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Abstract

The Markov moment problem is to characterize sequences s0, s1, s2, . . . admitting the repre-
sentation sn = ∫ 1

0 x
nf (x) dx, where f (x) is a probability density on [0, 1] and 0 ≤ f (x) ≤ c

for almost all x. There are well-known characterizations through complex systems of non-linear
inequalities on {sn}. Necessary and sufficient linear conditions are the following: s0 = 1, and

0 ≤ (−1)n−j
(
n

j

)
�n−j sj ≤ c/(n+ 1)

for all n = 0, 1, . . . and j = 0, 1, . . . , n. Here, � is the forward difference operator. This result
is due to Hausdorff. We give a new proof with some ancillary results, for example, characterizing
monotone densities. Then we make the connection to de Finetti’s theorem, with characterizations
of the mixing measure.

Introduction

We begin by reviewing the Hausdorff moment problem. Then we take up the Markov moment
problem, with a solution due to Hausdorff (1923). Although this work was discussed in an earlier
generation of texts (Shohat and Tamarkin, 1943, pp. 98–101; Widder, 1946, pp. 109–12; Hardy,
1949, pp. 272–3), it seems less well known today than the one due to the Russian school. Next,
we sketch some generalizations and the connection to de Finetti’s theorem. We close with some
historical notes, including a brief statement of the Russian work. We believe that our Theorem 4
is new, along with the local theorems, the applications to Bayesian statistics (Theorems 8 and 9),
and the characterization of measures with monotone densities (Theorem 10). Many of the results
in this paper can be seen as answers to one facet or another of the following question: what can you
learn about a measure from the moments, and how is it to be done?

The Hausdorff moment problem

Let s0, s1, s2, . . . be a sequence of real numbers. When is there a probability measure µ on
the unit interval such that sn is the nth moment of µ? In other words, we seek the necessary and
sufficient conditions on {sn} for there to exist a probability µ with

sn =
∫ 1

0
xn µ(dx) for n = 0, 1, . . . .

This is the Hausdorff moment problem.
To state Hausdorff’s solution, let �tn = tn+1 − tn be the forward difference operator. Define

an auxiliary sequence as

(1) sn,j = (−1)n−j
(
n

j

)
�n−j sj

for n = 0, 1, . . . and j = 0, 1, . . . , n. By convention, �0sj = sj . Thus,
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sj,j = sj ,

sj+1,j = (j + 1)(sj − sj+1),

sj+2,j = 1
2 (j + 1)(j + 2)(sj+2 − 2sj+1 + sj ),

and so forth. The reason for introducing the binomial coefficients will be discussed later.

Theorem 1. Given a sequence s0, s1, . . . of real numbers, define the auxiliary sequence by
equation (1). There exists a probability measure µ on [0, 1] such that {sn} is the moment sequence
of µ if and only if s0 = 1, and 0 ≤ sn,j for all n and j . Then µ is unique.

This theorem is due to Hausdorff (1921), but Feller (1971, pp. 224–28) may be more accessible;
the proof will not be repeated here. The “Hausdorff moment condition” is that 0 ≤ sn,j for all n
and j .

The Markov moment problem

The “Markov moment problem” is to characterize moments of probabilities that have uniformly
bounded densities, which constrains µ in Theorem 1 to have the form µ(dx) = f (x) dx, where
f ≤ c a.e. Of course, f ≥ 0 a.e. and

∫ 1
0 f dx = 1, so c ≥ 1. Hausdorff’s solution is presented as

Theorem 2.

Theorem 2. Given a positive real number c, and a sequence s0, s1, . . . of real numbers, define
the auxiliary sequence by equation (1). There exists a probability measure µ on [0, 1] such that

(i) {sn} is the moment sequence of µ, and
(ii) µ is absolutely continuous, and

(iii) dµ/dx is almost everywhere bounded above by c,

if and only if s0 = 1, and 0 ≤ sn,j ≤ c/(n+ 1) for all n and j . Then µ is unique.

Our proof will use the following lemma.

Lemma 1. Suppose {sn} is the moment sequence of the probability µ on [0, 1]; define the
auxiliary sequence by (1). Then

(a) sn,j =
(
n

j

)∫ 1

0
xj (1 − x)n−j µ(dx).

(b) If µ is Lebesgue measure, then sn = 1/(n+ 1).
(c) If µ is Lebesgue measure, then sn,j = sn,n = sn = 1/(n+ 1).

Proof. Claim (a). Induction on n = j, j + 1, . . . .
Claim (b). Integration.
Claim (c). This just depends on the beta integral (Feller, 1971, p. 47):

(2)
∫ 1

0
xα−1(1 − x)β−1dx = �(α)�(β)

�(α + β)
for positive real α, β.
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Remarks. (i) Property (b) characterizes Lebesgue measure, in view of the uniqueness part of
Theorem 1. Likewise, sn,j = sn,n for all n and j = 0, . . . , n is a characterization, as in (c). Indeed,

n∑
j=0

(
n

j

)
xj (1 − x)n−j = 1

for all x in the unit interval—after all, [x + (1 − x)]n = 1. Lemma 1a implies

n∑
j=0

sn,j = 1.

If the sn,j are equal for all j = 0, 1, . . . , n, each must be 1/(n + 1), so sn = sn,n = 1/(n + 1)
for all n = 0, 1, . . . . In essence, this characterization of the uniform distribution on [0, 1] is due to
Bayes (1764): see Stigler (1986, pp. 128–9).

(ii) Without the binomial coefficients in (1), the upper bound on sn,j in Theorem 2 would be
more cumbersome to state. A deeper justification may be given by formulas (1.8) and (3.7) in Feller
(1971, pp. 221, 225).

(iii) The condition s0 = 1 may be dropped in Theorems 1 and 2; then µ is a finite positive
measure, of total mass s0. Indeed,

∑n
j=0 sn,j = s0 for any sequence {sn}; this can be proved

directly, or see (1.9) in Feller (1971, p. 221).

Proof of Theorem 2. Suppose conditions (i), (ii), and (iii) hold true. The conditions on s follow
from Lemma 1. Conversely, suppose the conditions on s hold true. Theorem 1 shows the existence
(and uniqueness) of a probability measure µ whose moment sequence is {sn}. What remains to
be seen is that µ is absolutely continuous, having a density bounded by c. If g is a non-negative
continuous function on [0, 1], its nth approximating Bernstein polynomial is by definition

Bn,g(x) =
n∑

j=0

g

(
j

n

)(
n

j

)
xj (1 − x)n−j .

We claim that ∫ 1

0
Bn,g(x) µ(dx) ≤ c

∫ 1

0
Bn,g(x) dx.

Indeed, the left side is
∑

j g(j/n)sn,j by Lemma 1a, and the right side is
∑

j g(j/n)[c/(n+ 1)] by
Lemma 1c; finally, use the condition that sn,j ≤ c/(n+ 1).

Of course, Bn,g converges to g uniformly as n → ∞: see Feller (1971, pp. 222–4), or Lorentz
(1966) for a more detailed discussion. So, for all non-negative continuous g,

(3)
∫ 1

0
g(x) µ(dx) ≤ c

∫ 1

0
g(x) dx.

Let � be the set of Borel measurable functions g on [0, 1] with 0 ≤ g ≤ 1. Let �1 consist of the
g ∈ � for which (3) holds. Then �1 contains all the continuous functions in � and is closed under
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pointwise limits, so �1 = �. Put g = 1A, the indicator function of a Borel set A, to conclude
that µ(A) ≤ cλ(A), where λ is Lebesgue measure. Now µ is absolutely continuous; denote the
Radon-Nikodym derivative dµ/dx by f . LetA = {x : 0 ≤ x ≤ 1 & f (x) > c}. If λ(A) > 0, then

µ(A) =
∫
A

f (x) dx > cλ(A).

But we have already seen that µ(A) ≤ cλ(A). This contradiction shows that λ(A) = 0, proving
Theorem 2.

Example 1. Let f (x) = 1/(2
√
x) on (0, 1]. This density is unbounded, but its nth moment

is sn = 1/(2n + 1) ≤ 1/(n + 1). Thus, the simple condition sn ≤ c/(n + 1) is not sufficient to
make the density bounded: auxiliary conditions are needed. For our f , (n+ 1)sn,j is unbounded.
Indeed, sn,j can be computed explicitly, using Lemma 1a and the formula for the beta integral (2):

sn,j = 1

2

(
n

j

)∫ 1

0
xj (1 − x)n−j 1√

x
dx

= 1

2

(
n

j

)
�(j + 1

2 )�(n− j + 1)

�(n+ 3
2 )

= 1

2

�(j + 1
2 )

�(j + 1)

�(n+ 1)

�(n+ 3
2 )
.

By Stirling’s formula, log�(x) = (x− 1
2 ) log(x+k)−x+O(1) as x gets large, for any constant k.

Hence
log(n+ 1)+ log�(n+ 1)− log�(n+ 3

2 ) = 1
2 log(n+ 1)+O(1).

So
limn→∞ (n+ 1)sn,j = ∞

for any fixed j . The boundedness condition of Theorem 2 is not satisfied.

Example 2. The moments of the “Cantor measure” may be of interest in connection with
Theorem 2. The Cantor measure is the distribution of 2

∑∞
j=1 Xj/3

j , theXj being independent and
identically distributed, Xj = 0 with probability 1/2 and Xj = 1 with probability 1/2. This measure
is uniform on the Cantor set, and is therefore purely singular. For n ≥ 2, the nth moment is

sn >
1

2

(
1 − 1

n

)n 1

nlog3 2 .

Indeed, the Cantor measure assigns mass 2−m to the interval [1 − 3−m, 1], so sn ≥ 2−m(1 − 3−m)n
for any positive integer m. Now choose m with log3 n ≤ m < 1 + log3 n. In particular,

lim (n+ 1)sn = ∞.

See Grabner and Prodinger (1996) for more detailed estimates.
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Lp densities

Theorem 2 characterizes the moment sequences of probabilities with L∞ densities on [0, 1].
The next result (also due to Hausdorff) characterizes Lp densities for p > 1. To state the theorem,
define

(4) cn =
{ 1

n+ 1

n∑
j=0

[
(n+ 1)sn,j

]p}1/p
.

Theorem 3. Given real numbers p > 1 and 0 < c < ∞, and a sequence s0, s1, . . . of real
numbers, define the auxiliary sequence by equation (1), and cn by (4). There exists a probability
measure µ on [0, 1] such that

(i) {sn} is the moment sequence of µ, and
(ii) µ is absolutely continuous, and

(iii) dµ/dx is in Lp with p-norm at most c,

if and only if s0 = 1, and 0 ≤ sn,j for all n and j , and cn ≤ c.

So far, absolute continuity is defined relative to Lebesgue measure, but Lebesgue measure can
be replaced by any other probability ν on [0, 1]. To avoid trivial complications, suppose ν assigns
positive mass to the open unit interval (0, 1). Let tn be the moment sequence of ν, and tn,j the
corresponding auxiliary sequence defined by (1) with tn in place of sn. Lemma 1a confirms that
tn,j > 0. Replace the definition (4) by

(5) cn =
{ n∑
j=0

tn,j

( sn,j
tn,j

)p}1/p
.

Theorem 4. Let ν be a probability on [0, 1], assigning positive mass to (0, 1). Given real
numbers p > 1 and 0 < c < ∞, and a sequence s0, s1, . . . of real numbers, define the auxiliary
sequence by equation (1), and cn by (5) rather than (4). There exists a probability measure µ on
[0, 1] such that

(i) {sn} is the moment sequence of µ, and
(ii) µ << ν, and

(iii) dµ/dν is in Lp with p-norm at most c,

if and only if s0 = 1, and 0 ≤ sn,j for all n and j , and cn ≤ c.

In (iii), the p-norm of dµ/dν is relative to ν, i.e.,
( ∫
(dµ/dν)p dν

)1/p. Theorem 3 is a special
case of Theorem 4; our proof of the latter depends on the connection with de Finetti’s theorem,
which is explained next. Let X1, X2, . . . be random variables taking only the values 0 and 1.
The sequence is “exchangeable” if the joint distribution is invariant under finite permutations, for
example,

P {X1 = 1, X2 = 0, X3 = 1} = P {X1 = 0, X2 = 1, X3 = 1}.
Either the random variables can be permuted, or the values.
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Theorem 5. Let e1, e2, . . . be 0 or 1. The 0–1 valued random variables X1, X2, . . . are
exchangeable if and only if there is a probability measure µ on [0, 1] such that

(6) P {Xi = ei for i = 1, . . . , n} =
∫ 1

0
θ$ei (1 − θ)n−$ei µ(dθ),

for all n and ei . Then µ is unique.

This theorem is due to de Finetti (1931,1937); for a review, see Hewitt and Savage (1955).
The “if” part is straightforward. Necessity is more subtle because µ must be constructed, but
Hausdorff’s theorem can be used (Feller, 1971, pp. 228–9). The proof of Theorem 5 will not be
detailed here. Before applying the theorem, we explain how the auxiliary sequence (1) connects
to (6). Suppose the Xi are exchangeable, and Sn = X1 + X2 + · · · + Xn. Let sn be the moment
sequence of µ in Theorem 5, and define sn,j by (1). Fix n and j with 0 ≤ j ≤ n. Fix some
particular finite sequence e1, e2, . . . , en of 0s and 1s whose sum is j . Then

P {Sn = j} =
(
n

j

)
P {Xi = ei for i = 1, . . . , n} =

(
n

j

)∫ 1

0
xj (1 − x)n−j µ(dx).

By Lemma 1a,

(7) P {Sn = j} = sn,j .

The notation is flawed, in that sn is a moment of µ rather than a value of Sn.

Proof of Theorem 4. If s0 = 1 and 0 ≤ sn,j for all n and j , there is a probability µ on
[0, 1] whose moment sequence is {sn}. For the rest, the “if” and “only if” assertions can be proved
together: the issue is to determine from the moments whether µ is absolutely continuous with
respect to ν, and dµ/dν ∈ Lp(ν). We begin by constructing an exchangeable sequenceX1, X2, . . .

of 0–1 valued random variables that satisfy (6): write Pµ for P . Define Pν in the analogous way.
Let Sn = X1 +· · ·+Xn. Let Fn be the field generated byX1, . . . , Xn, and F the σ -field generated
by all the X’s, so Fn ↑ F . Let Hn be the random variable whose value is Pµ{Sn = j}/Pν{Sn = j}
on the set {Sn = j}. Then Hn is the Radon-Nikodym derivative of Pµ with respect to Pν , both
restricted to Fn. Thus, Hn is a martingale relative to Pν , and cn is the p-norm of Hn relative to Pν .
By Jensen’s inequality,

(8) cn in (5) are non-decreasing.

From this point on, we use the standard martingale theory for differentiating measures. The key
martingale fact is Theorem 4.1 on pp. 319–20 in Doob (1953); the application to differentiating
measures is summarized in Freedman (1983, pp. 345–6): for more discussion, see Hewitt and
Stromberg (1969, pp. 369–75). We conclude that

(9) Hn → H∞ a.e. [Pµ + Pν],

with

(10) H∞ = dPµ/dPν
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for the full σ -field F : the limit is infinite on the part of the space where Pµ is singular with respect
to Pν . Moreover,

(11) cn = [Eν(H
p
n )]

1/p ↑ [Eν(H
p∞)]1/p,

where Eν denotes expectation relative to Pν . In particular, if supn cn ≤ c < ∞, then H∞ ∈ Lp(ν)

and ‖H∞‖p ≤ c. On the other hand, if cn is unbounded, then H∞ /∈ Lp(ν). The next (and last)
step in the proof is perhaps worth isolating as a proposition, which writes H for H∞.

Proposition 1. Let L = limn Sn/n, which exists a.e. relative to Pµ + Pν . Let h = dµ/dν,
and H = dPµ/dPν , with the understanding that h = ∞ on the part of the unit interval where µ is
singular with respect to ν; similarly for H on its domain. Then

(i) PµL−1 = µ.
(ii) PνL−1 = ν.

(iii) H = h(L) a.e. relative to Pµ + Pν .

Proof. Only claim (iii) is argued. To begin with, we impose the side condition that µ << ν.
Let Pθ be the distribution when a θ -coin is tossed, so

Pθ {Xi = ei for i = 1, . . . , n} = θ$ei (1 − θ)n−$ei ,

the ei being 0 or 1. Furthermore,

Pµ =
∫ 1

0
Pθ µ(dθ), Pν =

∫ 1

0
Pθ ν(dθ).

For any A ∈ F ,

∫
A

h(L) dPν =
∫ 1

0

(∫
A

h(L) dPθ

)
ν(dθ)

=
∫ 1

0

(∫
A

h(θ) dPθ

)
ν(dθ)

=
∫ 1

0
Pθ(A) h(θ) ν(dθ)

=
∫ 1

0
Pθ(A)µ(dθ) = Pµ(A).

The second equality holds because Pθ(L = θ) = 1 by the strong law of large numbers. The
fourth equality holds by the side condition µ << ν, with h = dµ/dν. Thus, h(L) is a version of
dPµ/dPν . This proves claim (iii) under the side condition, but the general case follows: notice that
H and h depend affinely on µ, then replace µ by (µ+ ν)/2. This completes the argument, and the
proof of Theorem 4.

Remarks. (i) Theorem 4 holds as stated when p = ∞, if we redefine cn in (5) as

cn = max
j=0,...,n

sn,j /tn,j .
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This is Corollary 3.1 in Knill (1997).

(ii) The case p = 1 is more problematic. We can show that µ << ν iff the martingale Hn

is uniformly Pν-integrable, but this is little more than a restatement of the definition of absolute
continuity, and uniform integrability may not be any easier to check in applications than absolute
continuity.

(iii) The conditions we have considered in Theorems 2–4 are of the form fn(s0, s1, . . . , sn) ≤
kn, where fn is a specified continuous function onRn+1, kn is a constant, and s0, s1, . . . a sequence
that may—or may not—be the moment sequence of a probability that is being characterized in
some way. No condition of this form can describe the moment sequences of absolute continuous
probabilities, because the set of absolutely continuous probabilities is not weak-star closed.

(iv) Theorems 2–4 can be extended in a straightforward way from the unit interval to the unit
cube in Rd .

(v) Hausdorff was working with finite signed measures. Theorems 2–5 can be extended to
cover that case, although the interpretation of de Finetti’s theorem for signed priors remains a little
mysterious, at least for elderly statisticians; also see Feynman (1987). For multi-dimensional signed
measures, see Knill (1997); for an application to de Finetti’s theorem, see Jaynes (1986).

Local theorems

Theorem 2 can be modified if we desire only that µ should be absolutely continuous on the
interval [a, b], with 0 ≤ a < b ≤ 1, and dµ/dx ≤ c on [a, b]; off this interval, µ has no special
features. We begin with the sufficiency part of Theorem 2, only sketching the development.

Theorem 6. Given real numbers a, b, c with 0 ≤ a < b ≤ 1 and c > 0, and a sequence
s0, s1, . . . of real numbers, define the auxiliary sequence by equation (1). There exists a probability
measure µ on [0, 1] such that

(i) {sn} is the moment sequence of µ, and
(ii) µ is absolutely continuous on the interval [a, b], and

(iii) dµ/dx is almost everywhere bounded above by c on the interval [a, b],

if s0 = 1, and 0 ≤ sn,j for all n and j , and sn,j ≤ c/(n + 1) for all n and j with a ≤ j/n ≤ b.
Then µ is unique.

Here is a generalization of the sufficiency part of Theorem 4.

Theorem 7. Given a positive real number c, and a, b with 0 ≤ a < b ≤ 1, and a probability
ν on [0, 1] that assigns positive mass to (a, b), and a sequence s0, s1, . . . of real numbers, define
the auxiliary sequences sn,j and tn,j by applying equation (1) to µ and ν respectively. Define cn
as follows:

(12) cn =
{ ∑
an≤j≤bn

tn,j

( sn,j
tn,j

)p}1/p
.

There exists a probability measure µ on [0, 1] such that

(i) {sn} is the moment sequence of µ, and
(ii) µ is absolutely continuous with respect to ν on the interval [a, b], and
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(iii) dµ/dx ∈ Lp(ν) on the interval [a, b], with norm at most c,

if s0 = 1, and 0 ≤ sn,j for all n and j , and cn ≤ c. Then µ is unique.

Proofs are straightforward, using Hausdorff’s theorem to get µ and techniques described
earlier in the paper to characterize dµ/dx. For example, take Theorem 6. We can prove (3) for all
continuous functions on the interval [a, b], then for all Borel functions g on [a, b] with 0 ≤ g ≤ 1.
The balance of the argument is unchanged. The conditions, however, are not necessary, as will be
shown by example.

Example 3. To see why the upper bound in Theorem 6 cannot be a necessary condition, take
a = 0 and b = 1/2. Let µ assign mass 1/2 to [0, 1/2], with density bounded above by c; let µ
assign the remaining mass 1/2 to 1/2 + h. Choose n large and even, then h > 0 small. Consider
Pµ{Sn = n/2}. The part of µ on [0, 1/2] contributes at most c/(n+ 1) to Pµ{Sn = n/2}. But—if
h = 0—the other piece of Pµ{Sn = n/2} is of order 1/

√
n. If h > 0 is small, this other piece can

therefore be much larger than c/(n+ 1).

For Theorem 6, the necessary and sufficient upper bound condition on sn,j would be sn,j ≤
c/(n+ 1)+ exp(−2δ2n) for all δ with 0 < δ < (b− a)/2 and all n, j with a + δ ≤ j/n ≤ b− δ.
See (3.5) in Diaconis and Freedman (1990). Example 3 indicates why the term exp(−2δ2n) is
needed, and the restriction to a + δ ≤ j/n ≤ b − δ. The characterization of Lp densities relative
to Lebesgue measure is also relatively straightforward. For other base measures, we do not have
clean results.

Applications to Bayesian statistics

Theorems on moment sequences can be translated in a straightforward way into theorems
characterizing the mixing measure µ in Theorem 5. We give two examples. Recall that Pθ is the
distribution when a θ -coin is tossed, so

Pθ {Xi = ei for i = 1, . . . , n} = θ$ei (1 − θ)n−$ei ,

the ei being 0 or 1. Furthermore,

(13) Pµ =
∫ 1

0
Pθ µ(dθ).

Theorem 8. Let Xi be 0–1 valued random variables on the probability triple (-,F , P ). Let
c be a positive real number. Then {Xi} admits the representation

P {Xi = ei for i = 1, . . . , n} =
∫ 1

0
θ$ei (1 − θ)n−$ei f (θ) dθ

for all n and ei = 0 or 1, and 0 ≤ f ≤ c a.e., iff

(i) the Xi are exchangeable, and
(ii) Pµ{Sn = j} ≤ cPλ{Sn = j} for all n = 0, 1, . . . and j = 0, 1, . . . , n, where λ is

Lebesgue measure on [0, 1], and Sn = X1 + · · · +Xn.
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Then f is unique.

This is immediate from (7) and Theorem 2. The analog of Theorem 4 is as follows.

Theorem 9. Let Xi be 0–1-valued random variables on the probability triple (-,F , P ). Let
ν be a probability on [0, 1], assigning positive mass to (0, 1). Let p > 1 and 0 < c < ∞. Then
{Xi} admits the representation

P {Xi = ei for i = 1, . . . , n} =
∫ 1

0
θ$ei (1 − θ)n−$ei f (θ) ν(dθ)

for all n and ei = 0 or 1, and f ∈ Lp(ν) has norm at most c, iff

(i) the Xi are exchangeable, and
(ii) cn ≤ c for all n = 0, 1, . . . , where

(14) cn =

 n∑
j=0

Pν{Sn = j}
(
Pµ{Sn = j}
Pν{Sn = j}

)p


1/p

and Sn = X1 + · · · +Xn.

Then f is unique.

Theorem 9 can be extended to the case p = ∞ by redefining cn as follows:

cn = max
j=0,...,n

Pµ{Sn = j}/Pν{Sn = j}.

There are yet more general theorems characterizing partially exchangeable processes with Lp
densities, in the setting of Diaconis and Freedman (1984): we will explore such results in Part II of
this paper. In the abstract setting, the proofs are more transparent (although the setting itself may
seem a little strange).

Monotone densities

In some applications, it is desired to characterize monotone densities in terms of their moments;
see, for instance, Diaconis and Kemperman (1996). Theorem 10 gives a result for densities that
are non-decreasing. We will need the following lemma, which expresses a monotone function as a
mixture of the extreme step functions.

Lemma 2. Let F be a non-negative, right-continuous, non-decreasing function on [0, 1);
we allow F(0) > 0 and F(1−) = ∞. Let fθ (x) = 0 for 0 ≤ x < θ and fθ (x) = 1/(1 − θ)

for θ ≤ x < 1, so fθ is a probability density for 0 ≤ θ < 1. Then

F =
∫

[0,1)
fθ ν(dθ),

where the measure ν on [0, 1) is defined as follows: ν(dθ) = (1 − θ)F (dθ), with F(dθ) assigning
mass F(0) to 0. Finally, the total mass in ν is

∫ 1
0 F(x) dx.
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Proof. The calculation will seem trite, but it is easy to get lost if you start at the wrong place.
Let Hθ = 0 on [0, θ) and Hθ = 1 on [θ, 1). Then

F(x) =
∫

[0,1)
Hθ (x) F (dθ) =

∫
[0,1)

fθ (x) (1 − θ)F (dθ) =
∫

[0,1)
fθ (x) ν(dθ).

To evaluate the mass in ν, integrate over x ∈ [0, 1). The proof is complete.

Theorem 10. Given a sequence s0, s1, . . . of real numbers, define the auxiliary sequence sn,j
by equation (1). There exists a probability measure µ on [0, 1] such that

(i) {sn} is the moment sequence of µ, and
(ii) µ is absolutely continuous on [0, 1), and

(iii) dµ/dx is non-decreasing on [0, 1),

if and only if s0 = 1, and 0 ≤ sn,j for all n and j , and sn,j is nondecreasing in j for all n. The
probability µ has a possible atom at 1, but µ{1} = 0 iff sn → 0.

Proof. Suppose µ satisfies conditions (i), (ii), and (iii). Then µ is a convex combination of
point mass at 1, and an absolutely continuous probability on [0, 1] with a non-decreasing density.
If µ{1} = 1, it is clear that sn,j is non-decreasing with j . Suppose on the other hand that µ is
absolutely continuous on [0, 1] and dµ/dx is non-decreasing. As in Lemma 2,

dµ/dx =
∫

[0,1)
fθ ν(dθ).

(In this application, ν is a probability measure.)
Since sn,j is affine in µ by Lemma 1a, it suffices to consider the θ ’s one at a time, i.e., we can

take ν to be point mass at θ . Let 0 ≤ j < n. We claim that sn,j ≤ sn,j+1, that is,

(15)

(
n

j

) ∫ 1

0
xj (1 − x)n−j fθ (x) dx ≤

(
n

j + 1

) ∫ 1

0
xj+1(1 − x)n−j−1fθ (x) dx,

which is to say,

(16) (j + 1)
∫ 1

θ

xj (1 − x)n−j dx ≤ (n− j)

∫ 1

θ

xj+1(1 − x)n−j−1 dx.

Let G(θ) be the right hand side of (16) minus the left hand side, namely,

G(θ) =
∫ 1

θ

xj (1 − x)n−j−1g(x) dx,

where
g(x) = (n− j)x − (j + 1)(1 − x).

Now
G′(θ) = θj (1 − θ)n−j−1h(θ),

11



where
h(θ) = −g(θ) = (j + 1)(1 − θ)− (n− j)θ.

Clearly, h(θ) > 0 for 0 ≤ θ < (j + 1)/(n+ 1) and h(θ) < 0 for (j + 1)/(n+ 1) < θ ≤ 1. Thus,
G increases from 0 at 0—see Lemma 1c—to its maximum at (j + 1)/(n+ 1), and then decreases
to 0 at 1. In short, G > 0 except at 0 and 1, where G vanishes. Thus, (16) holds for 0 ≤ θ ≤ 1,
and (15) must hold for 0 ≤ θ < 1, completing the proof of the “only if” part of the theorem. The
converse follows from Proposition 2 below, with pn,j = sn,j . The convergence of µn is discussed
in the remarks following the proposition.

Proposition 2. Let the probability µn on [0, 1] assign mass pn,j to j/n for j = 0, 1, . . . , n,
with 0 ≤ pn,0 ≤ pn,1 ≤ . . . ≤ pn,n and

∑n
j=0 pn,j = 1. Suppose µn → µ weak-star. Let F be

the distribution function of µ. Then F is convex on [0, 1], hence absolutely continuous on [0, 1)
with nondecreasing density F ′. There is a possible atom at 1.

Proof. Take the convolution of µn with the uniform distribution on [− 1
2n ,

1
2n ], in effect

replacing the point masses with their histogram. The resulting measure has distribution function
Fn which is convex—because F ′

n is monotone—and still converges weak-star to F . Let D be the
set of discontinuity points of F . Then D ∪ D/2 ∪ D/3 ∪ · · · is countable. So, there are small
positive h with jh ∈ D for no integer j : after all, jh ∈ D iff h ∈ D/j . Next, Fn converges
pointwise to F on the h-skeleton h, 2h, . . . , because F is continuous there. Since Fn is convex on
this skeleton, so is F . But h can be arbitrarily small. Therefore, F is convex on (0, 1). In particular,
F is continuous on (0, 1), even absolutely continuous, and its density F ′ is increasing. Suppose by
way of contradiction that 0 were an atom with mass δ > 0. For any x, h > 0 with 0 < x < 1 − h,
we would have µ[x, x + h] = limn Fn(x + h)− Fn(x) ≥ lim supn Fn(h)− Fn(0) ≥ δ, which is
impossible; the first inequality holds becauseF ′

n is monotone; the second, becausep0,n ≤ 1/(n+1)
so Fn(0) − Fn(−h) → 0 while µ{0} = δ. Thus, F is continuous even at 0, with F(0) = 0. This
finishes the proof of Proposition 2, and hence of Theorem 10.

Remarks. (i) Decreasing densities can be characterized in a similar way, although the possible
atom moves to 0, and can be excluded by requiring sn,0 → 0.

(ii) The existence of the density in Theorem 10 follows from the monotonicity of sn,j , but the
density need not be bounded.

(iii) Why does µn converge? Hausdorff proved Theorem 1 by showing directly that µn con-
verges weak-star to the desired µ: see Feller (1971, pp. 225–26). For us, it may seem more natural
to prove the relevant law of large numbers. The convergence of µn would follow, along with Haus-
dorff’s moment theorem, the convergence of the Bernstein polynomials, and de Finetti’s theorem.
In essence, that is the path followed by de Finetti (1937). Compactness arguments are also feasible.

(iv) Theorem 10 completes Bayes’observation that a uniform density corresponds to a uniform
distribution for Sn: the uniform density is non-decreasing and non-increasing, so the resulting
distribution of Sn has the same features. Of course, there are familiar arguments that are more
direct: see Lemma 1 and the remarks that follow it.

(v) Suppose µ is absolutely continuous on [0, 1), and dµ/dx is non-decreasing on [0, 1).
Unless dµ/dx is constant, sn,j will be strictly increasing with j . Indeed, the inequality in (16) is
strict unless θ = 0 or 1; the inequality in (15) is therefore strict unless θ = 0, corresponding to a
density that is constant. On the other hand, if µ has an atom at 1, then sn,n−1 < sn,n.

12



Historical notes

Hausdorff

Hausdorff’s work on the moment problem was motivated by summability theory (Hausdorff,
1921, 1923). In brief, let S = {sn,j : n = 0, 1, . . . , j = 0, . . . , n} be a triangular matrix of
real numbers. The “S-limit” of a sequence {xi} is limn

∑n
j=0 sn,j xj . A summability method S

is “regular” if lim xi = x∞ implies that the S-limit is x∞. Familiar examples include Cesàro’s
method, where sn,j = 1/(n+ 1), and Euler’s Ep method with

sn,j =
(
n

j

)
pj (1 − p)n−j .

Hausdorff introduced a more general scheme, defining

(17) sn,j =
(
n

j

)∫ 1

0
pj (1 − p)n−j µ(dp)

where µ is a finite signed measure on [0, 1]. For instance, setting µ to Lebesgue measure gives
us Cesàro’s method: see Lemma 1b. If µ is point mass at p, we get Ep. Among many other
things, Hausdorff showed that a summability method defined by (17) is regular iff µ{0} = 0 and
µ(0, 1] = 1; this is more or less obvious from (7). However, µ need not be a probability measure:
its negative part need not vanish. Methods defined by (17) are now called “Hausdorff methods.”
For additional discussion, see Widder (1946) or Hardy (1949).

Some notes on Hausdorff (1923) may be of interest. The auxiliary sequence, with the binomial
coefficients, is introduced in equation (5) on p. 223; the positivity condition is (A) on the same page.
The solution to the moment problem is Satz I on p. 226. The condition for an Lp density is (C) on
p. 234, and the theorem is Satz III on p. 236. The condition for L∞ is (D) on the same page, and
the solution to the Markov moment problem is Satz IV on p. 237. The hitherto-unmentioned Satz II
on p. 232 characterizes moment sequences of finite signed measures: his necessary and sufficient
condition (B) is, in our notation, supn

∑
j |sn,j | < ∞.

The Russian School

Solutions to the Markov moment problem, and similar results for the half-line and the whole
line, were among the great achievements of the Russian school. Perhaps the history begins with
Chebychev, who gave a rigorous proof of the Central Limit Theorem using the method of moments,
with connections to the theory of continued fractions, orthogonal polynomials, and numerical
quadrature. His student Markov formulated the moment problem we have been discussing (along
with many other contributions in other areas).

Let {sn} be a given sequence of real numbers, and c a given positive real. When is sn =∫ 1
0 x

nf (x) dx for all n, with f a probability density bounded above by c? To answer this question,
Markov expanded

(18) exp
[1

c

( s0
z

+ s1

z2 + s2

z3 + s3

z4 + · · ·
)]

13



as a continued fraction, and showed that positivity of certain coefficients was a necessary condition.
The condition turned out to be sufficient as well.

There were later developments by Ahiezer and Krein (1962), and Krein and Nudelman (1977).
One theorem in Ahiezer and Krein (1962, p. 71) can be stated this way: sn = ∫ 1

0 x
nf (x) dx for all

n, with 0 ≤ f ≤ c a.e., iff tn satisfies Hausdorff’s condition, where tn is defined by a formal series
expansion of (18) in powers of 1/z:

(19) exp
[1

c

( s0
z

+ s1

z2 + s2

z3 + s3

z4 + · · ·
)]

= 1 + t1

z
+ t2

z2 + t3

z3 + · · ·

Of course, the tn are polynomial functions of sn/c. For example,

t1 = s0

c
, t2 = s1

c
+ 1

2

s2
0

c2 , t3 = s2

c
+ s0s1

c2 + 1

6

s3
0

c3 .

In general,

(20) tn = 1

n!

∑
π

n∏
j=1

(jsj−1/c)
aj (π)

where π runs through the permutations of length n, and aj (π) is the number of cycles in π of
length j . Here, s0 = ∫

f : if s0 = 1, then f is a probability density.
Sergei Kerov made several remarkable contributions to this theory. For instance, (19) sets up a

one-to-one correspondence between the moments {sn} of a density bounded by c, and the moments
{tn} of an auxiliary measure ν on [0, 1]. Given f , Kerov showed how to pick a random point from ν,
by generating a nested sequence of random intervals

[0, 1] ⊃ [X1, Y1] ⊃ [X2, Y2] ⊃ · · ·
that shrink to a point. Despite the complexity of (19), Kerov’s algorithm is elegance itself. At stage
n + 1, pick a point U at random in [Xn, Yn]. Then flip a coin that lands heads with probability
f (U)/c, or tails with the remaining probability 1 − [f (U)/c]. If the coin lands heads, Xn+1 = U

and Yn+1 = Yn. But if the coin lands tails, Xn+1 = Xn and Yn+1 = U . Probabilities have to be
bounded between 0 and 1: that is where the condition 0 ≤ f ≤ c comes in.

Kerov found striking connections between his algorithm andYoung tableaux, as well as eigen-
values of random matrices, and the zeroes of orthogonal polynomials. Recently, expansions con-
nected to the Markov moment problem—like (19) and (20)—have found applications in Bayesian
non-parametric statistics: Cifarelli and Regazzini (1990), Diaconis and Kemperman (1996).
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(−1)n−j
(
n

j

)
�n−j tj ≥ 0,
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7: 1–68. Translated in H. Kyburg, H. Smokler, eds. Studies in Subjective Probability. Wiley, New
York (1964).

Diaconis, P. and Freedman, D. (1984). Partial exchangeability and sufficiency. In J. K. Ghosh,
J. Roy, eds. Proc. Indian Statist. Assoc. Golden Jubilee: Applications And New Directions. Indian
Statist. Assoc., Calcutta, 205–236.

Diaconis, P. and Freedman, D. (1990), On the uniform consistency of Bayes estimates for multino-
mial probabilities. Ann. Statist. 18: 1317–27.

Diaconis, P. and Kemperman, J. (1996). Some new tools for Dirichlet priors. In J. Bernardo et al,
eds. Bayesian Statistics 5, Oxford University Press, 97–106.

Doob, J. L. (1953). Stochastic Processes. Wiley, New York. Reprinted 1990, Wiley Classics
Library.

Feller, W. (1971). An Introduction to Probability Theory and its Applications. Vol. II, Second
edition, Wiley, New York.

Feynman, R. (1987). Negative probabilities. In B. J. Hiley, F. D. Peat, eds. Quantum Implications.
Routledge & Kegan-Paul.

Freedman, D. A. (1983). Markov Chains. Springer, New York. First published in 1971 by Holden
Day, San Francisco.

Grabner, P. J. and Prodinger, H. (1996). Asymptotic analysis of the moments of the Cantor distri-
bution. Statistics & Probability Letters 26: 243–8.

Hardy, G. H. (1949). Divergent Series. Oxford. Reprinted 1991 by Chelsea, New York.

Hausdorff, F. (1921). Summationsmethoden und Momentfolgen I, II. Math. Zeitschrift 9: 74–109,
280–299.

Hausdorff, F. (1923). Momentprobleme für ein endliches intervall. Math. Zeitschrift 16: 220–48.

15



Hewitt, E. and Savage, L. J. (1955). Symmetric measures on cartesian products. TAMS 80: 470–
501.

Hewitt, E. and Stromberg, K. (1969). Real and Abstract Analysis. Springer, New York.

Jaynes, E. I. (1986). Some applications and extensions of the de Finetti representation theorem.
Pp. 31–42 in Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti.
Eds. P. K. Goel and A. Zellner, North-Holland, Amsterdam.

Kerov, S. (1993). Transition probabilities for continual Young diagrams and the Markov moment
problem. Functional Analysis and its Applications 27: 104–117.

Kerov, S. (1998). Interlacing Measures. Amer. Math. Soc. Transl. Ser. 2 Vol. 181, pp. 35–83.
Advances in the Mathematical Sciences, 35, G. I. Olshanski, ed.

Knill, O. (1997). On Hausdorff’s moment problem in higher dimensions. Technical report, De-
partment of Mathematics, Harvard University, http://abel.math.harvard.edu/˜knill/preprints/

Krein, M. G. and Nudelman A. (1977). The Markov Moment Problem and Extremal Problems.
Amer. Math. Soc. Providence.

Lorentz, C. (1966). Bernstein Polynomials. University of Toronto Press, Toronto.

Shohat, J. and Tamarkin, J. (1943). The Problem of Moments. Amer. Math. Soc. Providence.

Stigler, S. M. (1986). The History of Statistics. Harvard University Press.

Widder, D. V. (1946). The Laplace Transform. Princeton University Press. First printing, 1941.

Affiliations

Persi Diaconis is Professor of Mathematics and of Statistics, Stanford University, Stanford, CA
94305.

DavidA. Freedman is Professor of Statistics and of Mathematics, University of California, Berkeley,
CA 94720-3860, freedman@stat.berkeley.edu

June 2003
Technical Report No. 631, Part I
Statistics Department
University of California
Berkeley, CA 94720-3860
www.stat.berkeley.edu/˜census/631.pdf
To appear in Mathematische Zeitschrift

16



The Markov Moment Problem and de Finetti’s Theorem: Part II 15 June 2003
by Persi Diaconis and David Freedman

Abstract

This paper gives an abstract version of de Finetti’s theorem that characterizes mixing measures
with Lp densities. The general setting is reviewed; after the theorem is proved, it is specialized
to coin tossing and to exponential random variables. Laplace transforms of bounded densities are
characterized, and inversion formulas are discussed.

Introduction

In part I of this paper, we discussed the Hausdorff moment problem on the unit interval,
and explained how such problems can be translated into questions about the prior or “mixing”
measure in Bayesian statistics. Our object here is to give a version of de Finetti’s theorem that
characterizes mixing measures with Lp densities, in the general setting described by Diaconis
and Freedman (1984), which covers “partial exchangeability.” We begin by reviewing the setup
and proving general theorems; then we give some examples, showing how the general theory
specializes to normal variables, coin tossing, and exponential variables. In connection with the
latter, we characterize Laplace transforms of bounded densities and discuss inversion formulas. As
will be seen, the abstract theory gives a generalized procedure for inverting probability transforms.
Finally, there is a brief literature review. Theorems 2–4 and their corollaries are thought to be new.

The abstract setup can be described as follows. For i = 1, 2, . . . , let -i be a Polish space
equipped with the Borel σ -field Fi . Let - = ∏∞

i=1 -i and F = ∏∞
i=1 Fi . Let Xi be the ith

coordinate function on -. The nth “sufficient statistic” Tn is a Borel mapping from
∏n
i=1 -i to a

Polish space Wn equipped with its Borel σ -field Bn. In principle, Tn does not act on -, although
Tn(X1, . . . , Xn) does. For each n and t ∈ Wn, let Qn,t be a probability on

( ∏n
i=1 -i,

∏n
i=1 Fi

)
.

It is assumed that t → Qn,t is Borel.
To illustrate the setup, suppose theXi are independent normal random variables with common

mean 0 and variance σ 2 > 0. Then -i would be the real line, Wn would be the set of positive real
numbers, and Tn(x1, . . . , xn) = ∑n

i=1 x
2
i . In this example, Qn,t is uniform on the n-tuples of real

numbers (x1, . . . , xn) with
∑n

i=1 x
2
i = t . Geometrically, this set of n-tuples is the sphere centered

at 0 having radius
√
t . Statistically, Qn,t is the conditional distribution of the sample, given the

sufficient statistic.
We return to the abstract setting, and define MQ, the partially exchangeable probabilities, as

the set of P on (-,F ) such that for each n, given Tn(X1, . . . , Xn) = t , a regular conditional
P -distribution forX1, . . . , Xn isQn,t . Informally, Qn,t is the distribution of the data given that the
sufficient statistic took the value t . This does not depend on the parameters, i.e., is the same for all
P ∈ MQ. Said another way, MQ is the set of P for which Qn,t works as advertised. In our normal
example, MQ will turn out to be the set of probability distributions faced by a textbook Bayesian
statistician, who is going to observe (by assumption) a sequence of independent normal random
variables with mean 0 and variance σ 2 > 0, and is contemplating all possible prior probabilities
for σ 2. That is the content of Theorem 1 below.

We impose the following regularity conditions (which are obvious for the normal, once you
decipher the notation).
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(1) Qn,t {Tn = t} = 1.
(2) If Tn(x1, . . . , xn) = Tn(x1

′, . . . , xn′) then Tn+1(x1, . . . , xn, x) = Tn+1(x1
′, . . . , xn′, x)

for all x ∈ -n+1.
(3) For each s ∈ Wn and t ∈ Wn+1, relative toQn+1,t , the kernelQn,s is a regular conditional

distribution for (X1, . . . , Xn) given Tn(X1, . . . , Xn) = s and Xn+1 = x. Here, the Xi

are viewed as the coordinate functions on
∏n+1
i=1 -i .

We define the partially exchangeable σ -field $̂ as

$̂ =
∞⋂
n=1

$̂(n),

where $̂(n) is spanned by Tn(X1, . . . , Xn),Xn+1, Xn+2, . . . .The main theorem proved in Diaconis
and Freedman (1984) is the following.

Theorem 1. Conditions (1), (2), and (3) are in force. Then MQ is convex, and there is a set
G ∈ $̂ with the following properties.

(i) P(G) = 1 for all P ∈ MQ.
(ii) For each ω ∈ G, the sequence of probabilitiesQn,Tn(ω) converges weak-star to a limiting

probability Qω ∈ MQ, which is 0–1 on $̂.
(iii) As ω ranges over G, the kernels Qω range over the extreme points of MQ.
(iv) For any P ∈ MQ, the kernel Qω is a regular conditional P -distribution for X1, X2, . . .

given $̂, and

(4) P =
∫
G

Qω P̂ (dω),

with P̂ the restriction ofP to $̂. The representation (4) is unique, i.e., P̂ ↔ P . Moreover,
P is extreme iff P is 0–1 on $̂, i.e.,

(5) P {ω : ω ∈ G & Qω = P } = 1.

Remarks. (i) The σ -field $̂ may be restricted even further, to the σ -field $̌ spanned by
ω → Qω . Then P̂ is replaced by P̌ , the restriction of P to $̌, the advantage being that $̌ is a
Borel σ -field equivalent to the inseparable $̂ up to sets that have measure 0 for all P ∈ MQ.

(ii) In this context, P is the mixture and P̌ is the mixing measure. Equation (4) becomes

(6) P =
∫
G

Qω P̌ (dω).

(iii) If we identify all points in the same atom of $̌, the resulting quotient space X is analytic.
The quotient of $̌ is the Borel σ -field in X and the quotient π of P̌ is a probability on that σ -field.
Then

(7) P =
∫

X
Qx π(dx).
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This may be a more convincing analog to de Finetti’s theorem for coin-tossing. To define Qx ,
choose any ω in the fiber corresponding to x—it doesn’t matter which—and set Qx = Qω. Let
X map ω in G to x ∈ X, so that π = PX−1, i.e., π is the limiting distribution of the random
measures Qn,Tn . Among other things, the mixing measure has been recovered from the mixture.
This is a generalized inversion formula; the application to Laplace transforms will be detailed below.
Technically, X can be realized as the image of G under X, and is then an analytic subset of the set
of probabilities on -; in applications, X will be a homelier object.

(iv) In our normal example, G can be taken as the set where (X2
1 + · · · + X2

n)/n converges
to a finite positive limit L. Then Qω makes the coordinates independent normal random variables,
with variance L(ω). The quotient space X in (iii) is (0,∞), and the quotient probability π is the
prior on σ 2, viz., the distribution of L. Said with less formality, X1, X2, . . . have an orthogonally
invariant distribution iff they are scale mixtures of independent normal variables with mean 0 and
variance 1. (It is the distributions that are being mixed, not the random variables; the customary
informal language is, well, informal.)

In view of Theorem 1(iii) and (5),

(8) Qω′ {ω : ω ∈ G & Qω = Qω′ } = 1 for all ω′ ∈ G,

an equation that will be used later. Condition (1) implies that t → Qn,t is 1–1. Hence Tn andQn,Tn

span the same σ -field, and we may view Qn,Tn as the sufficient statistic instead of Tn.

Bounded densities

Our first result characterizes mixtures where the mixing measure has a bounded density. It is
the abstract version of Theorem 4 for L∞ in Part I. Let Pi ∈ MQ for i = 0, 1, let n0 be a positive
integer, and let c be a positive constant. Conditions (1), (2), and (3) are in force; we use the notation
of Theorem 1.

Theorem 2. Let P (n) be the restriction of P to the σ -field spanned by X1, X2, . . . , Xn, and let
Un = Tn(X1, . . . , Xn) map - to Wn. The following conditions are equivalent.

(i) P̌1 ≤ cP̌0.

(ii) P1 ≤ cP0.

(iii) P (n)
1 ≤ cP

(n)
0 for all n = n0, n0 + 1, . . . .

(iv) P1U
−1
n ≤ cP0U

−1
n for all n = n0, n0 + 1, . . . .

Proof. Plainly, (i) ⇒ (ii) ⇒ (iii) ⇒ (iv), the first implication being immediate from (6). Next,
(iv) ⇒ (iii) ⇒ (ii) ⇒ (i). The first implication results from sufficiency: if P ∈ MQ, then

(9) P (n) =
∫
Wn

Qn,t PU
−1
n (dt).

The proof of Theorem 2 is complete. From the present perspective, if condition (iii) holds for
any n0, it plainly holds for n0 = 1; this will be helpful in one of the applications below, where the
dependence of the conditions on n0 will be less transparent. Theorem 2 characterizes mixtures with
bounded densities, and in the next section, we turn to Lp densities.
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Lp densities

Theorem 3. P1 << P0 iff P̌1 << P̌0, and then dP̌1/dP̌0 is a version of dP1/dP0.

Proof. If P̌1 << P̌0, then P1 << P0 by (6). The converse is obvious from the fact that P̌
restricts P to a smaller σ -field. To compute the Radon-Nikodym derivative, suppose P̌1 << P̌0.
Let φ = dP̌1/dP̌0, and fix A ∈ F . Then

(10)
∫
A

φ dP0 =
∫
G

(∫
A

φ(ω)Qω′(dω)

)
P̌0(dω

′).

But Qω′ concentrates on the $̌-atom containing ω′ by (8), and φ is $̌-measurable, so

Qω′ {φ = φ(ω′)} = 1,

and we may replace φ(ω) on the right side of (10) by φ(ω′). Thus

∫
A

φ dP0 =
∫
G

(∫
A

φ(ω′)Qω′(dω)

)
P̌0(dω

′)

=
∫
G

(∫
A

Qω′(dω)

)
φ(ω′) P̌0(dω

′)

=
∫
G

Qω′(A) P̌1(dω
′)

= P1(A).

Corollary 1. Let φ = dP̌1/dP̌0, with φ = ∞ on the part of the space where P̌1 is singular
with respect to P̌0. Define < in the analogous way for P0 and P1. Then < = φ a.e. [P0 + P1].

Proof. This is immediate from Theorem 3, on replacing P0 by 1
2 (P0 + P1). In principle, <

need only be F -measurable; in fact, however, < is $̌-measurable up to null sets.

Recall that Un = Tn(X1, . . . , Xn). Suppose

(11) P1U
−1
n << P0U

−1
n for all n.

Let hn = dP1U
−1
n /dP0U

−1
n , a Borel function on Wn. Let

(12) cn =
( ∫

Wn

h
p

n dP0U
−1
n

)1/p

and

(13) Hn = hn(Un).

Recall that P (n) is the restriction of P to the σ -field spanned by X1, . . . , Xn, so that P (n)
1 << P

(n)
0

by (9) and (11); and Hn = dP
(n)
1 /dP

(n)
0 is a martingale relative to P0. The proof of the next
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theorem is omitted as a routine application of differentiation theory (Hewitt and Stromberg, 1969,
pp. 369–75).

Theorem 4. Assume (11), and definitions (12–13). Then cn is non-decreasing as n increases.
Moreover, Hn converges a.e. P0 + P1 to a limit H , which is infinite on the part of the space where
P1 is singular with respect to P0, and dP1/dP0 on the part of the space where P1 << P0. Finally,
lim cn = (

∫
Hp dP0)

1/p.

Corollary 2. P1 << P0 with an Lp density having norm at most c iff sup cn ≤ c.

Remarks. (i) P1 << P0 iffHn is uniformly P0-integrable; but this amounts to little more than
restating the definition of absolute continuity.

(ii) Corollary 2 is the abstract version of Theorem 9 in Part I. Theorems 2 and 3 here capture
the reasoning for Theorem 4 in Part I.

Examples

Example 1: Coin tossing. To make contact with de Finetti’s original result for coin tossing—
Theorem 5 in Part I—let-i = {0, 1} andWn = {0, . . . , n}, with the discrete topology on both. Let
Tn(x1, . . . , xn) = x1 + · · · + xn. Informally, 1 is heads, 0 is tails; ω ∈ - is the record of an infinite
number of coin tosses, Xi(ω) being the outcome on the ith toss; Tn(X1, . . . , Xn) is the number of
heads in the first n tosses of the coin. For j = 0, . . . , n, let Qn,j be the uniform distribution on
the

(
n
j

)
sequences of 0s and 1s of length n whose sum is j . It takes only a few (tedious) minutes to

verify the following:

MQ consists of all the exchangeable probabilities on (-,F ).

Conditions (1), (2), and (3) are satisfied.

In Theorem 1, the σ -field $̂ consists of the Borel sets invariant under finite permutations of
coordinates.

G can be taken as the set where (X1 + · · · +Xn)/n converges as n → ∞; call the limit L.

Qω is the probability on - making the coordinates Xi independent tosses of a p-coin, where
p = L(ω).

The quotient space X in Remark (iii) is the unit interval; the quotient σ -field is the Borel
σ -field; and the quotient probability is the distribution of L, which is the mixing measure µ
on [0, 1] in Theorem 5 of Part I.

Theorem 5 in part I is therefore a special case of Theorem 1 here. Of course, a direct proof is easier.
But Theorem 1 does provide a unified framework for de Finetti’s theorem and many variations.
Corollary 2 here gives Theorem 9 in Part I, and the present Theorem 2 does L∞. At least for us,
the abstract setup makes the structure of the proofs easier to see.

Example 2: Exponential random variables. The random variable X > 0 has the exponential
distribution with parameter λ if P(X > x) = exp(−λx) for x > 0. Here, 0 < λ < ∞. Mixtures
of independent exponentials with a common parameter were characterized by Freedman (1963).
Informally, a sequence of positive random variables is a mixture of exponentials iff the sums are
sufficient statistics, and given the sum, the summands are uniformly distributed over the simplex.
To make the connection with Theorem 1, we take -i = Wn = (0,∞) with the Borel σ -field.
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Let Tn(x1, . . . , xn) = x1 + · · · + xn. For 0 < t < ∞, let Qn,t be the uniform distribution on
the positive, finite x1, . . . , xn whose sum is t . Let Pλ be the probability on (-,F ) according to
which the coordinates Xi are independent exponentials with the common parameter λ. If µ is a
probability on (0,∞), let Pµ = ∫ ∞

0 Pλ µ(dλ), that being the mixture we want to characterize.
Abstractly, P on (-,F ) admits the representation P = Pµ iff P ∈ MQ, and then µ is unique.
The G in Theorem 1 is again the set where (X1 + · · · +Xn)/n converges to a finite positive limit;
denote the latter by L. And Qω = P1/L(ω) makes the Xi independent exponentials with common
parameter 1/L(ω): the inverse results from the fact that an exponential distribution with parameter
λ has mean 1/λ. The quotient space X in Remark (iii) is (0,∞), the quotient σ -field is the Borel
σ -field, and the quotient probability is the distribution of 1/L, namely, µ. If µ is allowed to have
positive mass at 0, the argument is a little more complicated, because the Xi will be infinite with
probability µ{0}.

Suppose µ and ν are two probabilities on (0,∞), and c is a positive real number. It is almost
obvious from Theorem 2 that Pµ ≤ cPν iff µ ≤ cν. In the next section, we restate the condition
in terms of the Laplace transform, which may be more interesting. We also characterize µ with
a bounded density: this is (a little) beyond the scope of our previous theorems, since Lebesgue
measure is infinite on (0,∞).

In these examples, the “sufficient statistic” is the sum, and the conditional distribution is
uniform—on {0, 1, . . . , n} for the coin and the simplex for the exponential. In other situations,
the sufficient statistic and the conditional will be more complicated: see Diaconis and Freedman
(1984) for more examples and discussion.

Laplace transforms

Let µ be a probability on [0,∞). Its Laplace transform is

(14) φ(x) =
∫ ∞

0
e−λx µ(dλ).

We use λ as the variable of integration, in keeping with Example 2, and write φµ for φ if there is
any ambiguity. According to a celebrated theorem of Bernstein, Laplace transforms of probabilities
on [0,∞) are characterized as being “completely monotone,” and taking the value 1 at x = 0;
furthermore, µ in (14) is unique. See Widder (1946, pp. 144–163) or Feller (1971, pp. 233, 439).
For these purposes, φ on [0,∞) is completely monotone if the nth derivative φ(n) exists on [0,∞)

for all n, and these functions alternate in sign, so that (−1)nφ(n) ≥ 0 for all n = 0, 1, . . . . Of
course, φ(n) is continuous because φ(n+1) exists. At 0, continuity and differentiability are from the
right: φ may not be defined to the left of 0. By convention, φ(0) = φ.

To avoid technical nuisances, we assume until further notice that µ{0} = 0. Recall that
X1, . . . , Xn are independent exponential random variables relative toPλ, with common parameterλ.
The density of X1 + · · · +Xn is

(15) x → xn−1

(n− 1)!
e−λxλn

for n = 1, 2, . . . . This is a well known formula (Feller, 1971, p. 11), and is easy to verify directly.
To get the density of the sum relative to Pµ we just the integrate (15) with respect to µ(dλ):

(16)
xn−1

(n− 1)!

∫ ∞

0
e−λxλn µ(dλ) = (−1)n

xn−1

(n− 1)!
φ(n)(x)

6



for n = 1, 2, . . . .The equality in (16) follows by differentiating (14) under the integral sign, n times.

Lemma 1. Let µ and ν be two probabilities on (0,∞). Let c be a positive constant. Then
µ ≤ cν iff (−1)nφ(n)µ (x) ≤ c(−1)nφ(n)ν (x) for all n = 0, 1, . . . and x > 0. For sufficiency, the
upper bound is needed only for large positive n.

Proof. Combine Theorem 2 and (16), the latter giving the density of the sufficient statistic
with respect to Pµ or Pν . This is where we use n0 in Theorem 2.

Corollary 3. Let ν be exponential with parameter h. Then µ ≤ cν iff

(−1)nφ(n)µ (x) ≤ cn!h/(x + h)n+1

for all n = 0, 1, . . . and x > 0. For sufficiency, the upper bound is needed only for large positive n.

Proof. The Laplace transform of ν is φν(x) = h/(h+x), so (−1)nφ(n)ν (x) = hn!/(h+x)n+1.

Theorem 5. Let φ be a given function on [0,∞), and c a given positive real number. Then φ
is the Laplace transform of a probability µ on (0,∞) such that µ is absolutely continuous, with a
density bounded above by c, iff φ(0) = 1 and

(17) 0 ≤ (−1)nφ(n)(x) ≤ cn!/xn+1

for all n = 0, 1, . . . and x > 0. Furthermore, µ is unique. For sufficiency, the upper bound is
needed only for large positive n.

Proof. For uniqueness, (14) determines µ according to Bernstein’s theorem. Suppose that φ
is the Laplace transform of a probability µ on (0,∞) with dµ/dx ≤ c; the conditions on φ and its
derivatives follow by routine calculus, proving necessity. For sufficiency, µ exists by Bernstein’s
theorem. Let

(18) ψ(x) =
∫ ∞

0
e−λx e−λµ(dλ) = φ(x + 1).

Plainly, (−1)nψ(n)(x) ≤ cn!/(1 + x)n+1. Corollary 3 shows that e−λµ(dλ) ≤ ce−λdλ, which
completes the proof.

Essentially this theorem can be found in Widder (1946, p. 315) or Feller (1971, p. 440); also
see Hirschman and Widder (1955, chap. 7). There are similar—albeit more complicated—results
for Lp: see Widder (1946, pp. 288, 312–14). Rather than pursuing this topic, we turn to inversion
formulas for the Laplace transform (Widder, 1946, p. 288; Feller, 1971, p. 440). These have always
seemed mysterious, at least to us; the theory developed here may help. In Example 2, thePµ density
of n/(X1 + · · · +Xn) converges weak-star to µ: indeed, n/(X1 + · · · +Xn) converges a.e. [Pλ] to
λ, by the strong law. The density of the denominatorX1 +· · ·+Xn was computed from the Laplace
transform φ of µ, in (16). By a change of variables (y = n/x), the density of n/(X1 + · · · + Xn)

is seen to be

(19) fn(y) = (−1)n
1

n!

[
φ(n)

(
n

y

)] (
n

y

)n+1

.
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As noted above, fn(y)dy converges to µ(dy) as n grows, which gives the basic inversion formula
(Widder, 1946, p. 288). The convergence is better for smoother µ, but weak-star convergence
always holds. We have assumed µ{0} = 0. Otherwise, the contribution from 0 needs to be
assessed separately: the distribution of n/(X1 + · · · + Xn) picks up an atom at 0, whose mass
is—naturally—µ{0}.

Example 3. Let 0 < α < ∞. The �-density λ → λα−1e−λ/�(α) has Laplace transform
x → 1/(1 + x)α for 0 ≤ x < ∞. Now let f (λ) = 1 for λ near 0, while f (λ) = 1/

√|1 − λ|
for λ near 1, and f (λ) = e−λ for λ near ∞. The definition of f on (0,∞) can be completed so
that f is a positive density, and C∞ except at 1. It is routine to show that the Laplace transform φ

of f is approximately 1 near 0 and 1/x near ∞. Plainly, f is unbounded. In short, the condition
φ(x) ≤ c/x does not establish the boundedness of f in Theorem 5. In this example, the upper
bound in (17) will hold for n = 0, . . . , n0, although c will depend on n0. As n → ∞, however, (19)
suggests that (−1)nφ(n)(x)xn+1/n! will be unbounded for x near n, so the upper bound in (17)
fails. We have not verified this directly, but see Widder (1946, p. 288).

Remarks. (i) We think that Widder (1946, p. 288, Definition 6) omitted a factor 1/k! in the
definition ofLk.t ; if so, our (19) matches up; otherwise, we cannot verify the calculations following
his definition.

(ii) From the present perspective, Bernstein’s theorem can be derived from Hausdorff’s solution
to the little moment problem—Theorem 2 in Part I. The connection is made by the mapping
λ → − log λ, which takes the unit interval to the half-line. Bernstein seems to have been unaware
of Hausdorff’s work; Widder confesses to having rediscovered it for a third time (Widder, 1946,
p. 144). With respect to Hausdorff’s solution to Markov’s problem, we might be in fourth place.

Example 4: Normal random variables with mean 0. In connection with Theorem 1, we
considered scale mixtures of normal random variables with common mean 0. There, we used
variance as the parameter; here, it will be more convenient to use the “natural parameter” λ =
1/σ 2. See Lehmann (1991, p. 57). Let -i = (−∞,∞), and let Pλ on - = ∏

i -i make the
coordinatesXi independent normal random variables, with mean 0 and common variance 1/λ. For
any probability µ on (0,∞), let Pµ = ∫

Pλ µ(dλ). When does µ have a bounded density with
respect to Lebesgue measure? with respect to Haar measure dλ/λ? The nth sufficient statistic will
be taken as Tn = 1

2 (X
2
1 + · · · + X2

n). Let x → ψµ,n(x) be the density of Tn with respect to Pµ.
By excluding a set of measure 0 with respect to all Pµ, we can assume that our Xi never vanish, so
Tn > 0. Let m = n/2. For n = 1, 2, . . . , the density of Tn with respect to Pλ is

x → xm−1

�(m)
e−λxλm.

See (Feller, 1971, pp. 47–48). The density with respect to Pµ is therefore

x → ψµ,2m(x) = xm−1

�(m)

∫ ∞

0
e−λxλm µ(dλ) = (−1)m

xm−1

(m− 1)!
φ(m)µ (x)

for m = 1, 2, . . . , where φµ(x) is the Laplace transform of µ; the second equality holds by (16).

Now x2ψµ,2m(x)/m = (−1)mxm+1φ
(m)
µ (x)/m!, and Theorem 5 shows
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(20) The mixing measureµ in Example 4 is absolutely continuous with a density bounded above
by c iff ψµ,2m(x) ≤ cm/x2 for all positive x and m = 1, 2, . . . .

Interestingly, this constrains Tn only for positive even n: we are not ready for fractional derivatives,
nor is ψµ,0 defined. (Among other things, �(0) = ∞ and T0 = 0 if it is to be defined at all.) Of
course, if µ̇ ≤ c, then φµ(x) ≤ c/x; but going in, the upper bound is unavailable for the Laplace
transform itself. That is why we wanted a version of Theorem 5 that requires the upper bound only
for derivatives.

Of course, if φ(x) is the Laplace transform of µ(dλ), then −φ′(x) is the Laplace transform of
λµ(dλ), and Theorem 5 can be applied to the latter. Indeed,

(−1)m
xm+1

m!

∂m

∂xm
(−φµ) = (−1)m+1 x

m+1

m!

∂m+1

∂xm+1φµ = xψµ,2m+2(x).

Consequently,

(21) µ is absolutely continuous with a density bounded above by λ → c/λ iffψµ,2m+2(x) ≤ c/x

for all positive x and m = 0, 1, . . . .

Example 2 can be handled in a similar way. This is not surprising, since the sum of m
exponential variables is distributed as 1/2 times a χ2 variable with 2m degrees of freedom.

(22) The mixing measureµ in Example 2 is absolutely continuous with a density bounded above
by c iff the density of the sufficient statistic X1 + · · ·+Xm is bounded above by cm/x2 for
all positive x and m = 1, 2, . . . .

There is an entertaining geometrical consequence to the connection between the χ2 and the
exponential distributions. Let X1, X2, . . . , X2n−1, X2n be independent normal random variables,
with mean 0 and variance 1. Then (X2

1 + X2
2)/2, . . . , (X

2
2n−1 + X2

2n)/2 are independent standard
exponential variables. Given X2

1 +X2
2 + · · · +X2

2n−1 +X2
2n, we have on the one hand that

X1, X2, . . . , X2n−1, X2n

is uniformly distributed over a sphere in R2n; on the other hand,

(X2
1 +X2

2)/2, . . . , (X
2
2n−1 +X2

2n)/2

is uniformly distributed over a simplex in the positive orthant of Rn. Consequently,

(23) Pick a point (x1, x2, . . . , x2n−1, x2n) uniformly at random on the surface of a sphere in 2n-
dimensional Euclidean space. Then the point

(
(x2

1 + x2
2 ), . . . , (x

2
2n−1 + x2

2n)
)

is uniformly
distributed over the corresponding simplex in the positive orthant of n-dimensional space.

In general, as is well known, the partitioned sum of squares has a Dirichlet distribution on the
simplex.

Brief Literature Review

The proof ofTheorem 1 is given in Diaconis and Freedman (1984). This follows Oxtoby (1952),
who gave a masterful exposition of the Krilov-Bogolioubov theory, presenting stationary processes
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as mixtures of ergodic processes. Similar techniques were used by Hunt (1960) to develop the Martin
boundary for transient Markov chains. The Scandinavian school has worked on such problems
from a slightly different perspective: see Martin-Löf (1974), Lauritzen (1988), or Kallenberg
(1999). There has been an extensive development of such theories in statistical mechanics; see
Ruelle (1984) and Georgii (1988). Aldous (1985) discusses applications to probability theory; and
Schervish (1995), to Bayesian statistics. Many other examples, discussed from the perspective
of semigroups and Choquet theory, will be found in Berg, Christensen, and Ressel (1984); the
connection to de Finetti’s theorem is explained in Ressel (1985). The characterization of mixtures
of normals appears in Freedman (1963). It is often attributed to Schoenberg (1938a): see especially
Theorem 2 on p. 817, also see Schoenberg (1938b). But the translation is not without difficulty.
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