x)
[
ICi (θ)− q(Ci |x)

]
.
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Any suchφ is called a ‘payoff function’. Nothing requiresq to be positive: if
q(Ci |x) = 0, the gambler pays 0 to getbi(x) if θ ∈ Ci . Similarly,Ci may be∅
or�. In these respects, payoff functions work more smoothly than odds.

Corresponding to each payoff functionφ on X × �, there is an ‘expected
payoff function’ on�:

(5) Eθ {φ} =
∑
x∈X

φ(x, θ)p(x|θ).

Definition 1. Dutch bookcan be made against the estimating probability
q(• |x) if there is a gambling system that provides a uniformly positive expected
payoff to the gambler: in other words, there exists a payoff functionφ – as defined
by (4) – and anε > 0 such that

(6) Eθ {φ} > ε for all θ ∈ �.

To paraphrase Freedman and Purves (1969),

Imagine a Master of Ceremonies who chooses someθ ∈ � and then picks
x ∈ X at random fromp(• |θ). The value ofx is revealed and the bookie
announces the estimating probabilityq(• |x). The gambler then constructs a
system with payoff functionφ. When (6) holds, the gambler expects to win
at leastε no matter what the value ofθ .

Of course, if (6) holds for some positiveε, any other positiveε can be obtained by
rescaling the payoff function.

If π is a probability on�, we will say that the bookie is a Bayesian with
prior π provided

(7) mπ(x)q(θ |x) = π(θ)p(x|θ)

where

(8) mπ(x) =
∑
θ∈�

π(θ)p(x|θ).

Here,mπ(x) is the ‘marginal’ probability ofx, integrated over theθ ’s.

Lemma 1. For the Bayesian bookie with priorπ , any expected payoff func-
tion – as a function ofθ – integrates to0 againstπ .

4



Proof. In (4), takek = 1; writeb for b1 andC for C1. Then
∑

θ Eθ {ψ}π(θ)
is ∑

θ∈�

∑
x∈X

b(x)
[
1C(θ)− q(C|x)]p(x|θ)π(θ) = α − β

where
α =

∑
θ∈�

∑
x∈X

b(x)1C(θ)p(x|θ)π(θ)

and
β =

∑
θ∈�

∑
x∈X

b(x)q(C|x)p(x|θ)π(θ) = α

by ‘the law of total probability’. In more detail,

β =
∑
θ∈�

∑
x∈X

b(x)q(C|x)p(x|θ)π(θ)

=
∑
x∈X

∑
θ∈�

b(x)q(C|x)p(x|θ)π(θ)

=
∑
x∈X

b(x)q(C|x)mπ(x)

=
∑
x∈X

∑
θ∈C

b(x)π(θ)p(x|θ) by (7)

=
∑
θ∈�

∑
x∈X

b(x)1C(θ)p(x|θ)π(θ) = α.

Remark. Another way to say Lemma 1: the payoff functionsφ in (4) all have
expected value 0, relative to the probability onX×� that assigns massp(x|θ)π(θ)
to the pair(x, θ).

Corollary 3. Dutch book cannot be made against a Bayesian bookie.

Let V be the set of all real-valued functions on�, soV is a linear space of
dimension card(�).

Theorem 3. For each bookie, there are only two possibilities:(i) the set of
expected payoff functions coincides withV ; or (ii) the bookie is a Bayesian with
prior π , whereπ is a probability on�.

Proof. If case (i) does not hold, there is a non-trivial functionπ on �, or-
thogonal to all expected payoff functions. For the moment, fixx ∈ X andθ ∈ �.
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Specializeφ in (4), choosingk = 1, b1 = 1 atx andb1 = 0 elsewhere,C1 = {θ}.
ThenE•{φ} ⊥ π unpacks to

(9) mπ(x)q(θ |x) = π(θ)p(x|θ).

Equation (9) holds for allx andθ . In view of (3), it is not possible forπ to be strictly
positive atθ1 and strictly negative atθ2. Nor canπ vanish identically. Hence, we
can renormalizeπ to be a probability on�: then (9) says that the bookie is a
Bayesian with priorπ .

Theorem 4. For the Bayesian bookie with priorπ , the set of payoff functions
coincides with the set of functions having expectation0 relative toπ .

Proof. Otherwise, we find a non-trivial functionν on�, not a multiple ofπ ,
orthogonal to all expected payoff functions. Arguing as before, we show that (9)
holds withν in place ofπ . Hence,ν can be renormalized to a probability. Let
µ = (π + ν)/2, and�+ = {θ : θ ∈ � & µ(θ) > 0}. If θ ∈ �+, by (9),

(10) ν(θ)/µ(θ) = mν(x)/mµ(x).

The right hand side of (10) does not depend onθ . Therefore,ν = µ. Similarly,
π = µ = ν, a contradiction proving Theorem 4.

The corollaries follow, as in the previous section.

Corollary 4. The following are equivalent.

(i) The expected payoff functions are all ofV .
(ii) The bookie is not a Bayesian.

(iii) Dutch book can be made against the bookie.

Corollary 5. The following are equivalent.

(i) The expected payoff functions are not all ofV .
(ii) The bookie is a Bayesian.

(iii) Dutch book cannot be made against the bookie.

In this case, the expected payoff functions consist of all functions with expectation0,
relative to the bookie’s prior.
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3. From finite to countable additivity

We modify de Finetti’s argument (Section 1) to favor countable additivity
rather than finite additivity. Let(�,�) be a probability space, finite or infinite;
let ψ be a function from� to [0,1]. In general, we require� to be aσ -field. A
‘payoff function’ is

(11)
∑
A

cA[1A − ψ(A)]

whereA ∈ � andcA is a finite real number: the sum is over a finite number of
A’s. Let F be the set of payoff functions. The normalization is a little different
from (1): when 0< λA < ∞, ψ(A) = λA/(1 + λA) andcA = bA(1 + λA)/λA.
The imagery is different too. Informally, the gambler paysψA for a lottery ticket
1A, which yields $1 ifA occurs and 0 otherwise: the bet is just enough to get $1 ifA

happens. This bet can be scaled bycA, an arbitrary real number. Any finite number
of bets can be placed. WhenλA is large, i.e.,ψ(A)

.= 1, thencA
.= bA. WhenλA

is small, i.e.,ψ(A)
.= 0, thencA

.= bA/ψ(A). The advantage of (11) is that the
formula can be used even ifψ(A) = 0 or 1, corresponding toλA = 0 or ∞.

To avoid dutch book,ψ must be a finitely additive probability on�. When
� is finite, this can be proved just as before: the new proposition is a little more
general, since the odds are unrestricted. As a matter of notation, the previous
argument generates a (finitely additive) probabilityπ , and identifiesψ with π .
The result is easily extended to the case where� is infinite but� finite – and from
there, to the general case.

Suppose next we allow the sum in (11) to be countably infinite, so long as there
is uniformly bounded pointwise convergence. More exactly, let{Ai : i = 1,2, . . .}
be a sequence of subsets of� and{ci} a sequence of real numbers. Let

φn =
n∑
i=1

ci [1Ai
− ψ(Ai)].

Suppose

(i) |φn(ω)| < L for all n = 1,2, . . . and allω ∈ �, whereL is a real number;

(ii) lim n φn(ω) = φ(ω) for eachω ∈ �.

Thenφ is also considered to be a payoff function. Said another way, the set of
payoff functions is enlarged by taking uniformly bounded pointwise limits. LetF
denote this larger set of payoff functions.
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Now, unlessψ is countably additive, a dutch book can be made. Indeed, let
Ai ∈ � be pairwise disjoint andA = ∪i Ai . Of course,ψ(A) ≥ ∑∞

i=1ψ(Ai).
Suppose that the inequality is strict. Consider a payoff function that has a bet on
eachAi , and a bet againstA, to win $1 in each case:

[ψ(A)− 1A] +
∞∑
i=1

[1Ai
− ψ(Ai)] = lim

n

{
[ψ(A)− 1A] +

n∑
i=1

[1Ai
− ψ(Ai)]

}

= ψ(A)−
∞∑
i=1

ψ(Ai) > 0.

In short, finite additivity exposes the odds-maker to a dutch book – if the gambler
can use payoff functions inF . Of course, if the odds are computed from a countably
additiveπ , each payoff function has expectation 0 relative toπ , by the dominated
convergence theorem, and dutch book is impossible.

Theorem 5. Suppose the setF of payoff functions is initially defined by(11),
withA ∈ �, a σ -field of subsets of�; only finitely manyA’s are allowed. The set
of payoff functions is then enlarged toF by allowing uniformly bounded pointwise
limits. A gambler can make dutch book unless the odds are compatible with a
countably additive prior on(�,�).

Example 2. Supposeψ is a remote (finitely additive) probability on the
integers. The gambler pays 0 to win $1 if integerj materializes, for all integers.
The odds-maker will in the end have to fork over $1.

A primer on odds

If the odds onA are 3:1, and we bet $1 onA:
if A occurs we win $1/3;
if A does not occur, we lose our $1.

If the odds onA are 3:1, and we bet $1 againstA:
if A occurs we lose our $1;
if A does not occur, we win $3.

If the odds againstB are 3:1, and we bet $1 onB:
if B occurs we win $3;
if B does not occur, we lose our $1.
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If the odds againstB are 3:1, and we bet $1 againstB:
if B occurs we lose our $1;
if B does not occur, we win $1/3.

If P(A) = 3/4—

the odds onA are 3:1
the odds againstA are 1:3

the odds onAc are 1:3
the odds againstAc are 3:1
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