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Abstract

‘Dutch book’ and ‘strong inconsistency’ are generally equivalent: there is a
system of bets that makes money for the gambler, whatever the state of nature may
be. As de Finetti showed, an odds-maker who is not a Bayesian is subject to a dutch
book, under certain highly stylized rules of play – a factoften used as an argument
against frequentists. However, so-called ‘objective’ or ‘uninformative’ priors may
also be subject to a dutch book. This note explains, in a relatively simple and
self-contained way, how to make dutch book against a frequently-recommended
uninformative prior for covariance matrices.
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1. Introduction

Our aim here is to sketch a relatively simple and self-contained argument to
show that dutch book can be made against certain ‘objective’ priors, namely, in-
variant measures that have infinite mass and are used as ‘priors’ in formal Bayesian
calculations. Such improper priors are often said to be ‘uninformative’. Our main
example involves a prior that was recommended by Jeffreys – and adopted by many
Bayesians – for use in multivariate normal distributions where the covariance ma-
trix is unknown.

To fix ideas, we begin with de Finetti’s dutch-book argument against the fre-
quentists. Let� be a finite set. A bookie has to post finite, positive odds on
every subset of�, apart from the empty set and� itself, accepting bets on each
set at those odds. Bets can be laid in any amount (positive or negative) on any
combination of sets. The Bayesian bookie will have a prior probabilityπ on�,
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and will post oddsπ(A)/[1 − π(A)] onA. The non-Bayesian bookie posts odds
compatible with noπ . In this context, ‘dutch book’ means a system of bets that –
no matter whatω is chosen from� – yields a positive payoff to the bettor.

Plainly, dutch book cannot be made against a Bayesian bookie, since the ex-
pected payoff is 0. On the other hand, as de Finetti showed, dutch book can be made
against any non-Bayesian bookie. The relevance to applied statistical work is not
entirely clear, since few statisticians place bets when doing data analysis, and few
bookies follow de Finetti’s rules for accepting bets. However, the argument has
often been deployed against the frequentists: for discussion, see Freedman (1995).
The possibility of a dutch book is sometimes referred to as a ‘money pump’: if
you can win a dollar, you make the poor bookie play the game over and over again,
pumping money from him to you.

De Finetti’s example can be viewed as a prediction problem: Nature will choose
ω from�, and the odds are a stylized way of describing opinions about the future.
Freedman and Purves (1969) modified the argument to cover a two-stage process
with conditional bets. The pair(x, z) is chosen at random fromPθ , whereθ is an
unknown parameter;x is observed first,z second. (The parameter space and the
observation space are required to be finite, as in de Finetti’s work.) The gambler
is allowed to bet onz, and bets are allowed to depend onx. The concept of dutch
book must be extended slightly: the clever gambler can arrange to have a positive
expected payoff from a non-Bayesian bookie, simultaneously for allθ – but may
have to take a loss for some combinations ofθ , x, andz. Some observers may
view the passage from unconditional to conditional bets as a small variation on de
Finetti’s setup; others consider this generalization to be a major – and subversive –
idea.

Our main example involves prediction, in a setting like that of Freedman and
Purves (1969) – although the spaces are infinite. There aren independent ob-
servations from a common multivariate normal distribution, having mean 0 and
(unknown) positive definite covariance matrix�. The observations are denoted
X1, . . . , Xn; they are used to predict ann + 1st observation, denotedZ. Indeed,
having observedX1, . . . , Xn, the statistician is required to produce a ‘predictive
distribution’ forZ. If the Jeffreys prior is used to generate this predictive distribu-
tion, the statistician is exposed to a dutch book.

A similar example can be constructed for estimation (Section 2.2), but the ar-
gument is a little harder. Stone (1976) has the concept of ‘strong inconsistency’,
defined below. In Section 2, we show that the Jeffreys prior leads to strong incon-
sistency. Section 3 demonstrates that strong inconsistency is equivalent to a dutch
book. Section 4 reviews the literature.
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2. The Main Example

LetX1, . . . , Xn be independent randomp×1 vectors, with a commonNp(0, �)
distribution; the covariance matrix� is p × p and positive definite. Here,n ≥
p > 1. An (n+ 1)st observationZ will be drawn independently fromNp(0, �).
How can the dataX = (X1, . . . , Xn) be used to predictZ? Since the problem is
invariant under multiplication by ap × p non-singular matrixA,

Xi → AXi, Z → AZ, � → A�A′,

an invariant ‘prior distribution’might suggest itself. (Quote marks are used because
the prior is improper, with infinite total mass.) The invariant prior isd�/|�|(p+1)/2.
It is unique up to a positive constant, and can be recognized as the Jeffreys prior√|I |d�, whereI is the Fisher information matrix and|M| is the determinant ofM.

A predictive distribution forZ can be computed from the Jeffreys prior, by a
formal application of Bayes rule. In more detail, letφ(x, z|�) be the multivariate
normal density of(X,Z) given�; similarly, φ(x|�) is the multivariate normal
density ofX given�. Here,x ∈ (Rp)n andz ∈ Rp. Formally, the ‘predictive
density’ forX,Z – in advance of data collection – is obtained by integrating�

against the Jeffreys prior:

φ(x, z) =
∫
φ(x, z|�)d�/|�|(p+1)/2. (1)

Likewise, the ‘predictive density’ forX is

φ(x) =
∫
φ(x|�)d�/|�|(p+1)/2. (2)

According to ‘Bayes rule’, the ‘predictive density’ forZ whenX = x is

φ(z|x) = φ(x, z)/φ(x). (3)

We have quote marks because the prior is improper, so∫∫
φ(x, z)dxdz =

∫
φ(x)dx = ∞.

On the other hand,φ(z|x) is a proper density forZ, because
∫
φ(x, z|�)dz =

φ(x|�), so
∫
φ(x, z)dz = φ(x), and

∫
φ(z|x)dz = 1.

The main result of this section can now be stated: the predictive densityφ(z|x)
is strongly inconsistent, and dutch book can be made against a statistician who
uses it. (Strong inconsistency is defined below.)
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Theorem 1. Letn ≥ p > 1. SupposeX1, . . . , Xn, Z are independentNp(0, �).
The predictive distribution forZ givenX1, . . . , Xn, computed from the Jeffreys
prior on the covariance matrix�, is strongly inconsistent.

An outline of the proof comes next, with details in Sections 2.1 and 3. Let
S = ∑n

i=1XiXi
′. We takeXi andZ to bep × 1 column vectors, soS is ap × p

matrix. By eliminating a null set, we can takeS to be positive definite. WriteZ1

for the first coordinate ofZ, andS11 for the (1,1) element ofS. Then, as is almost
obvious, the sampling distributionD0 of T = Z1/

√
S11 does not depend on�:

√
nT ∼ tn. (4)

Here, ‘∼’ means ‘is distributed as’, andtn is t with n degrees of freedom.
WhenX = x, the predictive distributionQ(dz|x) for the(n+1)st observation

Z, computed formally by Bayes rule from the Jeffreys prior, has a density onRp

given by
φ(z|x) = C/

√
|s|(1 + z′s−1z)n+1, (5)

whereC is a constant, ands = ∑n
i=1 xixi

′ is the value ofS at the observedX = x.
As before, we takexi andz to bep × 1, sox is p × n ands is p × p. The proof
of (5) is ‘just’ calculus (Section 2.1). The constantC depends onn andp, not
onx or z.

Next, the predictive distributionD1 of T = Z1/
√
S11 whenX = x does not

depend onx; indeed, √
n− p + 1T ∼ tn−p+1, (6)

as will also be proved in Section 2.1. By (4) and (6),

D1 �= D0. (7)

Inequality (7) is the key point, and strong inconsistency will soon follow. (Ifp = 1
thenD1 = D0; that is why we assumedp > 1.)

LetE� denote expectation relative to our sampling model forX1, . . . , Xn, Z,
and recall thatQ(dz|x) is the predictive distribution forZ givenX = x. ‘Strong
inconsistency’ means there is a bounded measurable functionf and anε > 0 with

∫
f (x, z)Q(dz|x)+ ε ≤ E�{f (X,Z)} (8)

for all x and�. Section 3 discusses the definition in a more general framework,
but here is the point. The left hand side of (8) depends onx not�; the right hand
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side, on� notx. Thus,

α = sup
x

∫
f (x, z)Q(dz|x) < inf

�
E�{f (X,Z)} = β.

Consider a ‘lottery’ that paysf (x, z)whenX = x andZ = z. The expected value
of the lottery, in advance of data collection, is at leastβ. Thus, a statistician (of the
kind envisaged by de Finetti) should payβ to buy the lottery. On the other hand,
after seeingX, a statistician who uses the predictive distributionQ should happily
sell the lottery forα, no matter whatX proves to be. The gap betweenα andβ
reflects an inconsistency in the pricing, and leaves room for dutch book againstQ.

Strong inconsistency is easily demonstrated, by constructingf andε. In view
of (7), there is a bounded measurable functionh andε > 0 with

∫ ∞

−∞
h(v)D1(dv)+ ε ≤

∫ ∞

−∞
h(v)D0(dv). (9)

Let f (x, z) = h(z1/
√
s11), wherez1 is the first coordinate of thep × 1 column

vectorz, ands11 is the (1,1) element of thep×p matrixs = ∑n
i=1 xixi

′. Now (9)
boils down to (8), by the change-of-variables formula for integrals. On the left hand
side,D1 is theQ(dz|x)-distribution ofz1/

√
s11. On the right hand side,D0 is the

sampling distribution ofT = Z1/
√
S11. With ourf , both sides of (8) are constant,

by (4) and (6). This completes a sketch of the argument for strong inconsistency.
Some details are given next, and dutch book is discussed in Section 3.

2.1 Some Details

We begin with (5). Step 1 is showing that the predictive densityφ(x) of
X = (X1, . . . , Xn), computed from the model and the Jeffreys prior in advance of
data collection, isCn,p/|s|n/2, whereCn,p is a constant,s = ∑n

i=1 xixi
′ is positive

definite (a.e.), and|s| is the determinant ofs. As in (2),

φ(x) =
∫
φ(x|�)µ(d�),

whereφ(x|�) is the multivariate normal density,

φ(x|�) = (2π)−np/2 � −n/2 exp
(− 1

2

∑n
i=1 xi

′�−1xi
)
,

andµ(d�) = d�/|�|(p+1)/2 is the Jeffreys prior. As before,x = (x1, . . . , xn),
with xi ap × 1 column vector, and� is ap × p positive definite matrix. Since
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trace(LM) = trace(ML) when both products are defined,

n∑
i=1

xi
′�−1xi = trace(�−1s) = trace(s1/2�−1s1/2). (10)

Since|LM| = |ML| for p × p matrices,

� −n/2 = s −n/2 s−1/2�s−1/2 −n/2. (11)

So

φ(x) =
∫
φ(x|�)µ(d�) (12)

= s −n/2
∫
ψ(s|�)µ(d�)

= s −n/2
∫
ψ(Ip×p|�)µ(d�),

whereIp×p is thep × p identity matrix,

ψ(s|�) = Dn,p(s)exp
[− 1

2
trace(s1/2�−1s1/2)

]
,

Dn,p(s) = (2π)−np/2 s−1/2�s−1/2 −n/2.

The first line in (12) is just (2). The second line holds by (10) and (11), with a
bit of algebraic juggling for the constants. The third line holds because the Jeffreys
priorµ is invariant. Equation (12) is the required formula for the predictive density
φ(x) of X = (X1, . . . , Xn): the last integral in (12) isCn,p, the mystery constant
in that density. (Computing the integral is a task not lightly to be undertaken.) This
completes Step 1 in proving (5).

Step 2. The predictive density forZ whenX = x is obtained from (3), as the
quotient of (1) and (2). In view of (12),

φ(z|x) = (Cn+1,p/Cn,p) s
n/2 s + zz′ −(n+1)/2. (13)

This simplifies to (5), because of the identity

Ip×p + ww′ = 1 + w′w, (14)
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with w = s−1/2z, a p × 1 column vector. To verify (14), letL rotatew into
(a,0, . . . ,0)′, soLL′ = Ip×p anda2 = w′w. The left hand side of (14) equals

LL′ + Lww′L′ = Ip×p + Lww′L′ = 1 + a2.

This proves (14), completing the argument for (5).
We turn now to (6). Letzj be thej th coordinate of thep× 1 column vectorz;

recall thats11 is the (1,1) entry of the matrixs. What is theQ(dz|x)-distribution
of z1/

√
s11? Whens = Ip×p, the density is proportional to 1/(1+ z1

2)(n−p+2)/2,
as one shows by integrating outz2, . . . , zp. To do the integral, set

zj =
√

1 + z1
2wj (15)

for j = 2, . . . , p. This proves (6) whens = Ip×p.
Next,Q(dz|x) is the distributionqs onRp whose density is

φ(z|x) = C/
√

|s|(1 + z′s−1z)n+1. (16)

Dependence onx is only throughs = ∑n
i=1 xixi

′: see (5). AbbreviateI = Ip×p.
Thenqs is theqI -law of s1/2z. What remains to be seen is that

theqI -law of (s1/2z)1/
√
s11 does not depend ons, (17)

where(s1/2z)1 is the first coordinate of thep× 1 column vectors1/2z. Claim (17)
is immediate from the invariance ofqI under rotation:

√
s11 is the12 norm of the

first row of s1/2. (Bear in mind thats1/2 is symmetric.) Sinceqs is the predictive
distribution forZ whenX = x, the argument for (6) is complete, and with it, the
proof of Theorem 1.

2.2 Estimation

We have established strong inconsistency when the Jeffreys prior is used in a
multivariate normal prediction problem. A parallel – but more technical – argument
yields the same conclusion in an estimation context. Here is a brief sketch; readers
can skip to Section 3 without loss of continuity. LetX1, . . . , Xn be independent
randomp×1 vectors, with a commonNp(0, �) distribution. Consider the Jeffreys
prior distributionµ(d�) = d�/|�|(p+1)/2. Then the formal posterior distribution
for θ = �−1 givenX1, . . . , Xn is Wishart:

θ ∼ W(S−1, p, n), (18)
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with S = ∑n
i=1XiXi

′. This is non-trivial, but can be verified starting from the
fact that the Jeffreys priorµ is invariant under the transformation� → �−1, by
Jacobian trickery. Given S, the posterior density ofθ = �−1 with respect toµ is
proportional to

|θS|n/2 exp[−1

2
trace(θS)],

which is the density ofW(S−1, p, n), as in Eaton (1983, p. 240). One analog of
the statisticT is

U = θ11

S11
,

whereS11 is the (1,1) element ofS−1. When – given the data –θ has the distribu-
tion (18), then

U ∼ χ2
n (19)

for eachS, as is immediate from the definition of the Wishart: ifζi are iid
Np(0,K), then

∑n
i=1 ζiζi

′ ∼ W(K,p, n). However, under the sampling model,
S isW(�,p, n), and

U ∼ χ2
n−p+1 (20)

for any�, by Proposition (8.7) in Eaton (1983). The fact that (19) and (20) are
different forp > 1 leads to strong inconsistency, as before.

3. Strong Inconsistency is Equivalent to a Dutch Book

Our purpose here is to show that strong inconsistency is equivalent to a dutch
book. A ‘measurable prediction problem’ consists of: (i)X ∈ X ; (ii) Z ∈ Z,
which is to be predicted fromX; (iii) a set of parametric models{P(dx, dz|θ) :
θ ∈ 7} specifying the joint distribution ofX andZ. Here,X andZ are measurable
spaces, whileX andZ are measurable functions on some underlying probability
space. A ‘predictive distribution’Q(dz|x) is a distribution forZ that depends
on the observed valueX = x. If x → Q(A|x) is measurable onX for every
measurableA ⊂ Z, we will say thatQ is measurable.

One way to evaluateQ involves gambling scenarios, as follows. Consider a
measurable subsetC ⊂ X × Z and letCx = {z : (x, z) ∈ C} be thex-section
of C. Then a ‘simple payoff function’ is

ψC(x, z) = IC(x, z)−Q(Cx |x). (21)

If Q is measurable, then(x, z) → ψC(x, z) is measurable by the usual argument,
starting from measurable rectangles.
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By way of interpretation,ψC(x, z) is the net payoff to a gambler who puts
downQ(Cx |x) dollars to get a dollar ifZ ∈ Cx . This net payoff is 1−Q(Cx |x)
if Z ∈ Cx and−Q(Cx |x) if Z /∈ Cx . No money changes hands ifCx = ∅ orZ.
(In particular, there are no interesting bets onx.)

Now, consider measurable subsetsC1, . . . , Ck of X × Z. After X = x is
observed, allow the gambler to paybi(x)Q(Ci,x |x) in order to getbi(x) dollars if
Z ∈ Ci,x . The gambler is allowed to use any bounded measurablebi ; this is viewed
as encouraging honesty on the part of the odds-maker. Bets are settled separately,
and then summed. The net payoff to a gambler who uses the sets{C1, . . . , Ck} and
the betting functions{bi : i = 1, . . . , k} is

ψ(x, z) =
k∑
i=1

bi(x)
[
ICi (x, z)−Q(Ci,x |x)

]
. (22)

Any suchψ is called a ‘payoff function’. Clearly,
∫
ψ(x, z)Q(dz|x) = 0 (23)

for all x. Thus, if your predictive distribution forZ – after observingX = x – is
Q(dz|x), all these payoff functions seem fair.

Definition 1. Dutch bookcan be made against the predictive distributionQ(dz|x)
if there is a gambling system that provides a uniformly positive expected payoff to
the gambler: in other words, there exists a payoff functionψ – as defined by(22) –
and anε > 0 such that

ε ≤
∫∫

ψ(x, z)P (dx, dz|θ) for all θ ∈ 7. (24)

To paraphrase Freedman and Purves (1969),

Imagine a Master of Ceremonies who picks someθ ∈ 7 and then
draws(X,Z) from the modelP(dx, dz|θ). The value ofX = x

is revealed and the statistician announces the predictive distribution
Q(dz|x). The gambler then lays bets with payoff functionψ . When (24)
holds, the gambler expects to win at leastε no matter what the value
of θ .
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Of course, if (24) holds for some positiveε, any other positiveε can be obtained
by rescaling the payoff function. We will say that dutch book can be made against
Q; more explicitly, dutch book can made against a bookie who – after seeing that
X = x – sets odds onZ usingQ(dz|x). Other language abounds: for instance,
there is a dutch book; or, ifQ is computed from an improper priorπ , dutch book
can be made againstπ .

In this paper, we allow only conditional bets, and obtain results onexpected
loss for a non-Bayesian bookie. De Finetti allowed unconditional bets (Section 1),
and obtained results onactualloss. For more discussion, see Freedman and Purves
(1969) or Sudderth (1994).

Definition 2. The predictive distributionQ(dz|x) is strongly inconsistentif there
exists a bounded measurable functionf (x, z) and anε > 0 such that∫

f (x, z)Q(dz|x)+ ε ≤
∫∫

f (x, z)P (dx, dz|θ) (25)

for all x ∈ X andθ ∈ 7.

Equation (8) was a special case, withθ = �. We now show thatQ(dz|x) is
strongly inconsistent iff dutch book can made againstQ.

Theorem 2. LetX ∈ X , Z ∈ Z, and{P(dx, dz|θ) : θ ∈ 7} be a measurable
prediction problem. LetQ(dz|x) be a measurable predictive distribution forZ
whenX = x. ThenQ(dz|x) is strongly inconsistent if and only if dutch book can
be made againstQ.

Here is the argument. First, if (24) holds (dutch book), thenf (x, z) ≡ ψ(x, z)

is bounded and (25) holds because of (23), proving strong inconsistency. For the
converse, assume (25) holds for some bounded measurablef andε > 0. The left
side of (25) is a function ofx only; the right side, ofθ only. Thus,

sup
x

∫
f (x, z)Q(dz|x)+ ε ≤ inf

θ

∫∫
f (x, z)P (dx, dz|θ). (26)

Sincef is bounded, it can be uniformly approximated by a simple functionf0,
and ∫

f0(x, ζ )Q(dζ |x) ≤ α < β ≤
∫∫

f0(x, z)P (dx, dz|θ) (27)

for suitable real numbersα andβ. The inequality holds for allx ∈ X andθ ∈ 7;
usingζ for the variable of integration may be helpful later. Let

f1(x, z) = f0(x, z)−
∫
Z
f0(x, ζ )Q(dζ |x).
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Plainly,f1 is a payoff function in the sense of (22). Now∫
Z

∫
X
f1(x, z)P (dx, dz|θ) = B − A,

where

B =
∫
Z

∫
X
f0(x, z)P (dx, dz|θ) ≥ β

and

A =
∫
Z

∫
X

∫
Z
f0(x, ζ )Q(dζ |x)P (dx, dz|θ) ≤

∫
Z

∫
X
αP (dx, dz|θ) ≤ α;

the inequalities hold by (27), establishing the long-sought dutch book, namely,
inequality (24) withε = β−α andψ = f1. This completes the proof ofTheorem 2.

The equivalence of strong inconsistency and dutch book also holds for estima-
tion. To see this, just takeZ = 7, and letZ be the identity map on7. Initially,
P(dx|θ) will be defined only onX ; we require some measurable structure on7

and setP(A× B|θ) = P(A|θ)1B(θ) for measurableA ⊂ X andB ⊂ 7. A pre-
dictive distribution is a ‘posterior’ forθ givenX = x. Quotes are needed unless
Q is computed from a proper prior – but then, there are no paradoxes to discuss.

4. Literature Review

Ramsey (1926) introduced the idea of betting odds as a means of assessing
probability assignments. De Finetti (1931, 1937) used similar ideas in his discus-
sion of what is now commonly known as coherence.

di un individuo che debba tenere un banco di scommesse su dati eventi,
accettando alle stesse conditizioni qualunque scommessa nell’uno o
nell’altro senso. Vedremo che egli è costretto allora a rispettare certe
restrizioni, che sono i teoremi del calcolo delle probabilità. Altrimenti
egli pecca dicoerenza, e perdesicuramente, purchè l’avversario sappia
sfruttare il suo errore. De Finetti (1931, p. 305).

In free translation,

A person who is obliged to accept bets in any amount, positive or neg-
ative, on any finite combination of events, must fix prices according to
the laws of probability theory. Otherwise, this person sins against co-
herence and loses money with certainty, provided the opponent knows
how to exploit the mistake.
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Some time afterward, the term ‘dutch book’ entered the lexicon as a synonym for
incoherence. The earliest cite we could find was Lehman (1955), although use of
‘dutch’ as a pejorative dates back to 17th-century England.

Freedman and Purves (1969) gave the dutch-book idea careful mathematical
expression, for prediction and estimation, when all the spaces are finite. Rigorous
treatments in a finitely additive setting for the estimation problem can be found in
Heath and Sudderth (1978, 1989). Extensions to the prediction context appear in
Lane and Sudderth (1984). Heath, Lane, and Sudderth allow infinite spaces.

Another foundational idea, ‘strong inconsistency’, was introduced by Stone
(1976), and later adapted to the predictive setting by Lane and Sudderth (1984);
also see Eaton and Sudderth (1993, 1999). The equivalence of strong inconsis-
tency and incoherence is discussed in the finitely additive setting by Lane and
Sudderth (1983). Proof in the countably additive setting is a little different (Sec-
tion 3). At the risk of the obvious, strong inconsistency is an exact finite-sample
property, rather than an asymptotic large-sample property.

That improper prior distributions can give rise to posterior distributions with
disturbing properties has been known since at least the 1970’s. Stone (1976) and the
discussants of Stone’s paper provide examples, including the Jeffreys prior. Eaton
and Sudderth (1993, 1995, 1998, 1999, 2001, 2002) discuss invariant prediction
problems, and show that in the multivariate linear model, fully invariant predic-
tive distributions are strongly inconsistent: the ‘principle of invariance’ (Berger,
1985, p. 390) therefore leads to dutch book. The Jeffreys prior can be viewed as
a prototype where elementary arguments suffice (Section 2). In contrast, much of
the Eaton–Sudderth work relies on separation theorems of the Hahn–Banach type,
which makes the results less accessible. Eaton and Sudderth (1999, Section 8)
show that if the transformation group is amenable, there will be an invariant pre-
dictive distribution immune to dutch book – although other invariant predictive
distributions will be vulnerable. If the transformation group is not amenable – like
the non-singular linear transformations onRp for p > 1 in Section 2 – all invariant
predictive distributions may be subject to dutch book (Eaton and Sudderth, 1998).

The uniqueness of the invariant prior in Section 2 above is demonstrated by
Eaton (1983, Example 6.19). Use of this prior has been suggested by Jeffreys
(1961, pp. 180–81), Box and Tiao (1973, p. 426), Box and Tiao (1992, Sec-
tion 8.2.2), Geisser (1993, Chapter 9), Schervish (1995, p. 122), Keyes and Levy
(1996). The latter also has a good survey of invariant predictive distributions in
multivariate analysis of variance. For an interesting generalization of (14), see
Eaton (1983, p. 43). Although incoherence is often a synonym for the possibility
of a dutch book, other definitions have been suggested. See Regazzini (1987) as
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well as Berti, Regazzini, and Rigo (1991). For more discussion, see Sudderth
(1994, Section 7).
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