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ABSTRACT

Epidemiologic methods were developed to prove general causation: identifying exposures that
increase the risk of particular diseases. Courts often are more interested in specific causation: on
balance of probabilities, was the plaintiff’s disease caused by exposure to the agent in question?
Some authorities have suggested that a relative risk greater than 2.0 meets the standard of proof
for specific causation. Such a definite criterion is appealing, but there are difficulties. Bias and
confounding are familiar problems; individual differences must be considered too. The issues are
explored in the context of the swine flu vaccine and Guillain-Barré syndrome. The conclusion:
there is a considerable gap between relative risks and proof of specific causation.

1. INTRODUCTION

In a toxic tort case, the plaintiff is exposed to a toxic agent, suffers injury, and sues. To win, the
plaintiff must prove (i) “general causation” (the agent is capable of producing the type of injury in
question), and (ii) “specific causation” (plaintiff’s particular injury did in fact result from exposure
to the agent). Both elements must be proved by the preponderance of the evidence. This standard
is also characterized as “balance of probabilities,” or “more likely true than not.” Courts have
used relative risk to assess evidence, with a relative risk above 2.0 arguing for specific causation.
There are comments from various perspectives in Black and Lilienfeld (1984), American Medical
Association (1987), Bailey, Gordis, and Green (1994), or Petitti (1996).

The intuition can be expressed as follows. Suppose that the exposed and unexposed groups
in an epidemiologic study have the same distribution of variables affecting likelihood of injury—
except for the particular exposure of interest. For simplicity, suppose the two groups are the same
size. To have specific numbers, suppose there are 400 injuries among the exposed and only 100
among the unexposed, so the relative risk is 4. The conclusion is this: but for the exposure, there
would be only 100 injuries among the exposed instead of 400. In other words, 300 of the 400
injuries are attributable to the exposure and 100 to other factors. Therefore, an injury among the
exposed has chance 3/4 of being attributable to exposure. Likewise, a relative risk of 3 corresponds
to a chance of 2/3, while a relative risk of 2 corresponds to a chance of 1/2, which is the breakpoint.

Here, we explore the scientific logic behind these intuitions. Of course, any epidemiologic
study is likely to have problems of bias: uncontrolled confounding seems to be the rule rather
than the exception (Freedman 1999, with citations to the literature). When effects are large, such
problems may not be material; when relative risk is near the critical value of 2.0, potential biases
need to be assessed more carefully. That is a serious and generic problem, which we do not pursue.
Individual differences also play an important role: plaintiff may not resemble typical members
of the study population, and the effects of such differences need to be considered. Even in a
randomized experiment, treatment and control groups are balanced in the aggregate but not at the
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level of individuals. This turns out to be a salient problem in connecting relative risk to specific
causation.

We wanted to consider such issues in the context of a real example, in part to see how well the
courtroom evidence stands up when examined retrospectively. Mike Green kindly provided a list of
legal opinions where relative risk and specific causation come together (personal communication);
also see Bailey, Gordis, and Green (1994, note 128). Generally, the underlying epidemiologic
evidence was shaky. In one case—Manko v. United States—there turned out to be a substantial body
of epidemiologic evidence, showing that the swine flu vaccine caused Guillain-Barré syndrome.
And the vaccine campaign of 1976 is itself a fascinating case study. For these reasons, we selected
Mankoas our example; below, “the opinion” is the trial court’s published decision, 636 F. Supp. 1419
(W.D. Mo. 1986). (“F. Supp.” is theFederal Supplement; the opinion starts at page 1419 of volume
636; the case was heard in the federal district court for the Western District of Missouri.) The case
was appealed, and the district court’s opinion was affirmed in part, 830 F.2d 831 (8th Cir. 1987).

In section 2, we summarize the epidemiology of the swine flu vaccine and GBS (Guillain-
Barŕe syndrome). GBS is a rare neurological disorder, sometimes triggered by vaccination or by
infection; paralysis is a sequel, although most patients make a complete recovery in a few weeks or
months. Section 3 turns to the Manko case and use of relative risk to demonstrate specific causation.
Although the plaintiff prevailed, his proof of specific causation seems problematic to us, due in part
to differences between him and typical members of the study population.

Appendix 1 presents a simple probability model where intuitions about relative risk and cau-
sation can be explored. The model sets aside all problems of confounding and bias, and considers
only difficulties created by individual differences. For any particular plaintiff, the probability of
causation is not identifiable from the data. Even the average probability of causation can be much
lower than intuition suggests. For instance, if 4% of the exposed group suffers injury compared
to 1% among the unexposed, the relative risk is 4 but the average probability of causation—given
exposure and injury—can be as low as 3%, the difference in injury rates. We conclude that specific
causation is linked to relative risk only through the principle of insufficient reason: the plaintiff is
assumed to be like a randomly chosen subject in the epidemiologic study population, conditioned
on exposure and injury.

2. THE SWINE FLU VACCINE AND GBS

In this section, we review the swine flu vaccination campaign of 1976 and the epidemiology of
Guillain-Barŕe syndrome, as background for the discussion ofMankoin Section 3. The influenza
pandemic of 1918 killed some 20 million people world-wide. In February of 1976, a soldier in
training at Fort Dix, New Jersey, died of influenza; the virus turned out to be similar in antigenic
type to the 1918 virus. With public health professionals at the CDC (Centers for Disease Control)
taking the lead, the Federal Government organized a massive immunization campaign. Vaccination
began on October 1, 1976. The vaccine was targeted at the 151 million people age 18 and over;
some 43 million were eventually vaccinated. However, beyond the initial cluster at Fort Dix, only
a handful of additional cases materialized, and several public health figures wanted the campaign
stopped. A moratorium was declared on December 16, 1976—in part because an epidemic seemed
increasingly unlikely, and in part because there were sporadic reports of GBS cases following
vaccination. There are two different accounts of the vaccine campaign, by Neustadt and Fineberg
(1982) and by Silverstein (1981). The latter was written to correct the former; but from our
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perspective, there is broad agreement on the central points.
The CDC played an active role in tracking reports of GBS and studying its relationship to

the vaccine; the key papers are Langmuir (1979), Schonberger et al. (1979), and Langmuir et
al. (1984); the last is perhaps the best single reference. The study period in these papers runs from
October 1, 1976 to January 31, 1977. Langmuir et al. analyzed the incidence rate of GBS among
the vaccinated, by weeks since vaccination; this rate is shown as the highly peaked solid line in
Figure 1a (computed by us from their data). Rates are “per million person-weeks” of exposure;
these are incidence rates, not relative risks. There is a strong peak for a few weeks after vaccination.
In other words, there is a clear association between vaccination and GBS, provided the onset of
GBS is within a few weeks of vaccination. Shown for comparison is the incidence rate of GBS
among the unvaccinated, by calendar week from October 1st (lower dashed line, also computed
from Langmuir et al.’s data). Notice that two time scales are involved. The sizes of the vaccinated
and unvaccinated populations are changing rapidly over time, due to the vaccination campaign; size
is taken into account in computing the rates.

Is the association causal? That is still controversial. No excess risk for GBS was observed
in the military, or with previous vaccines much like the swine flu vaccine. See, for instance, Hahn
(1998, 636), Ropper et al. (1991, 28–9, 67), Hughes (1990, 103), Safranek et al. (1991), Beghi et
al. (1985), Kurland et al. (1985, 636); Hughes and Rees (1997) find the evidence less ambiguous. In
subsequent mass vaccinations, excess risk is minimal, although statistical significance is achieved
if data for 1992–93 and 1993–94 are pooled (Lasky et al. 1998, Kaplan et al. 1982, Hurwitz et
al. 1981). Further arguments and counter-arguments will not be discussed here. After reviewing
the data and the literature, we think that a finding of general causation is reasonable: on balance
of evidence, the swine flu vaccine did increase the risk for GBS for a period of several weeks after
vaccination.

The background rate in Figure 1a is shown on a magnified scale in Figure 1b. After the
moratorium, there is a precipitous drop in the background rate. This drop is best explained as an
artifact of data collection. After the moratorium, it seems probable that GBS was less in the news,
neurologists were less likely to make the diagnosis among unvaccinated persons, and state health
departments were less diligent in collecting the data and reporting to CDC. Some of the drop may
also be due to lags in data collection. Larry Schonberger, who was doing surveillance at the CDC,
reports that a number of states put significantly less effort into data collection after the moratorium
(personal communication; also see Schonberger et al. 1979, 197).

The background rate of GBS (among unvaccinated persons) is a critical baseline statistic: the
incidence rate of GBS among the vaccinated persons is compared to this baseline, in Figure 1
and in computations of relative risk. GBS is not a reportable disease, nor is the diagnosis easy.
Thus, considerable uncertainty attaches to the background rate. Langmuir et al. (1984, 856) did
not believe the background could be below 0.24 per million person-weeks, that is, about 1 case per
100,000 persons per year (for details, see Appendix 2). Thus, Figure 1a takes the background rate
as 0.24 after the moratorium: the lower dashed line is horizontal after week 11. Current literature
suggests a background rate of 0.2 to 0.4 per million person-weeks: see Hahn (1998, 635), Ropper
et al. (1991, 19) or Hughes (1990, 101); but also see Lasky et al. (1998), who found a rate of about
0.15 per million person-weeks. So far as is known, there is no seasonal pattern to incidence rates
of GBS.
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FIGURE 1: Panel (a) shows the incidence rate among the vaccinated, by week since
vaccination (highly peaked solid line); this rate is compared to the background rate (lower
dashed line) among the unvaccinated, by week since the start of vaccination campaign.
Two time scales are involved. The moratorium occurred in the 11th week after the start of
the campaign, indicated by a vertical line. Panel (b) shows the background rate in more
detail.
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Other features of the data analysis in Langmuir et al. (1984) may be of interest. (i) They
distinguish between cases with “extensive” and “limited” paralysis; the association is strong for
the extensive cases, but there is little evidence of association for the limited cases. (ii) They fit
log normal curves to the incidence data, and argue causation from the goodness of fit—which in
retrospect seems curious.

A little more background is needed. Before the 1976 swine flu campaign got under way, the
insurance companies refused to issue coverage for adverse events resulting from vaccination, and
the drug companies refused to produce the vaccine without coverage. To resolve this impasse, the
Federal Government accepted liability in the Federal Tort Claims Act, 28 U.S.C. §1346(b). Thus,
GBS victims applied for compensation not to the vaccine providers but to the Federal Government.
There were about 510 GBS victims among the vaccinated and 440 among the unvaccinated. These
generated nearly 2,000 legal claims, one of which is the topic of the next section. Current legal
procedures for handling vaccine-related injuries are discussed by Johnson, Drew, and Miletich
(1998).

3. THE MANKO CASE

In Manko, plaintiff used relative risk to demonstrate specific causation. This case was well
argued, with a solid basis in epidemiology. Still, we find the proof unconvincing. The evidence will
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be reviewed in some detail, so the strengths and weaknesses of the relative-risk approach can be
seen. Louis Manko was vaccinated on October 20, 1976 and developed symptoms of “smoldering
GBS” within a week or two. Around January 15, 1977, he was hospitalized with acute GBS. The
Federal Government refused compensation, on the theory that his “smoldering GBS” was not GBS,
and his acute GBS developed too long after he was vaccinated for causation to be probable. Manko
sued and the court ruled in his favor, adopting two theories of specific causation. (i) If “smoldering
GBS” is indeed GBS, then causation follows from the epidemiologic evidence reviewed in Section 2
above. (ii) If on the other hand plaintiff contracted GBS in mid-January of 1977, some 13 weeks
after vaccination, specific causation still follows because the relative risk for such late-onset cases
is well above the threshhold value of 2.0.

The arguments on causation for late-onset cases (pp. 1433ff in the opinion) are the most
interesting. Plaintiff introduced expert testimony from Nathan Mantel and Martin Goldfield. Mantel
was a well-known biostatistician at the National Institutes of Health. Goldfield was the county
medical officer who worked on the Fort Dix outbreak; he was one of the first to identify the disease
as influenza and one of the first to advise against mass vaccination. Defendants’ epidemiology
experts were Leonard Kurland of the Mayo Clinic and Neal Nathanson of the Pennsylvania Medical
School; they were coauthors of the Langmuir report, cited here as Langmuir et al. (1984). Kurland
and Nathanson are well respected in the field, and Langmuir was the founder of the Epidemiologic
Investigative Service at the CDC.

Figure 1a—essentially the case for the defense on late-onset GBS cases—shows only a small
excess risk after the 8th week. That figure stratifies on time since vaccination. However, Goldfield
and Mantel argued that in order to compare like with like, it was also necessary to stratify on time
of vaccination when computing relative risks. Their rationale was ingenious: they hypothesized
a decrease in reporting of vaccinated GBS cases, parallel to the decline in reporting of the unvac-
cinated cases. Stratification is explained in Appendix 2, but the idea is simple. The relative risk
compares the observed number of GBS cases with the number expected on the theory that vaccina-
tion does not cause GBS. Goldfield and Mantel computed the expected numbers separately for each
vaccination cohort—those vaccinated in week 1, those vaccinated in week 2, and so forth. Finally,
the contributions from the various cohorts are summed to get the expected number of cases in each
week after vaccination. In effect, this synchronizes the two time scales in Figure 1a. However, the
late-onset cases are being compared to the very small number of background cases reported after
the moratorium, so the estimated relative risk is large.

Goldfield and Mantel used the raw (untruncated) background rates to compute the relative risk,
as in Figure 2a. For comparison, Figure 2b shows relative risks computed by the Goldfield-Mantel
procedure, stratifying both on time of vaccination and time since vaccination, but with background
rates truncated below at 0.24 per million person-weeks of exposure. The threshhold relative risk of
2.0 is marked by dashed horizontal lines. There were no cases in the 14th week after vaccination,
only 4 in the 15th week, and 1 in the 16th week. The tail of the curve is quite shaky, so plaintiff’s
experts pooled the data for weeks 11–16 as indicated by the solid horizontal lines in both panels.
Both panels in Figure 2 use the same observed numbers and compute expected numbers the same
way—except for truncation. The issue is not the stratification but the truncation, and the crucial
question is this: was there a drop in reporting of vaccinated GBS cases after the moratorium, parallel
to the drop in background rates? If so, Figure 2a is persuasive and the relative risk for late-onset
cases is high. If not, Figure 2b is the one to use and excess risk is minimal.

5



FIGURE 2: Panel (a) shows the Goldfield-Mantel analysis, with stratification by time of
vaccination as well as time since vaccination; raw background rates are used. Panel (b)
stratifies the same way, but truncates the background rate from below. The short horizontal
line pools the data in weeks 11–16, to stabilize the estimates.
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COMPLETENESS OF REPORTING

Both sides inManko agreed that the drop in background rates was artifactual (Goldfield,
Tr. 6.44, for the plaintiff; Langmuir et al. 1984, 856 for the defense; compare Tr. 18.114–5 and
p. 1435 of the opinion; “Tr. 6.44” is p. 44 of vol. 6 of the trial transcript). The issue was the plaintiff’s
hypothesis of a parallel drop in reporting of vaccinated cases. To validate that hypothesis, Goldfield
and Mantel (Tr. 6.61–67, esp. Tr. 6.66) compared the incidence rate of GBS among the vaccinated
before and after the decline in background rates. However, the numbers are small. Furthermore, a
real decline in the incidence rate is only to be expected, because the attack rate decreases with time
since vaccination (Figure 1), and most vaccinations occurred fairly early in the sequence of events.
Thus, it is not easy to show that decline in reported incidence rates is too abrupt, although Figure 1
in Schonberger et al. (1979) suggests there is something to the idea; also see Langmuir et al. (1984,
Table 5).

To address the completeness of reporting, Langmuir et al. (1984, 860ff) compared attack
rates for three cohorts—persons with early, middle, and late vaccinations. They saw no evidence
for a decline in reporting rate among vaccinated GBS cases. Vaccination by itself could have
made a diagnosis of GBS more likely, because vaccination was seen as a leading cause of GBS.
Moreover, reporting is likely a priori to be more complete among the vaccinated cases than the
unvaccinated: vaccinated cases had to be reported to the Federal Government in order for victims
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to claim compensation. As noted above, 510 vaccinated cases gave rise to 2,000 legal claims, which
hardly suggests under-reporting. Also see Marks and Halpin (1980, 2493).

For an empirical test, we followed Goldfield and smoothed the relative risks in Figure 2b. We
then used the smoothed curve to estimate the likely number of post-moratorium GBS cases among
the vaccinated; details are in Appendix 2. Specific results depend on the smoothing. However,
as best we can tell, the reporting of vaccinated GBS cases dropped after the moratorium by no
more than 20%. There also seems to have been over-reporting in weeks 10 and 11: perhaps onset
dates were advanced by a week or two in the CDC’s database, around the time of the moratorium.
Although the relative risk for late-onset GBS in Figure 2b may biased downward, the effect seems to
be small. Indeed, current medical literature does not support the hypothesis of swine flu vaccination
as a cause of late-onset GBS cases (Hahn 1998, 636; Ropper et al. 1991, 28–9, 57; Hughes 1990,
102).

DISCOVERY ISSUES

There is now another legal complication. In pre-trial discovery proceedings, each side gets
to demand documents from the other. However, the Federal Government declined to produce the
CDC’s detailed medical records on GBS victims. In some of these cases, critical information on
the date of vaccination or the date of onset of GBS was missing on the summary sheets that were
made public and used both by plaintiffs and defense. To resolve this discovery issue, the court
imposed a sanction. Langmuir et al. (1984, 845) had excluded from their analyses some 28 cases
with missing data; plaintiff’s experts were allowed to count 8 of these cases as having late onset.
Table 1 shows the relative risk for GBS with onset 11–16 weeks after vaccination, computed on the
various sets of assumptions. As Table 1 confirms, the critical issue is the truncation. (See pp. 1438
and 1453 of the opinion on sanctions, and pp. 1436–7 on the calculation of relative risk; we infer
the figure of 8 additional cases to reconcile the numbers in notes 10 and 11 of the opinion with the
data in Langmuir et al.)

TABLE 1: Relative risks for GBS cases, with onsets in weeks 11–16 after vaccination.
RR = Observed/Expected. The first column computes the “Expected” with the back-
ground rate truncated below. The second column uses the raw background rate. Row 1
shows data for extensive cases; row 2, for all cases; row 3 adds 8 cases to the numerator,
as a consequence of sanctions imposed by the court on defendants.

Truncated below Raw

Extensive cases 9/10.2 = 0.88 9/4.41 = 2.04
All cases 21/17.5 = 1.20 21/7.40 = 2.84
Sanctions 29/17.5 = 1.66 29/7.40 = 3.92

NOTE: The numbers in the table are computed by us from data in Langmuir et al. (1984);
for details, see Appendix 2.
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INDIVIDUAL DIFFERENCES

We turn now to individual differences. Prior infection is a risk factor for GBS: about 62%
of the unvaccinated GBS cases had some illness in the month before onset. For the vaccinated
cases, only 33% had prior illness. See Schonberger et al. (1979, 116) or Langmuir (1979, 663).
An informal calculation (Appendix 2) suggests that prior illness multiplies the relative risk by
about 33/62

.= 0.53. Manko had an infection with respiratory and gastro-intestinal symptoms
a week or two before his hospitalization for acute GBS (plaintiff’s exhibit 401): multiplying the
relative risk of 3.92 by .53 brings it very close to the critical value of 2.0. However, Goldfield
and Mantel argued that the .53 includes a selection effect: people are advised against vaccination
immediately following illness. To avoid the selection effect, Goldfield and Mantel based their
correction only on the late-onset GBS cases among vaccinated persons, where 53% were preceded
by illness (Tr. 7.39); the relative risk should now be multiplied by 53/62

.= 0.85. (In note 12 to the
opinion, the multiplier is given as 0.87; different experts—even on the same side—seem to have
been using slightly different versions of the CDC database; and there is an annoying numerical
coincidence, as .53 crops up twice with two different meanings.)

The number of late onset cases is rather small (Table 1), and the experience of this group
should probably not be compared to all unvaccinated cases but to cases with onsets in a similar time
period—late December and January—because the pattern of background illness is quite seasonal.
Plaintiff’s argument is therefore not wholly convincing. Current literature confirms that about
2/3 of GBS cases are triggered by previous illness; see, for instance, Hahn (1998, 636), Ropper et
al. (1991, 57), or Hughes (1990, 106). With respect to one pathogen,Campylobacter jejuni—which
causes gastrointestinal symptoms—the molecular basis for subsequent GBS is now reasonably well
understood (Nachamkin et al. 1998).

Age is another factor to consider. Manko was 64 years old at vaccination (plaintiff’s exhibit
401, Tr. 16.193). That would reduce the relative risk by perhaps 25%, if it is fair to average across
onset times (Schonberger et al. 1979, 114; Lasky et al. 1998, Table 1). Finally, the clinical course
of the disease should be mentioned. About 95% of patients reach their nadir within a month of
onset, and roughly 70% recover completely within a year (Hahn 1998, 639; Hughes 1990, 122–23;
compare p. 1427 of the opinion). In this respect too, Manko was quite unlike the bulk of the GBS
victims. Therefore, the data cannot tell us very much about the cause of Manko’s injury.Manko
was a well-argued case with a solid empirical base reported in the epidemiologic literature. Even
so, the proof of specific causation—starting from a relative risk of 4—seems unconvincing. That
gives us pause, and the issue goes well beyondManko. The impact of individual differences on the
probability of specific causation is discussed analytically, in Appendix 1.

4. SUMMARY AND CONCLUSIONS

The scientific connection between a relative risk of 2.0 and specific causation is doubtful.
Large relative risks argue for general causation, while small ones argue against. If the relative
risk is near 2.0, problems of bias and confounding in the underlying epidemiologic studies may be
serious, perhaps intractable. Problems created by individual differences may be equally difficult.
Bias and confounding affect the estimation of relative risk from the underlying data. By contrast,
individual differences affect the interpretation of relative risk—namely, the application to any
specific individual.
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With Manko, it was difficult to establish an elevated relative risk for late-onset cases. Moreover,
the plaintiff was in crucial detail remarkably unlike the other GBS victims. So the connection
between him and the data stayed rather loose. The mathematical models developed in Appendix 1
show how the effect of individual differences can be represented in a more general—but more
abstract—setting. The results confirm one of our central points aboutManko: epidemiologic data
cannot restrict the probability of causation to any useful degree, because of individual differences.

In law cases, the plaintiff always has the burden of persuasion; but the burden of production—
of going forward with the argument—does shift. If introducing epidemiologic evidence on relative
risk shifts the burden of production, that has consequences: quantifying the impact of deficiencies
in a study can be even harder than quantifying the risk associated with exposure.

APPENDIX 1. A PROBABILITY MODEL

This appendix presents a probability model for the chance that exposure causes injury. The
object of the model is to clarify the statistical problem, and show that the probability of causation
cannot be determined from aggregate data, except within very broad limits. Our model is a variant of
Neyman’s counterfactual model for causal inference (Neyman 1923, translated by Dabrowska and
Speed 1990; Hodges and Lehmann 1964; Rubin 1974; Holland 1988). Although counterfactuals
may seem a bit academic, the legal idea of causation is quite consistent with the model: but for
exposure, plaintiff would not have been injured (Hart and Honoré 1985, 104). “Exposure” and
“injury” are used generically. In the Manko case, for instance, exposure was to the swine flu
vaccine and the injury was GBS; with smoking and lung cancer, exposure is to cigarette smoke and
the injury is lung cancer.

In the model, there aren subjects. Associated with each subjecti are three random variables,
Ui, Vi, Xi . The random variableUi is the response if subjecti is not exposed:Ui = 1 if subject
i would then be injured, andUi = 0 if subjecti would not be injured. The variableVi repre-
sents subjecti’s response to exposure, defined analogously. The pairs(Ui, Vi) are assumed to be
independent acrossi. In this model, bothUi andVi exist, whether or not subjecti is exposed.

Each subject is characterized by a 4-vector of probabilities,pi , qi , ri , si , specifying the joint
distribution of(Ui, Vi):

pi = P {Ui = 0 andVi = 0},
qi = P {Ui = 0 andVi = 1},
ri = P {Ui = 1 andVi = 0},
si = P {Ui = 1 andVi = 1}.

Of course,pi , qi , ri , andsi are nonnegative and sum to 1.
The exposure variableXi is defined to be 1 if subjecti is exposed, and 0 otherwise. The

epidemiologist observesUi if Xi = 0, andVi if Xi = 1. Let X = {i : Xi = 1} be the set of
exposed subjects, and letm = ∑n

i=1 Xi be the number of exposed subjects. Epidemiologic studies
are generally observational, but to capture the idea of no confounding, we assume that nature
has run a randomized experiment for the epidemiologist: (i) the exposure variablesX1, . . . , Xn

are independent of the response variablesUi, Vi : i = 1, . . . , n, and (ii) the exposure variables
randomly selectm of then subjects to be exposed. In this setup,m is fixed, andP {Xi = 1} = m/n

for all i. We think of the model in a series of steps. For eachi, the response variablesUi and
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Vi are drawn according to their joint distribution. Next, the exposure variablesXi are drawn,
independently of the response variablesUi, Vi . The final step: ifXi = 0, thenUi is revealed; if on
the other handXi = 1, thenVi is revealed.

The probabilitiespi, qi, ri , si are fixed and inherent characteristics of subjecti. These prob-
abilities generateUi, Vi , which characterize subjecti’s response to non-exposure and exposure,
respectively. Once generated,Ui andVi also become fixed personal characteristics. Subjects op-
erate independently of each other, in the sense that one person’s response is unrelated to another’s.
After the response variables are determined, each subject’s response is triggered by one thing only:
whether the subject is or is not exposed. The random variablesX1, . . . , Xn describe the process
by which subjects came to be exposed or unexposed. This process is assumed to be independent of
the personal characteristics of the subjects, including their response variables.

Causation is defined in the following way. Suppose subjecti is exposed and injured:Xi = 1
andVi = 1. The injury is caused by the exposure if the injury would not have occurred but for
the exposure, that is,Ui = 0. After all, if Ui = Vi = 1, theni would have been injured whether
exposed or unexposed. Said another way, the subject is known to have been exposed and injured.
Causation means that if—counterfactually—the subject had not been exposed, the injury would not
have occurred. We learned how to use counterfactual random variables to make this idea precise
from James Robins (personal communication). Also see Robins and Greenland (1989ab).

The random variableXi is observed: it is 1 if subjecti is exposed, 0 otherwise. IfXi = 1,
thenVi is observed; else,Ui is observed. Thus, exactly one ofUi, Vi is observed, and the other
remains a counterfactual. Our condition for no confounding is stated in terms of bothUi andVi ;
likewise, our theorems involve features of the joint distribution ofUi andVi . In the legal setting,
Xi = 1 andVi = 1 as well: the plaintiff was exposed and injured. The argument is aboutUi :
would the plaintiff have been injured if not exposed? This question is inherently counterfactual;
after data collection,Ui is the counterfactual remaining in the model to answer the question.

We turn now to the details. Letβi be the chance that subjecti would be injured if left unexposed,

βi = P {Ui = 1} = ri + si .

And letγi be the chance that subjecti would be injured if exposed,

γi = P {Vi = 1} = qi + si .

These probabilities are identifiable and estimable, although with poor precision: there is one ob-
servation for each person, and two parameters to estimate. The probabilitiespi , qi , ri andsi are
not separately identifiable. For instance, even if we knew thatri + si = .01 andqi + si = .04, we
could not recoverqi without further information

Let β be the expected rate of injury if all subjects are unexposed:

(1) β = 1

n

n∑
i=1

P {Ui = 1} = 1

n

n∑
i=1

(ri + si).

Let γ be the expected rate of injury if all subjects are exposed:

(2) γ = 1

n

n∑
i=1

P {Vi = 1} = 1

n

n∑
i=1

(qi + si).
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The differenceγ − β is the difference between the expected injury rates in two situations: (i) we
expose everybody, and (ii) we expose nobody. In short,γ − β is the average causal effect of
exposure on injury, in our study population.

Given the assumption that the exposed group is a random sample of sizem from then subjects,
there are unbiased estimators ofβ andγ :

β̂ = 1

n − m

∑

i 6∈X
Ui

and

γ̂ = 1

m

∑

i∈X
Vi.

Unbiasedness is a consequence of the no-confounding assumption.
To avoid irrelevant technicalities, we will assume thatβ andγ are known, with

(3a) 0< β < γ ,

(3b) 0< β + γ < 1.

For present purposes, the relative risk is RR= γ /β. Condition (3a) says that exposure increases
the expected injury rate, so the RR exceeds 1. Condition (3b) obtains in the usual situations when
the injury rate is not high, even in the exposed group; this condition will be relaxed, below.

In the litigation context, we would like to find the conditional probability that exposure caused
injury to a subject, given that the subject was exposed and injured. Because the exposure variables
are independent of the response variables,

(4) P {Ui = 0|Vi = 1, Xi = 1} = P {Ui = 0|Vi = 1}.

The conditional probability that subjecti’s injury was caused by exposure is then

(5) πi = P {Ui = 0|Vi = 1} = qi/γi = qi/(qi + si).

The definition ofπi if γi = 0 is not material; for convenience, setπi = 0 in this circumstance.
Becauseqi is not identifiable, neither isπi .

Given that subjecti was injured when exposed,πi is the conditional probability that this
subject would not have been injured if left unexposed:πi is the probability of specific causation.
If subjecti brings suit, the court—in this formalism—may wish to decide whetherπi > 1/2; if so,
specific causation is more probable than not. The question cannot be answered from epidemiologic
data, becauseπi is not identifiable. (The connection between evidence and probability might itself
need clarification, but that is a topic for another essay.) Therefore, estimates for the probability of
causation usually turn out to be based on assumptions that are largely untestable.

Our next result gives sharp bounds onq = 1
n

∑n
i=1 qi . Theorem 1 below provides a sharp

bound onπ , the average probability of causation across individuals. As will be seen, the bounds are
usually quite broad: epidemiologic data cannot restrict the probability of causation for individuals
in any meaningful way, or even the average probability across individuals.
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Lemma 1. Fixβ andγ satisfying (3). Supposepi, qi, ri , si are non-negative, sum to 1 for
eachi, and satisfy (1) and (2).

(a) q ≤ γ , with equality iff si = 0 for all i.
(b) q ≥ γ − β, with equality iff ri = 0 for all i.

Proof. Claim (a) is obvious from (2); it is feasible to sets ≡ 0 by (3b). For claim (b),
q = γ − β + r by (1) and (2). The proof is complete.

The next theorem shows that the average probability of causation can be arbitrarily low, no
matter how large the relative risk. It is the difference between risks that matters, not their ratio.

Theorem 1. Fixβ andγ satisfying (3). Supposepi, qi, ri , si are non-negative, sum to 1 for
eachi, and satisfy (1) and (2). Defineπi by (5). Then infπ = γ − β, where the infimum is taken
overn as well as the probabilitiespi, qi, ri , si . Requiring the probabilities to be strictly positive
does not change the infimum.

Proof. To begin with,π ≥ γ − β:

(6) π = 1

n

n∑
i=1

πi ≥ 1

n

n∑
i=1

(qi + si)πi = 1

n

n∑
i=1

qi = q ≥ γ − β,

by Lemma 1b.
The lower bound is attained ifri = 0 for all i, andqi = 0 unlessqi + si = 1, which motivates

the following construction. Suppose there are two types of subjects. With type A subjects, exposure
does not change the probability of injury. Type B subjects, however, are injured only by exposure.
More rigorously, suppose to begin with thatβ andγ are rational; choosen so thatnβ andnγ are
integers. Divide{1, . . . , n} into two disjoint setsA, B with |A| = n(1−γ +β) and|B| = n(γ −β),
where|C| is the cardinality ofC. For i ∈ A, set

pi = 1 − γ

1 − γ + β
,

qi = ri = 0, and

si = β

1 − γ + β
= 1 − pi.

For i ∈ B, setpi = 0, qi = 1, ri = si = 0. Plainly, (1) and (2) hold, whileπ = γ − β.
To make all probabilities positive, modify the construction as follows. Letδ > 0 be small.

For i ∈ A, set

pi = 1 − γ

1 − γ + β
− 1 + γ − β

1 − γ + β
δ,

qi = 1 + 3(γ − β)

1 − γ + β
δ,

ri = δ,
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and

si = β

1 − γ + β
− 1 + γ − β

1 − γ + β
δ.

For i ∈ B, setpi = δ, qi = 1− 3δ, ri = si = δ. For eachi, the probabilities are positive and sum
to 1. We have increasedr by δ, decreaseds by δ, and increasedq by δ. Thus, (1) and (2) still hold,
while π = γ − β + O(δ).

To eliminate the restriction thatβ, γ are rational, fixε > 0. Let1ε be the set of realβ, γ for
which ε ≤ β andβ + ε ≤ γ andβ + γ ≤ 1 − ε. This is a closed triangle. Let1′

ε be the set of
β, γ in 1ε for which the theorem holds:1′

ε is a closed subset of1ε that contains all points with
rational coordinates in1ε . Therefore,1′

ε = 1ε . To complete the proof, letε → 0.

Remark. The sup ofπ is easily seen to be 1: chooses ≡ 0, r ≡ β, q ≡ γ , andp ≡ 1−β −γ ,
which is feasible by (3).

Terminology. The “inf” or “infimum” of a setS of numbers is the smallest element ofS when
that exists; otherwise, infS is the largest numberx with x ≤ s for all s in S. Likewise, the “sup”
or “supremum” ofS is the largest element ofS when that exists; otherwise, supS is the smallest
numberx with x ≥ s for all s in S. For instance, 0 is the inf of the positive real numbers, and the
sup of the negative reals. By special convention, the sup of the positive real numbers is∞, and
the inf of the negative reals is−∞. The “cardinality” of a set is the number of its elements: for
instance, the cardinality of{A, B, C} is 3.

Numerical examples. Supposeβ = .01 andγ = .04, so the relative risk is 4.

(i) If pi = .95, qi = .04, ri = .01, si = 0 thenπi = 1; this is possible for alli, because
p = .95, q = .04, r = .01, s = 0, soβ = r + s = .01 andγ = q + s = .04, as
required.

(ii) If pi = .96, qi = .03, ri = 0, si = .01 thenπi = .75; again, this is possible for alli,
becauseβ andγ have the right values.

(iii) If 97% of the subjects have

pi = 96/97, qi = ri = 0, si = 1/97

and 3% have

pi = 0, qi = 1, ri = si = 0,

thenπi = 0 for the first group andπi = 1 for the second, soπ = .03, which is the lowest
possible. As before,β andγ have the right values.

Notice that examples (ii) and (iii) have the same values forp, q, r, s but radically different values
for π . Proponents of relative risk seem to be thinking of example (ii), but maybe they should also be
thinking of examples (i) and (iii). Generally, epidemiologic studies cannot distinguish situation (ii)
from (i) or (iii): only β andγ are determined.

Parametric models. The framework discussed here includes some familiar parametric models.
For instance, consider the probit specification. Subjecti has a latent variableWi and a vector of
personal characteristicsZi . There is a causal parametera and a vectorb of nuisance parameters.
It is assumed that theW ’s are independent of each other, theZ’s, and theX’s, and have a common
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normal distribution with mean 0 and variance 1. LetUi = 1 if Zib + Wi > 0, otherwiseUi = 0.
Similarly, letVi = 1 if a +Zib +Wi > 0, otherwiseVi = 0. This leads to the probit model, which
substantially restricts the inference problem, especially ifZi is low-dimensional.

Remark. Suppose 0< β, γ < 1 butβ+γ ≥ 1. The lower bounds in Lemma 1 and Theorem 1
go through unchanged. However, the sharp upper bound onq is 1−β, achieved whens = β+γ −1.
Indeed, (1) and (2) entail

1 ≥ q + r + s = β + γ − s

so
s ≥ β + γ − 1

and
q = γ − s ≤ γ − (β + γ − 1) = 1 − β.

The sharp upper bound onπ is 2 − β − γ . We establish a slightly more general inequality in
Theorem 2 below. To make the connection, imagine choosingi = 1, . . . , n at random. The random
variableζ is qi andη is si . We have definedπi = 0 whenqi + si = 0; by a separate little argument,
we may restrictqi + si to be positive. To get the upper bound onπ , takeq = β ands = β + γ − 1;
thena in Theorem 2 isq = 1 − β andb = s = β + γ − 1.

Theorem 2. Fix non-negative real numbersa, b with a + b < 1. Supposeζ, η are random
variables with 0≤ ζ, η ≤ 1, 0< ζ +η ≤ 1, E{ζ } = a, andE{η} = b. ThenE{ζ/(ζ +η)} ≤ 1−b,
and the bound is sharp.

Proof. We consider the upper bound first. Without real loss of generality, supposeζ > 0.
Constructη′ = 0 or 1− ζ with E{η′|ζ } = E{η|ζ }. ThenE{η′} = E{η} = b, andE{ζ/(ζ + η)} ≤
E{ζ/(ζ + η′)}, because the functiony → x/(x + y) is convex on [0, ∞) for eachx > 0. Thus, it
suffices to considerζ, η such thatη = 0 or 1− ζ . If η = 0, thenζ/(ζ + η) = 1; on the other hand,
if η > 0, thenη = 1 − ζ andζ/(ζ + η) = ζ = 1 − η. Now

E{ζ/(ζ + η)} = P {η = 0} + E{ζ |η > 0}P {η > 0}
= P {η = 0} + E{1 − η|η > 0}P {η > 0}
= P {η = 0} + P {η > 0} − E{η|η > 0}P {η > 0}
= 1 − E{η}
= 1 − b,

which completes the proof of the upper bound. Any pair of non-negative random variablesζ, η

with the given expectations andη = 0 or 1− ζ will achieve the bound, as the display shows. For a
specific example, letζ = a and letη be 0 or 1−a with probabilities(1−a−b)/(1−a) andb/(1−a)

respectively. ThenE{ζ } = a, E{η} = b, andE{ζ/(ζ +η)} = (1−a −b)/(1−a)+ab/(1−a) =
1 − b, as required.

PROBABILITY OF SPECIFIC CAUSATION

We now address the question, “what is the chance that exposure caused injury?” Since the
crucial parameters are not identifiable, this question does not have an answer. It may be suggested in
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response that, absent information to the contrary, the plaintiff should be viewed as randomly picked
from the study population. However, random selection can be operationalized in a variety of ways,
and the probability of causation depends quite strongly on the details of the selection mechanism.
That is what we show next, by considering three scenarios for choosing a subject from the study
population.

Scenario 1. Pick a subject at random; condition that the subject is among the exposed and
injured.

Scenario 2. Divide the subjects at random into two groups, exposed and unexposed. Condition
that at least one of the exposed subjects is injured. Pick a subject at random from those who
are exposed and injured.

Scenario 3. Pick a subject at random; condition that the subject is among the exposed and
injured; furthermore, condition that the subject sues.

As indicated earlier, the three scenarios share maintained hypotheses:

(7) m out of then subjects are assigned at random to exposure; the assignment variables{Xi} are
independent of the response variables{Ui, Vi}; the response variables are independent across
subjectsi.

SCENARIO 1

Let ξ be a random integer between 1 andn, indexing our randomly selected subject. In
scenario 1, we are conditioning thatXξ = Vξ = 1, that is, subjectξ is among the exposed and
injured. Recall that RR= γ /β is the relative risk.

Proposition 1. Suppose (1)–(2)–(3) and (7). Then

P {Uξ = 0|Xξ = 1, Vξ = 1} ≥ 1 − 1

RR
.

Proof. By assumption (7),Xk is independent of(Uk, Vk) andP {Xk = 1} = m/n. Now

P {Uξ = 0, Xξ = 1, Vξ = 1} =
n∑

k=1

P {Uk = 0, Xk = 1, Vk = 1, ξ = k}(8)

= 1

n

n∑
k=1

P {Uk = 0, Xk = 1, Vk = 1}

= m

n

1

n

n∑
k=1

P {Uk = 0, Vk = 1}

= m

n
q.

ThusP {Uξ = 0, Xξ = 1, Vξ = 1} ≥ m(γ − β)/n by Lemma 1b. Similarly,

(9) P {Xξ = 1, Vξ = 1} = mγ/n.
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Finally,
γ − β

γ
= 1 − 1

RR
, which completes the proof.

The right side of the inequality in Proposition 1 is called the “etiologic fraction,” or “attributable
risk.” According to Proposition 1, if the relative risk is greater than 2.0, the chance that a randomly
selected subject was injured by exposure—given that the subject was exposed and injured—exceeds
50%. That seems to be the best argument connecting relative risk with the probability of causation.
In scenario 1, the upper bound on the probability of causation is easily seen to be 1, by Lemma 1(a).
Proposition 1 appears in Robins and Greenland (1989ab), with extensions to time-dependent risks.
Also see Beyea and Greenland (1999) and Pearl (1999). Other bounds are discussed by Manski
(1995, chapter 4).

SCENARIO 2

Let R denote the subjects who are exposed and injured. Thus,R ⊂ X, the latter being the set
of subjects who are exposed. By assumption,X is random and|X| = m, where|J | is the number
of elements inJ . Let ρ be uniformly distributed overR whenR is nonempty. Thus,Uρ = 0 is
the event that exposure caused injury, for a personρ randomly selected from the subjects who are
exposed and injured. For the next result, letJ be a typical value of nonemptyR, that is, a subset of
{1, . . . , n} with 1 ≤ |J | ≤ m. The calculation looks somewhat technical, but the point is simple:
scenarios 1 and 2 seem very similar at first reading, but lead to different probabilities of causation.

Proposition 2. Suppose (1)–(2)–(3) and (7); theπi are defined by (5). Then

P {Uρ = 0|R 6= ∅} =
[ ∑

J

( 1

|J |
∑
j∈J

πj

)
P {R = J }

]/[ ∑
J

P {R = J }
]
.

Proof. The key step is

P {Uρ = 0, R = J } =
∑
j∈J

P {ρ = j, Uj = 0, R = J }(10)

= 1

|J |
∑
j∈J

P {Uj = 0, R = J }

= 1

|J |
∑
j∈J

πjP {R = J };

the last equality holds becausej ∈ R = J entailsXj = Vj = 1, and

P {Uj = 0|R = J } = P {Uj = 0|Xj = Vj = 1} = P {Uj = 0|Vj = 1} = πj

by (5) and (7). The balance of the proof is omitted as routine.

To compare scenarios 1 and 2 in a simple case, supposen = 3 andm = 2. As before,
let γi = qi + si , the probability of injury if exposed. The conditional probability of “no injury if
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unexposed” given “exposed and injured” for subjectξ in scenario 1 is(q1+q2+q3)/(γ1+γ2+γ3),
by (8) and (9). This is a weighted average ofπ1, π2, π3, the weights being

γ1, γ2, γ3.

The conditional probability of “no injury if unexposed” given “exposed and injured” for subjectρ

in scenario 2 is also a weighted average ofπ1, π2, π3 but with different weights:

γ1

(
2 − 3

2
γ + 1

2
γ1

)
, γ2

(
2 − 3

2
γ + 1

2
γ2

)
, γ3

(
2 − 3

2
γ + 1

2
γ3

)
.

As before,γ = (γ1 + γ2 + γ3)/3. Of course, the random index is differently defined in the two
scenarios.

The result for scenario 2 follows from (10), because

P {Uρ = 0} =
n∑

j=1

ωjπj

where

(11) ωj =
∑

J :j∈J

1

|J |P {R = J }.

If j = 1, say, thenJ = {1} or {1, 2} or {1, 3}. Now R = {1} iff either

X = {1, 2} andV1 = 1, V2 = 0

or

X = {1, 3} andV1 = 1, V3 = 0.

So P
{
R = {1}} = [γ1(1 − γ2) + γ1(1 − γ3)]/3. Similarly, P

{
R = {1, 2}} = γ1γ2/3 and

P
{
R = {1, 3}} = γ1γ3/3. By (11),

ω1 = γ1

3

(
(1 − γ2) + (1 − γ3) + 1

2
γ2 + 1

2
γ3

)
= γ1

6

(
4 − γ2 − γ3

)
= γ1

3

(
2 − 3

2
γ + 1

2
γ1

)
,

as required.
If n is large and the probabilities not ill-behaved, it must be noted that the difference between

the results in the two scenarios will be small. Indeed, the right hand side of Proposition 2 can be
rewritten as

n∑
i=1

πiγiwi

/ n∑
i=1

γiwi

wherewi = E{1/(1 + Ni)}, the random variableNi being the number of injured persons among
the exposed if subjecti is removed from the study population, andm − 1 of the remainingn − 1
persons are assigned at random to exposure; to make the connection with (11), as will be seen
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below,ωi = mγiwi/n. It will also be seen that thewi are essentially all the same, so the weighted
average for scenario 2 almost reduces to

∑
i πiγi/

∑
i γi = ∑

i qi/
∑

i γi , just as for scenario 1.
In more detail, fixi. Let Ri be the random set of exposed and injured persons in the smaller

study with subjecti removed. SoNi = |Ri |. Let Ji run over the subsets of{1, . . . , n} − {i}
with 0 ≤ |Ji | ≤ m − 1. As before,i ∈ J andR = J entailsXi = Vi = 1, soP {R = J } =
(mγi/n)P {R = J |Xi = Vi = 1}. Then

∑
J :i∈J

1

|J |P {R = J } = m

n
γi

∑
J :i∈J

1

|J |P {R = J |Xi = Vi = 1}

= m

n
γi

∑
Ji

1

1 + |Ji |P {Ri = Ji}

= m

n
γiE

{ 1

1 + Ni

}
;

in the first line, the sum runs over setsJ with i ∈ J ; in the second, overJi . Now, for instance, the
numerator on the right hand side of the equality in Proposition 2 can be written as

n∑
i=1

πi

∑
J :i∈J

1

|J |P {R = J } = m

n

n∑
i=1

πiγiwi,

as required:m/n will cancel in numerator and denominator.
Let N be the number of injured persons among the exposed in the original design, withm at

random out ofn assigned to treatment. Make the additional assumption that

λ = E{N} = mγ is large;
if not, the study would have little statistical power. Writex ≈ y if x/y → 1, andx = O(y) if x/y

stays bounded.

Lemma 2. In (b-c-d), letλ → ∞.
(a) varN ≤ λ.
(b) P {|N − λ| > δλ} = O(ρλ), where 0< ρ < 1 depends onδ > 0.
(c)

∫
1/(1 + N) dP ≈ 1/λ.

(d)
∫
N≥1 1/[N(1 + N)] dP ≈ 1/λ2.

Proof. Claim (a). By straightforward but tedious calculation,

varN = mγ (1 − γ ) − m(m − 1)

n − 1
σ 2, with σ 2 = 1

n

n∑
i=1

(γi − γ )2.

Claim (b) follows from results in Hoeffding (1963); also see Freedman (1973). Explicit bounds are
possible. Claims (c) and (d) are immediate from (b).

Recall thatN is the number of injured persons among the exposed in the original design, with
m at random out ofn assigned to treatment; on the other hand,Ni is the number of injured persons
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among the exposed if subjecti is removed from the study population, andm − 1 of the remaining
n−1 persons are assigned at random to exposure. The next lemma shows that results for scenarios 1
and 2 are close, providedλ is large.

Lemma 3. Supposeλ tends to infinity. Thenwi ≈ 1/λ uniformly in i.

Proof. We can coupleNi andN so thatN − Ni = 0 or 1. Indeed, supposen ≥ m ≥ 1.
ConstructN in the usual way: choosem subjects out ofn for the exposure groupX, and let
N = ∑

j∈X Vj . To constructNi , let ζ = i if i ∈ X; otherwise, letζ be uniformly distributed over
X. Let

Xi = X − {ζ } andNi =
∑

j∈Xi

Vj = N − Vζ .

By symmetry,Xi is a random sample of sizem − 1 from {1, . . . , n} − {i}, which completes the
coupling.

With this coupling,N = 0 entailsNi = 0. Furthermore,

1

1 + N
≤ 1

1 + Ni

≤ 1

1 + N
+ Z

N(1 + N)
,

whereZ = 1 if N ≥ 1, Z = 0 if N = 0, and 0/0 = 0. Lemma 2 completes the proof.

SCENARIO 3

Suppose that an exposed, injured person files suit with probability depending on individual
characteristics, with healthier persons more likely to sue. More specifically, there is an additional
random variableYi for each subject. IfXi = 1 andVi = 1, so thati was exposed and injured, then
Yi = 0 or 1, and{Yi = 1} corresponds to the event thati files suit. There is no need to defineYi if
Xi = 0 orVi = 0. We assume

(12) P {Yi = 1|Xi = Vi = 1} = λ

qi + si
,

whereλ is a positive constant. The following result is easily proved, following the pattern of (8).

Proposition 3. Supposeqi + si > 0 for all i; suppose (1)–(2)–(3) and (7); theπi are defined
by (5); the probability of suit given injury and exposure is (12). Letξ be a random integer between
1 andn. Then

P {Uξ = 0|Xξ = Vξ = Yξ = 1} = π.

Proposition 3 brings the average probability of causation back into play. Individual differences
in the propensity to sue and the chance of injury can make the probability of specific causation
arbitrarily small, even for arbitrarily large values of the relative risk. That is the consequence of
Proposition 3 and Theorem 1. Scenarios 1 and 3 give very different answers for the probability of
causation, illustrating yet again one of the basic weaknesses in the principle of insufficient reason.
(The principle of insufficient reason holds that ignorance should be expressed by uniformity, and
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one standard objection is that uniformity can usually be expressed in many different ways; other—
perhaps more basic—objections will not be discussed here.)

DISCUSSION

The model seems useful in that it provides a clear definition for the probability of causation
πi , and formalizes the role of individual differences: the response probabilitiespi, qi, ri , si depend
on the individuali. Limitations of relative risk in assessing evidence of specific causation then
become apparent. (i) Epidemiologic data cannot restrict the probability of causation to any useful
degree: the key parameters are not identifiable, and even the average probability of causation is
subject to wide uncertainties, so estimates generally depend on assumptions that are not testable.
(ii) Even if we grant that plaintiff in a law case should be treated as a randomly chosen member
of a study population, results depend strongly on the details: exactly how is random choice to be
implemented?

Of course, reality is substantially more complicated than the model. Assignment to exposure
is likely to correlate with probable responses (the problem of confounding), reported outcomes are
likely to differ from true outcomes, and so forth. Moreover, the probability of a counterfactual
hypothetical does not fit with any ease into the classical frequentist architecture of statistics. The
complexities are unlikely to strengthen the case for relative risk in assessing specific causation.

APPENDIX 2

BACKGROUND RATES AND TABLE 1

Langmuir et al. (1984) classify cases as types A–E: types A–D refer to extent of paralysis,
from most extensive to least; type E had insufficient data. “Extensive” cases in the first row of
Table 1 are types A and B. Following Langmuir et al., background rates are truncated below at 0.14
for extensive cases and 0.21 for cases of types A–D; from data in the paper, we add 0.03 for the
background rate of type E cases, giving a total background rate of 0.24 per million person-weeks
of exposure; compare Tr. 17.44. In the second column of Table 1, we get 7.40 for the expected
number of GBS cases of all types, compared to the 7.45 reported in note 10 of the opinion. The
procedure for computing expected numbers is discussed next.

COMPUTING THE RELATIVE RISK OF GBS

Observation periods are indexed byk = 1, . . . , 17. To get started, assume each period is a
week long. The following data are recorded in Langmuir et al. (1984):

(a) Nk, the number of persons vaccinated in periodk;
(b) mk, the number of new cases of GBS among unvaccinated persons in periodk;
(c) o`, the number of new cases of GBS among vaccinated persons in the`th week after

vaccination.

The GBS cases are broken down by type. Given the total population at the beginning of the
vaccination campaign, Langmuir et al. estimateMk, the number of unvaccinated persons in period
k. (Attention is confined to persons 18 years or older.)
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We assume that subjects vaccinated in thekth period were vaccinated in the middle of that
period; unvaccinated subjects who contracted GBS in thekth period contracted GBS in the middle
of that period; vaccinated subjects who contracted GBS in the`th week after vaccination did so
in the middle of that week. For example, subjects vaccinated in periodk who contracted GBS in
the`th week after vaccination are considered to have been vaccinated at weekk − 0.5 and to have
contracted GBS̀ − 0.5 weeks later, at the end of thek + ` − 1st period.

Suppose vaccination did not change the risk of GBS. On this null hypothesis, the expected
number of new GBS cases among the vaccinated in the`th week after vaccination can be computed
as a sum, with contributions from the number vaccinated in each period, times the background rate
among the unvaccinated̀weeks later. We estimate the background rate at the end of thekth period
by averaging rates in thekth andk + 1st periods:

(13) bk = 1

2

( mk

Mk

+ mk+1

Mk+1

)
.

Let e` be the expected number of new GBS cases among vaccinated persons in the`th week after
vaccination, computed as follows:

(14) e` =
17−`∑
k=1

Nkbk+`.

There are no vaccinations after the moratorium in the 11th period, soN12 = · · · = N17 = 0. And
` = 1, . . . , 16: one period gets used up in averaging the background rates. Equation (14) stratifies
on time of vaccination: there is one term in the sum for each vaccination cohort, and the expected
number of GBS cases among the vaccinated in the`th week after vaccination is the sum of the
contributions from each cohort. The relative risk in the`th period after vaccination is

(15) r` = o`/e`.

Generally, the periods are weeks; period 1 is 10 days long and period 17 is 8 days. Langmuir et
al. adjust for longer periods by converting counts to “person-weeks” at risk. Persons vaccinated in
period 1 should be treated as having been vaccinated at day 5, so our use of half-periods is slightly
inconsistent; the axis labels in Figure 1—for background rates—must be charitably interpreted. In
Table 1, the expected numbers aree11+· · ·+e16. Background rates are truncated below in column 1
or left alone (column 2). And in the last line of Table 1, 8 cases are added too11 + · · · + o16 to
implement the effect of sanctions. The ratio in (15) is more properly called a “rate ratio,” as it is
the ratio of two incidence rates.

REPORTING OF VACCINATED GBS CASES

To examine under- or over-reporting of vaccinated GBS cases, we smoothed the relative risk
curve in Figure 2b by rounding in periods 1–6; we then allowed the curve to decay linearly at the
rate of 0.1 per period, so the relative risk becomes 1.0 at period 17. In periods 7–14, the smoothed
curve is generally higher than the real one; in periods 15–16, there a few late-onset cases which
bring up the real curve. Given the smooth curve, which is based largely on pre-moratorium data,
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we can project the number of GBS cases among the vaccinated by calendar period rather than week
since vaccination. In period 10, we project 61 cases and observe 71; in period 11, we project 51 and
observe 61. On the other hand, in periods 12–17, we project 138 and observe 111. (Observations
are in Table 5 of Langmuir et al.) The pattern is suggestive, but its statistical significance seems
marginal.

Our projections are computed on the following basis. Lets` be the smoothed relative risk for
GBS in the`th week after vaccination; letbk be the background rate at the end of periodk, as in
(13); let

(16) pk =
k−1∑
j=1

Njsk−j bk−1.

Thenpk is the projected number of GBS cases among the vaccinated, with onsets at the end of
calendar periodj − 0.5 + k − j − 0.5 = k − 1. The projected number of GBS cases with onsets
in calendar periodk is

(17)
1

2
(pk + pk+1).

THE EFFECT OF PRIOR ILLNESS

We proceed informally. LetI be the event of prior illness,V the event of vaccination, andG
the event of GBS. WriteFc for the complement ofF . Let

P(I |GV ) = α1, P (I |GV c) = α2, P (G|V ) = λP (G|V c).

In this formalism,λ is the analog of the relative risk. Goldfield and Mantel seemed to be making
the following argument:

P(G|IV ) =P(IGV )

P (IV )
= α1P(GV )

P (IV )
,

P (G|IV c) =P(IGV c)

P (IV c)
= α2P(GV c)

P (IV c)
.

Therefore,

P(G|IV )

P (G|IV c)
= α1

α2

P(GV )

P (IV )

P (IV c)

P (GV c)
= α1

α2

P(G|V )

P (I |V )

P (I |V c)

P (G|V c)
= α1

α2
λ

P (I |V c)

P (I |V )
.

That is why the relative risk should be adjusted by the factorα1/α2.
In our first application of this argument,α1 = .33 andα2 = .62; there is a tacit assumption

thatP(I |V c)
.= P(I |V ). The objection raised by Goldfield and Mantel is thatP(I |V c) > P (I |V ):

vaccination is contra-indicated right after illness. Of course, the meaning ofI has shifted slightly
during the argument, from illness just prior to the onset of GBS to illness just prior to vaccination, or
illness in general. Moreover, if persons susceptible to illness are more likely to seek vaccination—as
seems plausible—the selection effect may go the other way.
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influenza vaccination in Michigan, 1976–1977.American Journal of Epidemiology119: 880–9.

Freedman, D. 1973. Another note on the Borel-Cantelli lemma and the strong law with the Poisson
approximation as a byproduct.Annals of Probability1: 910–25.

Freedman, D. 1999. From association to causation: some remarks on the history of statistics.
Technical report 537, Department of Statistics, UC Berkeley. To appear inStatistical Science.

Hahn, A. F. 1998. Guillain-Barré syndrome.Lancet352: 635–41.
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