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A bstract. Iterated random functions are used to draw pictures or simulate large
Ising models, among other applications. They offer a method for studying the steady
state distribution of a Markov chain, and give useful bounds on rates of convergence
in a variety of examples. The present paper surveys the field and presents some new
examples. There is a simple unifying idea: the iterates of random Lipschitz functions
converge if the functions are contracting on the average.

1. Introduction. The applied probability literature is nowadays quite daunting.
Even relatively simple topics, like Markov chains, have generated enormous com-
plexity. This paper describes a simple idea that helps to unify many arguments in
Markov chains, simulation algorithms, control theory, queuing, and other branches
of applied probability. The idea is that Markov chains can be constructed by iter-
ating random functions on the state space S. More specifically, there is a family
{fθ : θ ∈ Θ} of functions that map S into itself, and a probability distribution µ
on Θ. If the chain is at x ∈ S, it moves by choosing θ at random from µ, and going
to fθ(x). For now, µ does not depend on x.

The process can be written as X0 = x0, X1 = fθ1(x0), X2 = (fθ2 ◦ fθ1)(x0), . . . ,
with ◦ for composition of functions. Inductively,

(1.1) Xn+1 = fθn+1(Xn),

where θ1, θ2, . . . are independent draws from µ. The Markov property is clear:
given the present position of the chain, the conditional distribution of the future
does not depend on the past.
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2 PERSI DIACONIS AND DAVID FREEDMAN

We are interested in situations where there is a stationary probability distribution
π on S with

P{Xn ∈ A} → π(A) as n→ ∞.

For example, suppose S is the real line R, and there are just two functions,

f+(x) = ax+ 1 and f−(x) = ax− 1,

where a is given and 0 < a < 1. In present notation, Θ = {+,−}; suppose
µ(+) = µ(−) = 1/2. The process moves linearly,

(1.2) Xn+1 = aXn + ξn+1,

where ξn = ±1 with probability 1/2. The stationary distribution has an explicit
representation, as the law of

(1.3) Y∞ = ξ1 + aξ2 + a2ξ3 + · · · .

The random series on the right converges to a finite limit because 0 < a < 1.
Plainly, the distribution of Y∞ is unchanged if Y∞ is multiplied by a and then a
new ξ is added: that is stationarity. The series representation (1.3) can therefore
be used to study the stationary distribution; however, many mysteries remain, even
for this simple case (Section 2.5).

There are a wealth of examples based on affine maps in d-dimensional Euclidean
space. The basic chain is

Xn+1 = An+1Xn +Bn+1,

where the (An, Bn) are independent and identically distributed; An is a d × d
matrix and Bn is d× 1 vector. Section 2 surveys this area. Section 2.3 presents an
interesting application for d = 2: with an appropriately chosen finite distribution
for (An, Bn), the Markov chain can be used to draw pictures of fractal objects like
ferns, clouds, or fire. Section 3 describes finite state spaces where the backward
iterations can be explicitly tested to see if they have converged. The lead example
is the “coupling from the past” algorithm of Propp and Wilson (1996, 1998), which
allows simulation for previously intractable distributions, such as the Ising model
on a large grid.

Section 4 gives examples from queuing theory. Section 5 introduces some rigor,
and explains a unifying theme. Suppose that S is a complete separable metric
space. Write ρ for the metric. Suppose that each fθ is Lipschitz: for some Kθ and
all x, y ∈ S,

ρ[fθ(x), fθ(y)] ≤ Kθρ(x, y).

For x0 ∈ S, define the “forward iteration” starting from X0 = x0 by

Xn+1 = fθn+1(Xn) = (fθn+1 ◦ · · · ◦ fθ2 ◦ fθ1)(x0),
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θ1, θ2, . . . being independent draws from a probability µ on Θ; this is just a rewrite
of equation (1.1). Define the “backward iteration” as

(1.4) Yn+1 = (fθ1 ◦ fθ2 ◦ · · · ◦ fθn+1)(x0).

Of course, Yn has the same distribution as Xn for each n. However, the forward
process {Xn : n = 0, 1, 2, . . . } has very different behavior from the backward process
{Yn : n = 0, 1, 2, . . . }: the forward process moves ergodically through S, while the
backward process converges to a limit. (Naturally, there are assumptions.) The
next theorem, proved in Section 5.2, shows that if fθ is contracting on average,
then {Xn} has a unique stationary distribution π. The “induced Markov chain”
in the theorem is the forward process Xn. The kernel Pn(x, dy) is the law of Xn

given that X0 = x, and the Prokhorov metric is used for the distance between two
probabilities on S. This metric will be defined in Section 5.1; it is denoted “ρ”, like
the metric on S. (Section 5.1 also takes care of the measure-theoretic details.)

Theorem 1. Let (S, ρ) be a complete separable metric space. Let {fθ : θ ∈ Θ} be
a family of Lipschitz functions on S, and let µ be a probability distribution on Θ.
Suppose that

∫
Kθ µ(dθ) < ∞,

∫
ρ[fθ(x0), x0]µ(dθ) < ∞ for some x0 ∈ S, and∫

logKθ µ(dθ) < 0.

(i) The induced Markov chain has a unique stationary distribution π.
(ii) ρ[Pn(x, ·), π] ≤ Axr

n for constants Ax and r with 0 < Ax <∞ and
0 < r < 1; this bound holds for all times n and all starting states x.

(iii) The constant r does not depend on n or x; the constant Ax does not depend
on n, and Ax < a+ bρ(x, x0) where 0 < a, b <∞.

The condition that
∫

logKθ µ(dθ) < 0 makes Kθ < 1 for typical θ, and formalizes
the notion of “contracting on average”. The key step in proving Theorem 1 is
proving convergence of the backward iterations (1.4).

Proposition 1. Under the regularity conditions of Theorem 1, the backward iter-
ations converge almost surely to a limit, at an exponential rate. The limit has the
unique stationary distribution π.

(A sequence of random variables Xn converges “almost surely” if the exceptional
set—where Xn fails to converge—has probability 0.)

The queuing-theory examples in Section 4 are interesting for several reasons: in
particular, the backward iterations converge although the functions are not con-
tracting on average. Section 6 has some examples that illustrate the theorem, and
show why the regularity conditions are needed. Section 7 extends the theory to
cover Dirichlet random measures, the states of the Markov chain being probabil-
ities on some underlying space (like the real line). Closed-form expressions can
sometimes be given for the distribution of the mean of a random pick from the
Dirichlet; Section 7.3 has examples.

Previous surveys on iterated random functions include Chamayou and Letac
(1991) as well as Letac (1986). The texts by Baccelli and Brémaud (1994), Brandt
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et al. (1990), and Duflo (1997) may all be seen as developments of the random itera-
tions idea; Meyn and Tweedie (1993) frequently use random iterations to illustrate
the general theory.

2. Affine functions. This paper got started when we were trying to understand a
simple Markov chain on the unit interval, described in Section 2.1. Section 2.2 dis-
cusses some general theory for recursions in R

d of the formXn+1 = An+1Xn+Bn+1,
where the {An} are random matrices and {Bn} are random vectors. (In strict
mathematical terminology, the function X → AX + B is “affine” rather than lin-
ear when B 6= 0.) Under suitable regularity conditions, these matrix recursions are
shown to have unique stationary distributions. With affine functions, the condi-
tions are virtually necessary and sufficient. The theory is applied to draw fractal
ferns (among other objects) in Section 2.3. Moments and tail probabilities of the
stationary distributions are discussed in Section 2.4. Sections 2.5–6 are about the
“fine structure”: how smooth are the stationary distributions?

2.1. Motivating example. A simple example motivated our study—a Markov
chain whose state space S = (0, 1) is the open unit interval. If the chain is at x, it
picks one of the two intervals (0, x) or (x, 1) with equal probability 1/2, and then
moves to a random y in the chosen interval. The transition density is

(2.1) k(x, y) =
1
2

1
x

1(0,x)(y) +
1
2

1
1 − x

1(x,1)(y).

As usual, 1A(y) = 1 or 0, according as y ∈ A or y /∈ A. The first term in the sum
corresponds to a leftward move from x; the second, to a rightward move.

Did this chain have a stationary distribution? If so, could the distribution be
identified? Those were our two basic questions. After some initial floundering, we
saw that the chain could be represented as the iteration of random functions

φu(x) = ux, ψu(x) = x+ u(1 − x),

with u chosen uniformly on (0, 1) and φ, ψ chosen with probability 1/2 each.
Theorem 1 shows there is a unique stationary distribution. We identified this

distribution by guesswork, but there is a systematic method. Begin by assuming
that the stationary distribution has a density f(x). From (2.1),

(2.2) f(y) =
∫ 1

0

k(x, y)f(x) dx =
1
2

∫ 1

y

f(x)
x

dx+
1
2

∫ y

0

f(x)
1 − x

dx.

Differentiation gives

f ′(y) = −1
2
f(y)
y

+
1
2
f(y)
1 − y

or
f ′(y)
f(y)

=
1
2
(− 1

y
+

1
1 − y

)
,

so

(2.3) f(y) =
1

π
√
y(1 − y)

.
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This argument is heuristic, but it is easy to check that the “arcsine density” dis-
played in (2.3) satisfies equation (2.2)—and must therefore be stationary. The
constant π = 3.14 . . .makes

∫
f(y) dy = 1; the name comes about because

∫ z

0

f(y) dy =
2
π

arcsin
√
z.

Figure 1 illustrates the difference between the backward process (left hand panel,
convergence) and the forward process (right hand panel, ergodic behavior). Position
at time n is plotted against n = 0, . . . , 100, with linear interpolation. Both processes
start from x0 = 1/3 and use the same random functions to move. The order in
which the functions are composed is the only difference. In the left hand panel, the
limit 0.236 . . . is random because it depends on the functions being iterated; but
the limit does not depend on the starting point x0.

Figure 1. The left hand panel shows convergence of the backward process;
the right hand panel shows ergodic behavior by the forward process.
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Remarks. Suppose 0 < p < 1 and q = 1 − p. The same argument shows that
choosing (0, x) with probability p and (x, 1) with probability q leads to a Beta(q, p)
stationary distribution, with density Cxq−1(1 − x)p−1 on (0, 1). The normalizing
constant is C = Γ(q + p)/[Γ(q)Γ(p)], where Γ is Euler’s gamma function. In our
example, q + p = 1, so Γ(q + p) = Γ(1) = 1.

Although we will not pursue this idea, the probability p of moving to (0, x) from
x can even be allowed to depend on x. For example if p(x) = x, the stationary
distribution is uniform. However, Theorem 1 is not in force when p(x) depends on
x. For instance, if p(x) = 1−x, the process converges to 0 or 1 almost surely: if the
starting state is x, the chance of converging to 1 is x. (The process is a martingale,
and convergence follows from standard theorems.) Theorem 1 can be extended to
cover µ that depend on x, but further conditions are needed.
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Many of the constructions in this paper involve the Beta distribution. Figure 2
plots some of the densities. The stationary density (2.3) in our lead example is
Beta( 1

2 ,
1
2 )—the bowl-shaped curve in the right hand panel; we return to this ex-

ample in Section 6.3.

Figure 2. The Beta distribution. The left hand panel plots the Beta(1,3)-
density (heavy line) and the Beta(5,2)-density (light line). The right hand
panel plots the Beta( 1

2 ,
1
2 )-density (heavy line) and the Beta(10,10) density

(light line).
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2.2. Matrix recursions. Matrix recursions have been used in a host of modeling
efforts; see, for instance, Priestley (1988). To define things in R

d, let X0 = x0 ∈ R
d,

and

(2.4) Xn+1 = An+1Xn +Bn+1 for n = 0, 1, 2, . . . ,

with (An, Bn) being i.i.d.; An is a d × d matrix and Bn is a d × 1 vector: i.i.d. is
the usual short-hand for “independent and identically distributed”. Autoregressive
processes like (2.4) will be discussed again in Section 6.1. Under suitable regularity
conditions, the stationary distribution can be represented as the law of

(2.5) B1 +A1B2 +A1A2B3 +A1A2A3B4 + · · · .
Indeed, suppose this sum converges a.s. to a finite limit. The distribution is un-
changed if a fresh (A,B) pair is chosen, the sum is multiplied by A, and then B is
added: that is stationarity.

The notation may be a bit perplexing: An, Bn, A,B are all random rather than
deterministic, and “a.s.” is short-hand for “almost surely”: the sum converges ex-
cept for an event of probability 0. Conditions for convergence have been sharpened
over the years; roughly, An must be a contraction “on average”. Following work
by Vervaat (1979) and Brandt (1986), definitive results were achieved by Bougerol
and Picard (1992). To state the result, let ‖ ‖ be a matrix norm on R

d. Suppose
that (An, Bn) are i.i.d. for n = 1, 2, . . . , with

(2.6) E{log+ ‖An‖} <∞, E{log+ ‖Bn‖} <∞,

where x+ = x when x > 0 and x+ = 0 when x < 0. A subspace L of R
d is

“invariant” if P{X1 ∈ L|X0 = x} = 1 for all x ∈ L.
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Theorem 2.1. Assume (2.6) and define the Markov chain Xn by (2.4). Suppose
that the only invariant subspace of R

d is R
d itself. The infinite random series

(2.7)
∞∑

j=1

( j−1∏
i=1

Ai

)
Bj

converges a.s. to a finite limit if and only if

(2.8) inf
n > 0

1
n
E{log ‖A1 · · ·An‖} < 0.

If (2.8) holds, the distribution of (2.7) is the unique invariant distribution for the
Markov chain Xn.

The moment assumptions in Theorem 2.1 cannot be essentially weakened; see
Goldie and Maller (1997). Of course, the Markov chain (2.4) can be defined when
An is expanding rather than contracting, but different normings are required for
convergence. Anderson (1959) and Rachev-Samorodnitzky (1995) prove central
limit theorems in the non-contractive case. On a lighter note, Embree and Tre-
fethen (1998) use this machinery with d = 2 to study Fibonacci sequences with
random signs and a damping parameter β, so Xn+1 = Xn ± βXn−1.

2.3. Fractal images. This section shows how iterated random affine maps can
be used to draw pictures in two dimensions. Fix (a1, b1), . . . , (ak, bk). Each ai is
a 2 × 2 contraction, while bi is a 2 × 1 vector: fi(x) = aix + bi is the associated
affine map of the plane into itself, which is Lipschitz because ai is a contraction.
Fix positive weights w1, . . . , wk, with w1 + · · · + wk = 1. These ingredients specify
a Markov chain {Xn} moving through R

2. Starting at x, the chain proceeds by
choosing i at random with probability wi and moving to fi(x).

Remarkably enough, given a target image, one can often solve for {ai, bi, wi}
so that the collection of points {X1, . . . , XN} forms a reasonable likeness of the
target, at least with high probability. The technique is based on work of Dubins
and Freedman (1966), Hutchinson (1981), and Diaconis and Shahshahani (1986). It
has been developed further by Barnsley and Elton (1988) as well as Barnsley (1993),
and is now widely used.

We outline the procedure. Theorem 1 applies, so there is a unique stationary
distribution, call it π. Let δx stand for point mass at x: that is, δx(A) = 1 if x ∈ A
and δx(A) = 0 if x /∈ A. According to standard theorems, the empirical distribution
of {X1, . . . , XN} converges to π:

1
N

N∑
i=1

δXi → π.

Convergence is almost sure, in the weak-star topology. For any bounded continuous
function f on R

2,

lim
N→∞

1
N

N∑
i=1

f(Xi) =
∫

R2
f dπ with probability 1.
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See, for instance, Breiman (1960). In short, the pattern generated by the points
{X1, . . . , XN} looks like π when N is large.

The parameters {ai, bi, wi} must be chosen so that π represents the target image.
Here is one of the early algorithms. Suppose a picture is given as black and white
points on anm×m grid. Corresponding to this picture there is a discrete probability
measure ν on the plane, which assigns mass 1/b to each black point and mass 0 to
each white point, b being the number of black points. We want the stationary π
to approximate ν. Stationarity implies that for any bounded continuous function
f on R

2,

(2.9)
k∑

i=1

wi

∫
R2
f(aix+ bi)π(dx) =

∫
R2
f(x)π(dx).

The next idea is to replace
∫
fdπ on the right side of (2.9) by

∫
fdν:

(2.10)
k∑

i=1

wi

∫
R2
f(aix+ bi)π(dx) .=

∫
R2
f(x) ν(dx).

For appropriate f ’s, we get a system of equations that can be solved—at least
approximately—for {ai, bi, wi}. For instance, take f to be linear or a low-order
polynomial (and ignore complications due to unboundedness). In (2.10), the un-
knowns are the ai, bi, wi. The equations are linear in the w’s but nonlinear in the
other unknowns. Exact solutions cannot be expected in general, because ν will be
discrete while π will be continuous. Still, the program is carried out by Diaconis
and Shahshahani (1986) and by many later authors; see Barnsley (1993) for a recent
bibliography. Also see Fisher (1994).

Figure 3. A fern drawn by a Markov chain

Figure 3 shows a picture of a fern. The parameters were suggested by Crown-
over (1995): N = 10000, k = 2, w1 = .2993, w2 = .7007, and

a1 =
(

+.4000 −.3733
+.0600 +.6000

)
, b1 =

(
+.3533
+.0000

)
,
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a2 =
(−.8000 −.1867

+.1371 +.8000

)
, b2 =

(
+1.1000
+0.1000

)
.

2.4. Tail behavior. We turn now to the tail behavior of the stationary dis-
tribution. Some information can be gleaned from the moments, and invariance
gives a recursion. We discuss (a bit informally) the case d = 1. Let (An, Bn) be
i.i.d. pairs of real-valued random variables. Define the Markov chain {Xn} by (2.4),
and suppose the chain starts from its stationary distribution π. Write L(X) for
the law of X. Then L(X1) = L(A1X0 + B1), which implies E(X0) = E(X1) =
E(A1)E(X0) + E(B1); so E(X0) = E(B1)/[1 − E(A1)]. Similar expressions can
be derived for higher moments and d > 1. See, for instance, Vervaat (1979) or
Diaconis and Shashahani (1986); also see (6.4) below.

Moments may not exist, or may not capture relevant aspects of tail behavior.
Under suitable regularity conditions, Kesten (1973) obtained estimates for the tail
probabilities of the stationary π. For instance, when d = 1, he shows there is a
positive real number κ such that π(t,∞) ≈ C+/t

κ and π(−∞,−t) ≈ C−/tκ as
t → ∞. Goldie (1991) gives a different proof of Kesten’s theorem and computes
C±; also see Babillot et al. (1997). Of course, there is still more to understand.
For example, if An is uniform on [0, 1], Zn is independent Cauchy, and Bn =
(1−An)Zn, the stationary distribution for {Xn} is Cauchy. Thus, the conclusions
of Kesten’s theorem hold—although the assumptions do not. Section 7.3 contains
other examples of this sort. It would be nice to have a theory that handles tail
behavior in such examples.

2.5. Fine Structure. Even with an explicit representation for the stationary
distribution, there are still many questions. Consider the chain described by equa-
tion (1.2). As in (1.3), the stationary distribution is the law of

Y∞ = ξ1 + aξ2 + a2ξ3 + · · · ,
the ξn being i.i.d. with P (ξn = ±1) = 1/2. We may ask about the “type” of π:
is this measure discrete, continuous but singular, or absolutely continuous? (The
terminology is reviewed below.) By the “law of pure types”, mixtures cannot arise;
and discrete measures can be ruled out too. See Jessen and Wintner (1935).

If a = 1/2, then π is just Lebesgue measure on [−2, 2]. If 0 < a < 1/2, then π is
singular. Indeed,

ξ1 + aξ2 + · · · + aN−1ξN

takes on at most 2N distinct values. For the remainder term,

0 <
∞∑

j=N

ajξj+1 <
aN

1 − a
.

Hence, π concentrates on a set of of intervals of total length 2NaN/(1 − a), which
tends to 0 as N gets large—because a < 1/2.

It is natural to guess that π is absolutely continuous for a > 1/2. However,
this is false. For example, if a = (

√
5 − 1)/2 = .618 . . . , then π is singular: see
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Erdös (1939, 1940). Which values of a give singular π’s? This problem has been
actively studied for 50 years, with no end in sight. See Garsia (1962) for a review
of the classical work. There was a real breakthrough when Solomyak (1995) proved
that π is absolutely continuous for almost all values of a in [1/2, 1]; also see Peres
and Solomyak (1996, 1998).

2.6. Terminology. A “discrete” probability assigns measure 1 to a countable set
of points, while a “continuous” probability assigns measure 0 to every point. A “sin-
gular” probability assigns measure 1 to a set of Lebesgue measure 0. By contrast,
an “absolutely continuous” probability has a density with respect to Lebesgue mea-
sure. Textbook examples like the Binomial and Poisson distributions are discrete;
the Normal, Cauchy, and Beta distributions are absolutely continuous. Ordering
the rationals in [0, 1] and putting mass 1/2n on the nth rational gives you an in-
teresting discrete probability. The uniform distribution on the Cantor set in [0, 1]
is continuous but singular.

3. The Propp-Wilson Algorithm. This remarkable algorithm does exact Monte
Carlo sampling from distributions on huge finite state spaces. Let S be the state
space and let π be a probability on S. The objective is to make a random pick
from π, on the computer. When S is large and π is complicated, the project can
be quite difficult and the backward iteration is a valuable tool.

To begin with, there is a family of functions {fθ : θ ∈ Θ} from S to S and a
probability µ on Θ, so that π is the stationary distribution of the forward chain
on S. In other words, for each t ∈ S,

(3.1)
∑
s∈S

π(s)µ{θ : fθ(s) = t} = π(t).

These functions will be constructed below. In some cases, the Metropolis algorithm
is useful (Metropolis et al., 1953). In the present case, as will be seen, the Gibbs
sampler is the construction to use. The probability µ on Θ will be called the “move
measure”: the chain moves by picking θ from µ and going from s ∈ S to fθ(s). If
the construction is successful, the backward iterations

(3.2) (fθ1 ◦ fθ2 ◦ · · · ◦ fθn)(s)

will converge almost surely to a limiting random variable whose distribution is π. (A
sequence in S converges if it is eventually constant, and θ1, θ2, . . . are independent
draws from the move measure µ on Θ.)

Convergence is easier to check if there is monotonicity. Suppose S is a partially
ordered set; write s < t if s precedes t. Suppose too there is a smallest element 0
and a largest element 1. With partial orderings, the existence of a largest element
is an additional assumption, even for a finite set; likewise for smallest. Finally,
suppose that each fθ is monotone: s < t implies fθ(s) ≤ fθ(t). Now convergence is
forced if, for some n,

(3.3) (fθ1 ◦ fθ2 ◦ · · · ◦ fθn)(0) = (fθ1 ◦ fθ2 ◦ · · · ◦ fθn)(1).
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This takes a moment to verify. Among other things, convergence would not be
forced if we had equality on the forward iteration.

Propp and Wilson (1996, 1998) turn these observations into a practical algorithm
for choosing a point at random from π. They make a sequence θ1, θ2, θ3, . . . of in-
dependent picks from the move measure µ in (3.1), and compute the backward
iterations (3.2). At each stage, they check to see if (3.3) holds. If so, the common
value—of the left side and the right side—is a pick from the exact stationary distri-
bution π. The algorithm generates a random element of S whose distribution is the
sought-for π itself, rather than an approximation to π; there is an explicit test for
convergence; and in many situations, convergence takes place quite rapidly. These
three features are what make the algorithm so remarkable.

By way of example, take the Ising model on an n × n grid; a reference is
Kinderman and Snell (1980). The state space S consists of all functions s from
{1, . . . , n} × {1, . . . , n} to {−1,+1}. The standard (barbaric) notation has S =
{±1}[n]×[n]. In the partial order, s < t iff sij ≤ tij for all positions (i, j) in the grid,
and s 6= t. A boundary condition may be imposed, for instance, that s = +1 on the
perimeter of the grid. The minimal state is −1 at all the unconstrained positions;
the maximal state is +1 at all the unconstrained positions.

The probability distribution to be simulated is

(3.4) π(s) = Cβe
βH(s).

Here, β is a positive real number and Cβ is a normalizing constant—which is quite
hard to compute if n is large. In the exponent, H(s) counts sign changes. Alge-
braically,

(3.5) H(s) =
∑
ij,k`

sijsk`.

The indices i, j, k, ` run from 1 to n, and the position (i, j) must be adjacent to
(k, `): for instance, the position (2, 2) is adjacent to (2, 3) but not to (3, 3).

A “single site heat bath”(a specialized version of the Gibbs sampler) is used to
construct a chain with limiting distribution π. From state s, the chain moves by
picking a site (i, j) on the grid

{1, . . . , n} × {1, . . . , n}
and re-randomizing the value at (i, j). More specifically, let sij+ agree with s at
all sites other than (i, j); let sij+ = +1 at (i, j). Likewise, sij− agrees with s at all
sites other than (i, j), but sij− = −1 at (i, j). Let

π(+) =
exp[βH(sij+)]

exp[βH(sij+)] + exp[βH(sij−)]

and π(−) = 1 − π(+). The chance of moving to sij+ from s is π(+); the chance of
moving to sij− is π(−). In other words, the chance of re-randomizing to +1 at (i, j)
is π(+). This chance is computable because the ugly constant Cβ has canceled out.
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In principle, π(+) and π(−) depend on the site (i, j) and on values of s at sites
other than (i, j); we write π(± | i j s) when this matters. Of course, π(+) is just the
conditional π-probability that sij = +, given the values of s at all other sites. As
it turns out, only the sites adjacent to (i, j) affect π(+), because the values of s at
more remote sites just cancel:

(3.6) π(+ | i j s) =
exp

(
β
∑

k` sk`

)
exp

(
β
∑

k` sk`

)
+ exp

(− β
∑

k` sk`

) .
The sum is over the sites (k, `) adjacent to (i, j). Equation (3.6) is in essence the
“Markov random field” property for the Ising model.

The single site heat bath can be cycled through sites (i, j) on the grid, or the
site can be chosen at random. We follow the latter course, although the former is
computationally more efficient. The algorithm is implemented using the backward
iteration. The random functions are fθ(s). Here, s ∈ S is a state in the Ising model
while θ = (i, j, u) consists of a position (i, j) in the grid and a real number u with
0 < u < 1. The position is randomly chosen in the grid, and u is random over
(0, 1). The function f is defined as follows: s′ = fiju(s) agrees with s except at
position (i, j). There, s′ij = +1 if u < π(+), and s′ij = −1 otherwise.

Two things must be verified:
(i) π is stationary, and
(ii) fθ is monotone.

Stationarity is obvious. For monotonicity, fix a site (i, j), two states s, t with s ≤ t,
and u ∈ (0, 1). Clearly, fiju(s) ≤ fiju(t) except perhaps at (i, j). At this special
site, we must prove

(3.7) π(+ | i j s) ≤ π(+ | i j t).

But the two conditional probabilities in (3.7) can be evaluated by (3.6), and

∑
k`

sk` ≤
∑
k`

tk`.

The condition β > 0 makes fθ monotone increasing rather than monotone decreas-
ing. The backward iteration completes after a finite, random number of steps,
essentially by Theorem 1. Completion can be tested explicitly using (3.3). And the
algorithm makes a random pick from π itself, rather than an approximation to π.

There are many variations on the Propp-Wilson algorithm, including some for
point processes: see Mo/ller (1998) or Häggström et al. (1998). A novel alternative
is proposed by Fill (1998), who includes a survey of recent literature and a warning
about biases due to aborted runs. There are no general bounds on the time to
“coupling”, which occurs when (3.3) is satisfied: chains starting from 0 and from 1,
but using the same θ’s, would have to agree from that time onwards. Experiments
show that coupling generally takes place quite rapidly for the Ising model with β
below a critical value, but quite slowly for larger β’s. Propp and Wilson (1996)
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have algorithms that work reasonably well for all values of β—even above the
critical value—and for grids up to size 2100 × 2100. For more discussion, and a
comparison of the Metropolis algorithm with the Gibbs sampler, see Häggström
and Nelander (1998).

Brown and Diaconis (1997) show that a host of Markov chains for shuffling and
random tilings are monotone. These chains arise from hyperplane walks of Bidigare,
Hanlon and Rockmore (1997). The analysis gives reasonably sharp bounds on time
to coupling. Monotonicity techniques can be used for infinite state spaces too. For
instance, such techniques have been developed by Borovkov (1984) and Borovkov
and Foss (1992) to analyze complex queuing networks—our next topic.

4. Queuing theory. The existence of stationary distributions in queuing theory
can often be proved using iterated random functions. There is an interesting twist,
because the functions are generally not strict contractions, even on average. We
give an example, and pointers to a voluminous literature. In one relatively simple
model, the G/G/1 queue, customers arrive at a queue with i.i.d. interarrival times
U1, U2, . . . . The arrival times are the partial sums 0, U1, U1 + U2, . . . . The jth cus-
tomer has service time Vj ; these too are i.i.d., and independent of the arrival times.
Let Wj be the waiting time of the jth customer—the time before service starts. By
definition, W0 = 0. For j > 0, the Wj satisfy the recursion

(4.1) Wj+1 = (Wj + Vj − Uj+1)+.

Indeed, the jth customer arrives at time Tj = U1 + · · · + Uj and waits time Wj ,
finishing service at time Tj+Wj+Vj . The j+1st customer arrives at time Tj+Uj+1.
If Tj + Uj+1 > Tj +Wj + Vj , then Wj+1 = 0; otherwise, Wj+1 = Wj + Vj − Uj+1.

The waiting-time process {Wj : j = 0, 1, . . . } can therefore be generated by
iterating the random functions

(4.2) fθ(x) = (x+ θ)+.

The parameter θ should be chosen at random from µ = L(Vj − Uj+1), which is a
probability on the real line R.

The function fθ is a weak contraction but not a strict contraction: the Lipschitz
constant is 1. Although Theorem 1 does not apply, the backward iteration still
gives the stationary distribution. Indeed, the backward iteration starting from 0
can be written as

(4.3) (fθ1 ◦ · · · ◦ fθn)(0) =
(
θ1 +

(
θ2 + · · · + (θn−1 + θ+n )+

)+)+

.

Now there is a magical identity:

(4.4)
(
θ1 +

(
θ2 + · · · + (θn−1 + θ+n )+

)+)+

= max
1≤j≤n

(θ1 + · · · + θj)+.

This identity holds for any real numbers θ1, . . . , θn. Feller (1971, p. 272) asks the
reader to prove (4.4) by induction, and n = 1 is trivial. Separating the cases y ≤ 0
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and y > 0, one checks that (x + y+)+ = max{0, x, x + y}. That does n = 2. Now
put θ2 for x and θ3 for y :

(
θ1 + (θ2 + θ+3 )+

)+ =
(
θ1 + max{0, θ2, θ2 + θ3}

)+
=
(
max{θ1, θ1 + θ2, θ1 + θ2 + θ3}

)+
= max{0, θ1, θ1 + θ2, θ1 + θ2 + θ3}.

That does n = 3. And so forth. If the starting point is x rather than 0, you just
need to replace θn in (4.4) by θn + x.

In the queuing model, {Uj} are i.i.d. by assumption, as are {Vj}; and the U ’s are
independent of the V ’s. Set Xj = Vj−Uj+1 for j = 1, 2, . . . . So the Xj are i.i.d. too.
It is easily seen—given (4.3–4)—that the Markov chain {Wj : j = 0, 1, . . . ,∞} has
for its stationary distribution the law of

(4.5) lim
n→∞ max

1≤j≤n
(X1 + · · · +Xj)+,

provided the limit is finite a.s.
Many authors now use the condition E(X1) < 0 to insure convergence, via the

strong law of large numbers: X1 + · · ·+Xj ≈ jE(X1) → −∞ a.s., so the maximum
of the partial sums is finite a.s. In a remarkable paper, Spitzer (1956) showed that
no moment assumptions are needed.

Theorem 4.1. Suppose the random variables X1, X2, . . . are i.i.d. The limit in
(4.5) is finite a.s. if and only if

∞∑
j=1

1
j
P{X1 + · · · +Xj > 0} <∞.

Under this condition, the limit in (4.5) has an infinitely divisible distribution with
characteristic function

∞∏
j=1

exp[
1
j
(ψj(t) − 1)],

where ψj(t) = E{exp[it(X1 + · · · +Xj)+]} and expx = ex.

The “G/G/1” in the G/G/1 queue stands for general arrival times, general ser-
vice times, and one server: “general” means that L(Uj) and L(Vj) are not restricted
to parametric families. The recent queuing literature contains many elaborations,
including for instance queues with multiple servers and different disciplines; see
Baccelli (1992) among others. There are surveys by Borovkov (1984) or Baccelli
and Brémaud (1994). One remarkable achievement is the development of a sort
of linear algebra for the real numbers under the operation (x, y) → max{x, y} and
x → x+. The book by Baccelli et al. (1992) gives many applications; queues are
discussed in Chapter 7. The random-iterations idea helps to unify the arguments.
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5. Rigor. This section gives a more formal account of the basic setup; then
Theorem 1 is proved in Section 5.2. The theorem and the main intermediate results
are known: see Arnold and Crauel (1992), Barnsley and Elton (1988), Dubins and
Freedman (1966), Duflo (1997), Elton (1990), or Hutchinson (1981). Even so, the
self-contained proofs given here may be of some interest.

5.1. Background. Let (S, ρ) be a complete, separable metric space. Then f ∈
LipK if f is a mapping of S into itself, with ρ[f(x), f(y)] ≤ Kρ(x, y). The least
such K is Kf . If f is constant, then Kf = 0. If f ∈ LipK for some K < ∞, then
f is “Lipschitz”; otherwise, Kf = ∞. Of course, these definitions are relative to
ρ. We pause for the measure theory. Let S0 be a countable dense subset of S, and
let X be the set of all mappings from S0 into S. We endow X with the product
topology and product σ-field. Plainly, X is a complete separable metric space. Let
X be the space of Lipschitz functions on S. The following lemma puts a measurable
structure on X .

Lemma 5.1.
(i) X is a Borel subset of X .
(ii) f → Kf is a Borel function on X .
(iii) (f, s) → f(s) is a Borel map from X × S to S.

Proof: For f ∈ X , let

Lf = sup
x6=y∈S0

ρ[f(x), f(y)]/ρ(x, y) ≤ ∞.

Plainly, f → Lf is a Borel function on X . If Lf < ∞ then f can be extended as
a Lipschitz function to all of S with Kf = Lf . Conversely, if f is Lipschitz on S,
its retraction to S0 has Lf = Kf . Thus, the Lipschitz functions f on S can be
identified as the functions f on S0 with Lf < ∞, and Kf = Lf . This proves (i)
and (ii).

For (iii), enumerate S0 as {s1, s2, . . . }. Fix a positive integer n. Let Bn,1 be
the set of points that are within 1/n of s1. Let Bn,j+1 be the set of points that
are within 1/n of sj+1, but at a distance of 1/n or more from s1, . . . , sj . (In other
words, take the balls of radius 1/n around the sj and make them disjoint.) For
each n, the Bn,j are pairwise disjoint and

∞⋃
j=1

Bn,j = S.

Given a mapping f of S into itself, let fn(s) = f(sj) for s ∈ Bn,j . That is, fn

approximates f by f(sj) in the vicinity of sj . The map (f, s) → fn(s) is Borel
from X × S to S. And on the set of Lipschitz f , this sequence of maps converges
pointwise to the evaluation map. Q.E.D.

Remark. To make the connection with the setup of Section 1, if {fθ} is a family
of Lipschitz functions indexed by θ ∈ Θ, we require that the map θ → fθ(x) be
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measurable for each x ∈ S0. Then θ → fθ is a measurable map from Θ to X , and a
measure on Θ induces a measure on X . This section works directly with measures
on X .

The metric ρ induces a “Prokhorov metric” on probabilities, also denoted by ρ,
as follows.

Definition 5.1. If P , Q are probabilities on S, then ρ(P,Q) is the infimum of the
δ > 0 such that

P (C) < Q(Cδ) + δ and Q(C) < P (Cδ) + δ

for all compact C ⊂ S, where Cδ is the set of all points whose distance from C is
less than δ.

Remarks.
(i) Plainly, ρ(P,Q) ≤ 1.
(ii) Let ρ∗ be as in Definition 5.1, with C ranging over all Borel sets. Plainly,

ρ∗ < δ entails ρ ≤ δ. That is, ρ ≤ ρ∗. Conversely, suppose ρ < δ. Fix a Borel set
B and a small positive ε. Find a compact set C ⊂ B with P (B) < P (C) + ε and
Q(B) < Q(C) + ε. Then

P (B) < P (C) + ε < Q(Cδ) + δ + ε

< Q(Cδ+ε) + δ + ε < Q(Bδ+ε) + δ + ε,

and similarly for Q(B). Thus, ρ∗ ≤ ρ+ ε and hence ρ∗ ≤ ρ. In short, ρ∗ = ρ.
(iii) Dudley (1989) is a standard reference for results on the Prokhorov metric.

We need the definition of a random variable with an “algebraic tail”. Basically,
U has an algebraic tail if log(1 + U+) has a Laplace transform in a neighborhood
of 0, where U+ = max{0, U} is the positive part of U . Of course, it is a matter of
taste whether one uses log(1 + U+) or log+ U .

Definition 5.2. A random variable U has an algebraic tail if there are positive,
finite constants α, β such that Prob{U > u} < α/uβ for all u > 0. This condition
has force only for large positive u; and we allow Prob{U = −∞} > 0.

5.2. The Main Theorem. Fix a probability measure µ on X . Assume that

(5.1) f → Kf has an algebraic tail relative to µ.

Fix a reference point x0 ∈ S; assume too that

(5.2) f → ζ(f) = ρ[f(x0), x0] has an algebraic tail relative to µ.

If, for instance, S is the line and the f ’s are linear, condition (5.1) constrains the
slopes and then (5.2) constrains the intercepts. As will be seen later, any reference
point in S may be used.

Consider a Markov chain moving around in S according to the following rule:
starting from x ∈ S, the chain chooses f ∈ X at random from µ and goes to f(x).
We say that the chain “moves according to µ”, or “µ is the move measure”; in
Section 1, this Markov chain was called “the forward iteration”.
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Theorem 5.1. Suppose µ is a probability on the Lipschitz functions. Suppose
conditions (5.1) and (5.2) hold. Suppose further that

(5.3)
∫
X

logKf µ(df) < 0;

the integral may be −∞. Consider a Markov chain on S that moves according to
µ. Let Pn(x, dy) be the law of the chain after n moves starting from x.

(i) There is a unique invariant probability π.
(ii) There is a positive, finite constant Ax and an r with 0 < r < 1 such that

ρ[Pn(x, ·), π] ≤ Axr
n for all n = 1, 2, . . . and x ∈ S.

(iii) The constant r does not depend on n or x; the constant Ax does not depend
on n, and Ax < a+ bρ(x, x0) where 0 < a, b <∞.

In (ii) and (iii), ρ is the Prokhorov metric (Definition 5.1). The argument for
Theorem 5.1 can be sketched as follows. Although the forward process

Xn(x) = (fn ◦ fn−1 ◦ · · · ◦ f1)(x)
does not converge as n → ∞, the backward process—with the composition in
reverse order—does converge. Thus, we consider

(5.4) Yn(x) = (f1 ◦ f2 ◦ · · · ◦ fn)(x).

The main step will be the following.

Proposition 5.1. Assume (5.1–2–3). Define the backward process {Yn(x)} by
(5.4). Then Yn(x) converges at a geometric rate as n→ ∞ to a random limit that
does not depend on the starting point x.

To realize the stationary process, let

(5.5) . . . , f−2, f−1, f0, f1, f2, . . .

be independent with common distribution µ, and let

(5.6) Wm = fm ◦ fm−1 ◦ fm−2 ◦ · · · ,
where the composition “goes all the way”. Rigor will come after some preliminary
lemmas, and it will be seen that the process {Wm} is stationary with the right
transition law.

Lemma 5.2. Let ξi be i.i.d random variables; P{ξi = −∞} > 0 is allowed. Sup-
pose there are positive, finite constants α, β such that P{ξi > v} < αe−βv for all
v > 0. Let ξ be distributed as ξi. Then

(i) −∞ ≤ E{ξ} <∞.
(ii) If c is a finite real number with c > E{ξ}, there are positive, finite constants

A and r such that r < 1 and P{ξ1+· · ·+ξn > nc} < Arn for all n = 1, 2, . . . .
The constants A and r depend on c and the law of ξ, not on n.
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Proof. Case 1. Suppose ξ is bounded below. Then (i) is immediate, with
−∞ < m < ∞; (ii) is nearly standard, but we give the argument anyway. First,
E{exp(λξ)} <∞ for −∞ < λ < β. Next, let m = E{ξ}. We claim that

(5.7) E{eλξ} = 1 + λm+O(λ2) as λ→ 0.

Indeed, fix γ with 0 < γ < β; let |t| < 1 and λ = tγ. Then |λ| < γ, so

(5.8)
γ2

λ2
|eλξ − 1 − λξ| ≤ eγ|ξ| − 1 − γ|ξ|.

The right hand side of (5.8) has finite expected value, proving (5.7). As a result,
there are positive constants λ0 and d for which

E{eλξ} ≤ 1 +mλ+ dλ2 ≤ emλ+dλ2

provided 0 ≤ λ ≤ λ0. Let
rλ,c = e−λcE(eλξ).

By Markov’s inequality,

(5.9) P{ξ1 + · · · + ξn > nc} < rn
λ,c.

If 0 ≤ λ ≤ λ0, we have a bound on rλ,c. Set λ = (c−m)/2d to complete the proof
in Case 1, with r = exp[−(c−m)2/4d]. This is legitimate provided m ≤ c ≤ c0 =
m+ 2dλ0. Larger values of c may be replaced by c0.

Case 2. Let ξ′i be ξi truncated below at a constant that does not depend on i.
Then

∑
i ξi ≤

∑
i ξ

′
i. Case 1 applies to the truncated variables, whose mean will be

less than c if the truncation point is sufficiently negative. Our idea of truncation
can be defined by example: x truncated below at −17 equals x if x ≥ −17, and
−17 if x ≤ −17. Q.E.D.

Let fn be an i.i.d. sequence of picks from µ. Fix x ∈ S. Consider the forward
process starting from x:

X0(x) = x, X1(x) = f1(x), X2(x) = (f2 ◦ f1)(x), . . . .

Lemma 5.3. ρ[Xn(x), Xn(y)] ≤ [∏n
j=1Kfj

]
ρ(x, y).

Proof. This is obvious for n = 0 and n = 1. Now

ρ
[
fn+1

(
Xn(x)

)
, fn+1

(
Xn(y)

)] ≤ Kfn+1ρ[Xn(x), Xn(y)]. Q.E.D.

The next two lemmas will prove the uniqueness part of Theorem 5.1.
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Lemma 5.4. Suppose (5.1) and (5.3). If ε > 0 is sufficiently small, there are
positive, finite constants A and r with r < 1 and

P
{ n∑

i=1

logKfi
> −nε

}
< Arn

for all n = 1, 2, . . . . The constants A and r depend on ε but not on n.

Proof. Apply Lemma 5.2 to the random variables ξi = logKfi
. Q.E.D.

Lemma 5.5. Suppose (5.1) and (5.3). For sufficiently small positive ε: except for
a set of f1, . . . , fn of probability less than Arn, ρ[Xn(x), Xn(y)] ≤ exp(−nε)ρ(x, y)
for all x, y ∈ S. Again, A and r depend on ε but not on n.

Proof. Use Lemmas 5.3 and 5.4. Q.E.D.

Corollary 5.1. There is at most one invariant probability.

Proof. Suppose π and π′ were invariant. Choose x from π and x′ from π′, inde-
pendently. Let Yn = Xn(x) and Y ′

n = Xn(x′). Now ρ(Yn, Y
′
n) ≤ exp(−nε)ρ(Y0, Y

′
0)

except for a set of exponentially small probability. So, the laws of Yn and Y ′
n merge;

but the former is π and the latter is π′. Q.E.D.

The next lemma gives some results on variables with algebraic tails, leading to
a proof that if (5.1) holds, and (5.2) holds for some particular x0, then (5.2) holds
for all x0 ∈ S. The lemma and its corollary are only to assist the interpretation.

Lemma 5.6.
(i) If U is non-negative and bounded above, then U has an algebraic tail.
(ii) If U has an algebraic tail and c > 0, then cU has an algebraic tail.
(iii) If U and V have algebraic tails, so does U +V ; these random variables may

be dependent. (In principle, there are two α’s and two β’s; it is convenient
to use the larger α and the smaller β, if both of the latter are positive.)

Proof. Claims (i) and (ii) are obvious. For claim (iii),

P{U + V > t} ≤ P{U > t/2} + P{V > t/2}. Q.E.D.

Corollary 5.2. Suppose condition (5.1) holds. If (5.2) holds for any particular
x0 ∈ S, then (5.2) holds for any x0 ∈ S. In other words, there are finite positive
constants α, β with µ{ f : ρ[f(x0), x0] > u } < α/uβ for all u > 0. The constant α
may depend on x0, but the shape parameter β does not.

Proof. Use Lemma 5.6 and the triangle inequality. Q.E.D.

Lemma 5.7. Let f and g be mappings of S into itself; let x ∈ S. Then

ρ[(f ◦ g)(x), x] ≤ ρ[f(x), x] +Kfρ[g(x), x].

Proof. By the triangle inequality,

ρ[(f ◦ g)(x), x] ≤ ρ[f(x), x] + ρ[(f ◦ g)x, f(x)].

Now use the definition of Kf . Q.E.D.
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Corollary 5.3. Let {gi} be mappings of S into itself; let x ∈ S. Then

ρ[(g1 ◦ g2 ◦ · · · ◦ gm)(x), x] ≤ρ[g1(x), x]
+Kg1ρ[g2(x), x]

+Kg1Kg2ρ[g3(x), x] + · · ·
+Kg1Kg2 · · ·Kgm−1ρ[gm(x), x].

Proof of Proposition 5.1. We assume conditions (5.1–3) and consider the be-
havior when n → ∞ of the backward iterations Yn(x) = (f1 ◦ f2 ◦ · · · ◦ fn)(x).
Convergence of Yn(x) as n → ∞ will follow from the Cauchy criterion. In view of
Lemma 5.5, it is enough to consider x = x0. As in Lemma 5.3,

(5.10) ρ[Yn+m(x), Yn(x)] ≤ Kf1 · · ·Kfnρ[(fn+1 ◦ fn+2 ◦ · · · ◦ fn+m)(x), x].

We use Corollary 5.3 with fn+i for gi to bound the right hand side of (5.10),
concluding that

(5.11) ρ[Yn+m(x), Yn(x)] ≤
∞∑

i=0

(
n+i∏
j=1

Kfj

)
ρ[fn+i+1(x), x].

By Lemma 5.4, except for a set of probability A′rn0 ,

(5.12)
n+i∏
j=1

Kfj ≤ e−(n+i)ε

for all n ≥ n0 and all i = 0, 1, . . . .
Next, condition (5.2) comes into play. Write ζj = ρ[fj(x), x]. By the Defini-

tion 5.2 of algebraic tails, there are positive finite constants α and β such that
P{ζj > sj} < α/sβj . Choose s > 1 but so close to 1 that se−ε < 1. Except for
another set of exponentially small probability,

(5.13) ζn+i+1 ≤ sn+i+1

for all n ≥ n0 and all i = 0, 1, . . . . Now there are finite positive constants c0, r0, r1,
with r0 < 1 and r1 < 1, such that for all n0, for all n ≥ n0, and all m = 0, 1, . . . ,

(5.14) ρ[Yn+m(x), Yn(x)] ≤ rn
1 ,

except for a set of probability c0rn0
0 . Thus, Yn(x) is Cauchy, and hence converges

to a limit in S. We have already established that the limit does not depend on x;
call the limit Y∞. An exponential rate for the convergence of Yn(x) to Y∞ follows
by letting m→ ∞ in (5.14). Q.E.D.
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Lemma 5.8. Let X, X ′ be random mappings into S, with distributions λ, λ′.
Suppose X, X ′ can be realized so that P{ρ(X,X ′) ≥ δ} < δ. Then ρ(λ, λ′) ≤ δ.
(In the first instance, ρ is the metric on S; in the second, ρ is the induced Prokhorov
metric on probabilities: see Definition 5.1.)

Proof. Let C be a compact subset of S. Then X ∈ C entails X ′ ∈ Cδ, except for
probability δ. Likewise, X ′ ∈ C entails X ∈ Cδ, except for probability δ. Q.E.D.

Remark. The converse to Lemma 5.8 is true too: one proof goes by discretization
and the “Marriage Lemma”. See Strassen (1965) or Dudley (1988, Chapter 11).

Proof of Theorem 5.1. There are only a few details to clean up. Recall the
doubly-infinite sequence {fi} from (5.5). By Proposition 5.1, we can define Wm as
follows:

(5.15) Wm = lim
n→∞(fm ◦ fm−1 ◦ · · · ◦ fm−n)(x).

The limit does not depend on x. Proposition 5.1 applies, because—as before—

L(fm, fm−1, . . . ) = L(f1, f2, . . . ).

It is easy to verify that

(5.16) Wm : m = . . . , −2, −1, 0, 1, 2, . . .

is stationary with the right transition probabilities. And Y∞ is distributed like
any of the Wm. Thus, the convergence assertion (ii) in Theorem 5.1 follows from
Lemma 5.8 and Proposition 5.1. The argument is complete.

Proof of Theorem 1 and Proposition 1. These results are immediate from
Proposition 5.1 and Theorem 5.1. Indeed, the moment conditions in Theorem 1 im-
ply conditions (5.1–2–3); we stated Theorem 1 using the more restrictive conditions
in order to postpone technicalities.

Figure 4. The backward iterations converge rapidly to a limit that is random
but does not depend the starting state.
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The essence of the thing is that the backward iterations converge at a geometric
rate to a limit that depends on the functions being composed—but not on the
starting point. Figure 4 illustrates the idea for the Markov chain discussed in
Section 2.1. The left hand panel shows the backward iteration starting from x0 =
1/3 or x0 = 2/3. Exactly the same functions are used to generate the two paths;
the only difference is the starting point. (Position at time n is plotted against n =
0, 1, . . . , 25, with linear interpolation.) The paths merge for all practical purposes
around n = 7. The right hand panel shows the same thing, with a new lot of random
functions. Convergence is even faster, but the limit is different—randomness in
action. (By contrast, the forward iteration does not converge, but wanders around
ergodically in the state space: Figure 1.) Figure 5 plots the logarithm (base 10) of
the absolute difference between the paths in the corresponding panels of Figure 4.
The linear decay on the log scale corresponds to exponential decay on the original
scale. The difference in slopes between the two panels is due to the randomness in
choice of functions; this difference wears off as the number of iterations goes up.

Figure 5. Logarithm to base 10 of the absolute difference between paths in
the backward iteration.
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Remarks.

(i) The notation in (5.15–16) may be a bit confusing:

{Wn : n = 0,−1,−2, . . . }
is not the backward process, and does not converge.

(ii) We use the algebraic tail condition to bound the probabilities of the excep-
tional sets in Proposition 5.1, that is, the sets where (5.12) and (5.13) fail. These
probability bounds give the exponential rate of convergence in Theorem 5.1. With
a little more effort, the optimal r can be computed explicitly, in terms of the mean
and variance of logKf , and the shape parameter β in (5.2). If an exponential rate
is not needed, it is enough to assume that log(1 + Kf ) and log

(
1 + ρ[f(x0), x0]

)
are L1.
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(iii) Furstenberg (1963) uses the backward iteration to study products of ran-
dom matrices. He considers the action of a matrix group on projective space and
shows that there is a unique stationary distribution, which can be represented as
a convergent backward iteration. Convergence is proved by martingale arguments.
It seems worthwhile to study the domain of this method.

(iv) Let (X,B) be a measurable space and let K(x, dy) be a Markov kernel on
(X,B). When is there a family {fθ : θ ∈ Θ} and a probability µ on Θ such
that the Markov chain induced by these iterated random mappings has transitions
K(x, dy)? This construction is always possible if (X,B) is “Polish”, that is, a Borel
subset of a complete separable metric space. See, for instance, Kifer (1986). The
leading special case has X = [0, 1]. Then Θ can also be taken as the unit interval,
and µ as Lebesgue measure; K(x, dy) can be described by its distribution function
F (x, y) = K(x, [0, y]). Let G(x, ·) be the inverse of F (x, ·). If U is uniform, G(x, U)
is distributed as K(x, dy). Finally, let fθ(x) = G(x, θ). Verification is routine, and
the general case follows from the special case by standard tricks.

The question is more subtle—and the regularity conditions much more techni-
cal—if it is required that the fθ(·) be continuous. Blumenthal and Corson (1970)
show that if X is a connected, locally connected, compact space, and x → K(x, ·)
is continuous (weak star), and the support of K(x, ·) is X for all x, then there is a
probability measure on the Borel sets of the continuous functions from X to X which
induces the kernel K. Quas (1991) gives sufficient conditions for representation by
smooth functions when X is a smooth manifold. A survey of these and related
results appears in Dubischar (1997).

6. More examples. Autoregressive processes are an important feature of many
statistical models, and can usefully be viewed as iterated random functions; the
construction will be sketched here. We learned the trick from Anderson (1959),
but he attributes it to Yule. Further examples and counterexamples to illustrate
the theory are given in Section 6.2; Section 6.3 revisits the example discussed in
Section 2.1.

6.1. Autoregressive processes. Let S = R, the real line. Let a be a real number
with 0 < a < 1 and let µ be a probability measure on R. For present purposes, an
autoregression is a Markov process on R with the following law of motion: starting
from x ∈ R, the chain picks ξ according to µ and moves to ax + ξ. Conditions
(5.1) and (5.3) are obvious: if f(x) = ax+ ξ, then Kf = a. For condition (5.2), we
need to assume for instance that if ξ has distribution µ, there are positive, finite
constants α, β with P (|ξ| > u) < α/uβ for all u > 0. If ξi are independent with
common distribution µ, the forward process starting from x has X0(x) = x,

X1(x) = ax+ ξ1, X2(x) = a2x+ aξ1 + ξ2, X3(x) = a3x+ a2ξ1 + aξ2 + ξ3,

and so forth. This process converges in law, but does not converge almost surely:
at stage n, new randomness is introduced by ξn. The backward process starting
from x looks at first glance much the same: Y0(x) = x,

Y1(x) = ax+ ξ1, Y2(x) = a2x+ ξ1 + aξ2, Y3(x) = a3x+ ξ1 + aξ2 + a2ξ3,
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and so forth. But this process converges a.s., because the new randomness in-
troduced by ξn is damped by an. The stationary autoregressive process may be
realized as

Wm = ξm + aξm−1 + a2ξm−2 + a3ξm−3 + · · · .
Each Wm is obtained by doing the backward iteration on {ξm, ξm−1, ξm−2, . . . }.
Equation (5.6) is the generalization. With the usual Euclidean distance, the con-
stant Ax in Theorem 5.1 must depend on the starting state x. For a particularly
brutal illustration, take ξi ≡ 0.

6.2. Without regularity conditions. This section gives some examples to
indicate what can happen without our regularity conditions.

Example 6.1. This example shows that some sort of contracting property is needed
to get a result like Theorem 5.1. Let S = [0, 1]. Arithmetic is to be done modulo 1:
for instance, 2 × .71 = .42. Let

f(x) = x, g(x) = 2x mod 1,

and µ{f} = µ{g} = 1/2. The forward and the backward process can both be
represented as

Xn = 2ξ1+···+ξnx mod 1,

the ξn being independent and taking values 0 or 1 with probability 1/2 each; x
is the starting point. Clearly, the backward process converges only if the starting
point is a binary rational. Furthermore, there are infinitely many distinct stationary
probabilities: if ζ1, ζ2, . . . is a stationary 0–1 valued process, then the law of

∑
i ζi/2

i

is stationary for our chain. Since Kf = 1 and Kg = 2, condition (5.3) fails. Figure 6
plots Xn against n for n = 0, . . . , 100, with linear interpolation.

Figure 6. Iterated random functions on the unit interval. With probability
1/2, the chain stands pat; with probability 1/2, the chain moves from x to
2x modulo 1. The forward and backward process are the same, and do not
converge.
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Remark. Figure 6 involves on the order of 50 doublings, so numerical accuracy is
needed to 50 binary digits, or 16 decimal places in x. That is about the limit of
double-precision computer packages like MATLAB a PC. If, say, 1,000 iterations
are wanted, accuracy to 150 decimal places would be needed. The work-around is
easy. Code the states x as long strings of 0’s or 1’s, and do binary arithmetic. For
plotting, convert to decimals: only the first 10 bits in Xn will matter.

Example 6.2. This example has a unique stationary distribution but the backward
process does not converge. Let S be the integers mod N . Let

f(j) = j, g(j) = j + 1 mod N,

with µ{f} = µ{g} = 1/2. The forward and the backward process can both be
represented as

Xn = ξ1 + · · · + ξn + x mod N,

the ξn being independent and taking values 0 or 1 with probability 1/2 each.
Clearly, the backward process does not converge. On the other hand, the chain
is aperiodic and irreducible, so there is a unique stationary distribution (the uni-
form), and there is an exponential rate of convergence. Let ρ(i, j) be the least
k = 0, 1, . . . such that i + k = j or j + k = i. Then ρ is a metric: the distance
between two points is the minimal number of steps it takes to get from one to the
other, where steps can be taken in either direction. Relative to this metric, f and
g are Lipschitz, with Kf = Kg = 1; condition (5.3) is violated.

The next example shows another sort of pathology when condition (5.3) holds
but (5.1–2) fail.

Example 6.3. The state space S is [0,∞). Let the random variable ξ have a
symmetric stable distribution with index α > 1; see Samorodnitsky and Taqqu
(1994) or Zolotarev (1986). Let µ be the law of eξ−1. Consider a Markov chain
that moves from x ∈ [0,∞) by choosing K at random from µ and going to Kx.
Then 0 is a fixed point and the unique stationary distribution concentrates at 0. If
ξi are i.i.d. symmetric stable with index α, the forward and the backward process
process can both be represented as

Xn = eξ1+···+ξn−nx.

Xn → 0 almost surely as n → ∞, by the strong law of large numbers. On the
other hand, the Prokhorov distance between L(Xn) and δ0 is of order 1/nα−1, by
Lemmas 6.1 and 6.2 below. In particular, exponential rates of convergence do not
obtain. Condition (5.3) holds:

∫
logK dµ = −1. However, (5.1) fails, and so does

(5.2) for x0 6= 0.

Lemma 6.1. Let δ0 be point mass at 0, and let Φ be a continuous probability
measure on (0,∞).

(i) There is a unique ε0 with 0 < ε0 < 1 and Φ(ε0,∞) = ε0.
(ii) Φ(ε,∞) < ε for ε > ε0.
(iii) ρ(δ0,Φ) = ε0.
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Proof. Claims (i) and (ii) are easy to verify. For (iii), we need to compute the
infimum of ε such that for all compact C,

(6.1) δ0(C) < Φ(Cε) + ε

and

(6.2) Φ(C) < δ0(Cε) + ε.

If 0 /∈ C, then (6.1) is vacuous. If 0 ∈ C, then (6.1) is equivalent to 1− ε < Φ(Cε).
Furthermore, 0 ∈ C entails [0, ε) ⊂ Cε. And Cε = [0, ε) when C = {0}. Thus, (6.1)
for all compact C is equivalent to

(6.3) Φ(0, ε) > 1 − ε.

Likewise, if 0 ∈ Cε, then (6.2) is vacuous. If 0 /∈ Cε then (6.2) is equivalent to
Φ(C) < ε. But 0 /∈ Cε iff C ⊂ [ε,∞). Thus, (6.2) for all compact C is also
equivalent to (6.3). Now (iii) follows from (ii). Q.E.D.

Lemma 6.2. Let U be a symmetric stable random varible with index α > 1. Let
n be a large positive integer. The Prokhorov distance between δ0 and the law of
exp(−n+ n1/αU) is of order 1/nα−1.

Proof. This follows from Lemma 6.1, since P{U > u} ∼ 1/uα. Q.E.D.

Remark. Something can be done even when all the Lipschitz constants are 1,
provided the functions are genuinely contracting on a recurrent set. For instance,
Steinsaltz (1997, 1998) considers a Markov chain on R that moves by choosing one
of the following two functions at random:

f+(x) =



x+ 1 if x ≥ 0
1
2x+ 1 if − 2 ≤ x ≤ 0
x+ 2 if x ≤ −2

f−(x) =



x− 1 if x ≤ 0
1
2x− 1 if 0 ≤ x ≤ 2
x− 2 if x ≥ 2.

These functions have Lipschitz constant 1. But, as a team, they are genuinely
contracting on the interval [−2, 2]. This interval is recurrent. Indeed, from large
negative x, the chain moves 2 units to the right and 1 unit to the left with equal
probabilities; the reverse holds for large positive x. Thus, when the chain is near
±∞, it drifts back toward 0. Steinsaltz has some general theory, and other exam-
ples.

6.3. The Beta walk. The state space S is the closed unit interval [0,1]. Let Φ be
a probability measure on S, and let 0 < p < 1. Consider a chain with the following
transition probabilities. Starting from x ∈ [0, 1], the chain goes left with probability
p and right with probability 1 − p. To move, it picks u from Φ. If the move is to
the left, the chain goes to ux; if to the right, it goes to x+ u(1 − x) = x+ u− ux.
Call Φ the “moving measure”. If Φ is Beta(α, α), call the chain a “Beta walk”. The
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example in Section 2.1 was a Beta walk with p = 1/2 and α = 1/2. We extend the
terminology a little: Beta(0, 0) puts mass 1/2 at 0 and 1; Beta(∞,∞) puts mass 1
at 1/2.

These examples fit into the framework of Theorem 5.1: p and Φ probabilize the
set of linear maps that shrink the unit interval—

• either toward 0, when the map sends x to ux,
• or toward 1, when the map sends x to x+ u− ux.

All the Lipschitz constants are 1 or smaller. Conditions (5.1–2–3) are obvious,
and there is exponential convergence to the unique stationary distribution. In the
balance of this section, we prove the following theorem.

Theorem 6.1. Suppose S = [0, 1], p = 1/2, and the move measure Φ is Beta(α, α).
Let α′ = α/(α+1); when α = ∞, let α′ = 1. If α is 0, 1, or ∞, then the stationary
distribution of the Beta walk is Beta(α′, α′). For any other value of α, the station-
ary distribution is symmetric and has the same first three moments as Beta(α′, α′)
but a different fourth moment: in particular, the stationary distribution is not Beta.

Remarks. The second moment of Beta(a, a) is (a+ 1)/(4a+ 2), which determines
a; that is why agreement on 3 moments and discrepancy on the 4th shows the
stationary measure not to be Beta. As will be seen, the discrepancy is remarkably
small—on the order of 10−4 when α = 1/3, and that is about as big as it gets.

The proof of the next lemma is omitted. The first term in the integral corre-
sponds to a leftward move, taken with probability p; the second, to a rightward
move; compare (2.1).

Lemma 6.3. If the move measure Φ has density φ, and the starting state is chosen
from a density ψ, the density of the position after one move is

(Tψ)(y) = p

∫ 1

y

1
x
φ
(y
x

)
ψ(x) dx+ p

∫ y

0

1
1 − x

φ
(y − x

1 − x

)
ψ(x) dx.

The next result too is standard. Suppose X is Beta(a, b). Then

E{Xn} =
Γ(a+ n)

Γ(a)
Γ(a+ b)

Γ(a+ b+ n)
=

(a+ n− 1) · · · (a+ 1)a
(a+ b+ n− 1) · · · (a+ b+ 1)(a+ b)

.

The second equality follows from the recursion Γ(x+1) = xΓ(x): there are n factors
in the numerator and in the denominator.

Corollary 6.1. If X is Beta(a, a), then

E(X) =
1
2
, E(X2) =

a+ 1
4a+ 2

, E(X3) =
a+ 2
8a+ 4

, E(X4) =
a+ 3
2a+ 3

a+ 2
8a+ 4

.
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The proof of Theorem 6.1.

Case 1. Suppose α = 0, so the move measure Φ puts mass 1/2 each at 0 and 1;
this is the stationary measure too, with stationarity being achieved in one move.
Since α′ = 0, the theorem holds.

Case 2. Suppose α = ∞, so the move measure Φ concentrates on 1/2. Starting
from x, the chain moves to 1

2x or x+ 1
2 − 1

2x = 1
2 + 1

2 (1 − x) with a 50–50 chance.
Clearly, the uniform distribution is invariant, its image under the motion having
mass 1

2 uniformly distributed over [0, 1
2 ], and mass 1

2 uniform on [12 , 1]. Since α′ = 1
and Beta(1, 1) is uniform, the theorem holds.

Case 3. This was discussed in Section 2.1.

Case 4. Suppose the move measure Φ is Beta(α, α) with 0 < α < 1 or 1 < α <∞.
Recall that α′ = α/(α + 1); and let U ′ ∼ Beta(α′, α′). By Corollary 6.1 and some
tedious algebra,

E(U ′) =
1
2
, E(U ′2) =

2α+ 1
6α+ 2

, E(U ′3) =
3α+ 2
12α+ 4

, E(U ′4) =
4α+ 3
5α+ 3

3α+ 2
12α+ 4

.

We must now compute the first 4 moments of the stationary distribution; the
latter exists by Theorem 5.1. Let U have the stationary distribution and let V ∼
Beta(α, α); make these two random variables be independent. As before, write
L(Z) for the law of Z. Then

(6.4) L(U) =
1
2
L(UV ) +

1
2
L(U + V − UV ) =

1
2
L(UV ) +

1
2
L(1 − UV ),

because U + V −UV = 1− (1−U)(1− V ) and U , V are symmetric. In particular,

(6.5) E(Un) =
1
2
E(Un)E(V n) +

1
2
E[(1 − UV )n].

E(V n) is given by Corollary 6.1, so equation (6.5) can be solved recursively for the
moments of U , and E(Un) = E(U ′n) for n = 1, 2, 3. However,

E(U4) =
1
6

(2α+ 3)(9α2 + 10α+ 2)
(3α+ 1)(5α2 + 9α+ 2)

.

Consequently,

(6.6) E(U4) − E(U ′4) =
(1 − α)α2

12(3α+ 1)(5α+ 3)(5α2 + 9α+ 2)
.

(Again, unpleasant algebraic details are suppressed.) Figure 7 shows the graph of
the right side of (6.6), plotted against α. As will be seen, the discrepancy is rather
small.
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Figure 7. Difference between 4th moment of stationary distribution and 4th
moment of approximating Beta, scaled by 104 and plotted against α; sym-
metric chain, Beta(α, α) move distribution.
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Remark. Theorem 6.1 is connected to results in Dubins and Freedman (1967).
Consider generating a random distribution function by constructing its graph in
the unit square. Draw a horizontal line through the square, cutting the vertical
axis into a lower segment and an upper segment whose lengths stand in the ratio
p to 1 − p. Pick a point at random on this line. That divides the square into
four rectangles. Now repeat the construction in the lower left and upper right
rectangles. (The description may be cumbersome, but the inductive step is easy.)
The limiting monotone curve connecting all the chosen points is the graph of a
random distribution function. The average of these distribution functions turns out
to be absolutely continuous: let φ be its density. This density is, by construction,
invariant under the following operation. Choose x at random uniformly on [0, 1];
distribute mass p according to φ rescaled over [0, x] and mass 1 − p according to φ
rescaled over [x, 1]. If U is uniform and X ∼ φ, then

L(X) = pL(UX) + (1 − p)L(U +X − UX).

In short, φ is the stationary density for our Markov process. The equation in
Lemma 6.3 is discussed in Section 9 of Dubins and Freedman (1967).

7. Dirichlet distributions. The Dirichlet distribution is the multidimensional
analog of the more familiar Beta, and is often used in Bayesian nonparametric
statistics. An early paper is Freedman (1963); also see Fabius (1964) or Ferguson
(1973). Sections 7.1–2 sketch a construction of the Dirichlet. The setting is an
infinite dimensional space, namely, the space of all probability measures on an
underlying complete separable metric space. Section 7.3 discusses the law of the
mean of F picked at random from a Dirichlet distribution, which can sometimes be
computed in closed form. The setting is the real line.

7.1. Random measures. Let (X, ρ) be a complete separable metric space, for
instance, the real line. Let P be the set of all probability measures on X; p and
q will be typical elements of P, that is, typical probabilities on X. We will be
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considering random probabilities P on X: these are random objects with values in
P. The “law” of such an object is a probability on P. Let α be a finite measure on
X. The “Dirichlet with base measure α”, usually abbreviated as Dα, is the law of
a certain random probability on X. Thus, Dα is a probability on P.

Here, we show how to construct Dα by modifying the argument for Theorem 5.1.
The state space S for the Markov chain is P. The variation distance between p and
q is defined as

‖p− q‖ = sup
B

|p(B) − q(B)|,

where B runs over all the Borel subsets of X. The “parameter space” for the
Lipschitz functions will be Θ = [0, 1] × P. If 0 ≤ u ≤ 1 and p ∈ P, let fu,p map P

into P by the rule
fu,p(q) = uq + (1 − u)p.

It is easy to see that fu,p is an affine map of P into itself. Furthermore, this function
is Lipschitz, with Lipschitz constant Ku,p = u.

If µ is any probability measure on the parameter space Θ, the Markov chain on P

driven by µ has a unique stationary distribution. The Dirichlet will be obtained by
specializing µ. Caution: the stationary distribution is a probability on P, that is, a
probability on the probabilities on X; and there is a regularity condition, namely,

(7.1) µ{(u, p) : u < 1} > 0.

Recall that L stands for law. Then Q has the stationary distribution if

(7.2) L(UQ+ (1 − U)P
)

= L(Q),

where L(U,P ) = µ independent of Q. The stationary distribution may be repre-
sented by the backward iteration, as the law of the random probability

(7.3) S∞ = (1 − U1)P1 + U1(1 − U2)P2 + U1U2(1 − U3)P3 + · · · .

In (7.3), the (Un, Pn) are independent, with common distribution µ; as will be seen
in a moment, the sum converges almost surely. The limit is a random probability on
X because each Pn is a random probability on X, and the Un are random elements
of [0, 1]. Furthermore,

(7.4) (1 − U1) + U1(1 − U2) + U1U2(1 − U3) + · · ·

telescopes to 1.
In variation distance, P is complete but not separable. Thus, Theorem 5.1 does

not apply. Rather than deal with the measure-theoretic technicalities created by
an inseparable space, we sketch a direct argument for convergence. First, we have
to prove that the sum in (7.4) converges almost surely. Indeed, write Tn for the
nth term. Then E{Tn} = (1 − φ)φn−1, where

(7.5) φ = E{Un} < 1
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by (7.1). Thus P{Tn >
√
φn−1} <

√
φn−1, and

∑
n

√
φn−1 < ∞. An immediate

consequence: with probability 1, the sum on the right in (7.3) is Cauchy and hence
converges in variation norm (completeness). The law of S∞ is easily seen to be
stationary, using the criterion (7.2).

To get a geometric rate of convergence, suppose the chain starts from q. Let
Sn be the sum of the first n terms in (7.3). After n moves starting from q, the
backward process will be at Sn + Rn, where Rn = U1U2 · · ·Unq. By previous
arguments, except for a set of geometrically small probability, ‖Sn − S∞‖ and
‖Rn‖ are geometrically small. We have proved the following result.

Theorem 7.1. Suppose (7.1) holds. Consider the Markov chain on P driven by
µ. Let Pn(q, dp) be the law of the chain after n moves starting from q.

(i) There is a unique invariant probability π.
(ii) There is a positive, finite constant A and an r with 0 < r < 1 such that

ρ[Pn(q, ·), π] ≤ Arn for all n = 1, 2, . . . and all q ∈ P.

In this theorem, ρ is the Prokhorov metric on probabilities on P, constructed from
the variation distance on P, as in Definition 5.1. The constant A is universal,
because variation distance is uniformly bounded. If condition (7.1) fails, the chain
stagnates at the starting position q.

We now specialize µ to get the Dirichlet. Recall that α is a finite measure on X.
Let ‖α‖ = α(X) be the total mass of α and let γ = α/‖α‖, which is a probability
on X. Let γ̃ be the image of γ under the map x → δx, with δx ∈ P being point
mass at x ∈ X. Thus, γ̃ is a probability on P, namely, the law of δx when x ∈ X is
chosen at random from γ. (Caution: see Section 7.2 for measurability.) Finally, we
set µ = Beta(‖α‖, 1) × γ̃. In other words, µ is the law of (u, δx), where u is chosen
from the Beta(‖α‖, 1) distribution and x is independently chosen from α/‖α‖. For
this µ, the law of the random probability defined by (7.3) is Dirichlet, with base
measure α.

Why does the construction give Dα? We sketch the argument for a leading
special case, when X = {0, 1, 2}; for details, see Sethuraman and Tiwari (1982).
Let αi = α(i) for i = 0, 1, 2. Then ‖α‖ = α0 + α1 + α2. All we need to check is
stationarity. Let Q be a random pick from Dα . Condition (7.2) for stationarity is

(7.6) L(Q) = L(UQ+ (1 − U)δW
)
,

where
(7.7a) Q ∼ Dα,
(7.7b) U is Beta(‖α‖, 1),
(7.7c) W is i with probability αi/‖α‖, and
(7.7d) Q, U, W are independent.
Of course, {Q0, Q1}—the masses assigned by Q to 0 and 1 —should be Dirichlet
with parameters α0, α1, α2 by (7.7a). The density of a Dirichlet distribution with
these parameters is

f(x, y) = Cxα0−1yα1−1(1 − x− y)α2−1
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for (x, y) with x > 0, y > 0, x+ y < 1. The normalizing constant C makes
∫
f = 1;

its numerical value will not matter here. Condition on W in (7.6) and use (7.7cd).
Stationarity boils down to

(7.8) T0 + T1 + T2 = f(x, y),

where

(7.9) T0 =
α0

‖α‖
∫

1
u2
f
(x− 1 + u

u
,
y

u

)
g(u) du

and g is the density of the random variable U in (7.6). By (7.7b), g(u) = ‖α‖u‖α‖−1.
We deal with T1 and T2, below.

The next task is to determine the range of the integral in (7.9). There are several
constraints on u. First is that

(7.10) (x− 1 + u)/u > 0, or u > 1 − x.

Second, (x− 1 + u)/u < 1, which follows from x < 1. Third, u > y, which follows
from (7.10), because 1 − x > y. Fourth,

x− 1 + u

u
+
y

u
< 1,

which follows from x+ y < 1. Finally, u < 1. Thus, the integral in (7.9) goes from
1 − x to 1; there is quite a lot of cancellation of u’s, and

T0 = Cyα1−1(1 − x− y)α2−1α0

∫ 1

1−x

[u− (1 − x)]α0−1 du

= Cxα0yα1−1(1 − x− y)α2−1.

The terms T1 and T2 in (7.8) can be evaluated the same way:

T1 =
α1

‖α‖
∫ 1

1−y

1
u2
f
(x
u
,
y − 1 + u

u

)
g(u) du = Cxα0−1yα1(1 − x− y)α2−1;

T2 =
α2

‖α‖
∫ 1

x+y

1
u2
f
(x
u
,
y

u

)
g(u) du = Cxα0−1yα1−1(1 − x− y)α2 .

So

T0 + T1 + T2 = Cxα0yα1−1(1 − x− y)α2−1

+ Cxα0−1yα1(1 − x− y)α2−1

+ Cxα0−1yα1−1(1 − x− y)α2

= Cxα0−1yα1−1(1 − x− y)α2−1,

because x+ y + (1 − x− y) = 1. This completes the proof of (7.6).
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The same argument goes through for any finite X. Then compact X can be
handled by taking limits. Along the way, it helps to check that

(7.11)
∫
P
P Dα(dP ) = α/‖α‖.

A complete separable X can be embedded into a compact set, so the general case
follows from the compact case; (7.11) shows that Dα sits on X, as desired, rather
than spilling over onto points added by compactification.

7.2. Measure-theoretic issues. Put the weak-star σ-field on P: this is generated
by the functions p→ ∫

f dp as f ranges over the bounded continuous functions on
X. The variation norm is weak-star measurable, because

(7.12) ‖p− q‖ = sup
f

∣∣∣ ∫ f dp−
∫
f dq

∣∣∣
as f ranges over the continuous functions on X with 0 ≤ f ≤ 1. With a bit of effort,
we can restrict f to a countable, dense set of continuous functions. Measurability
of the norm is then clear. For example, if X is [0, 1], we can restrict f to the
polynomials with rational coefficients.

Put the usual Borel σ-field on [0, 1]. Then (u, p, q) → fu,p(q) is jointly measur-
able, from [0, 1]×P×P to P. Likewise, (u, p) → Ku,p = u is measurable. For each
n, the map

(θ1, θ2, . . . , θn, q) →
(
fθ1 ◦ fθ2 ◦ · · · ◦ fθn

)
(q)

is jointly measurable from Θn × P to P. Finally, the map x → δx is measurable
from X to P.

The “Borel” σ-field in P is generated by the open sets in the norm topology, and
seems to fit better with variation distance. But there is a real problem: the map
x → δx is not measurable if we put the Borel σ-fields on X and P. A reference
is Dubins and Freedman (1964). We need the variation norm to get the Lipschitz
property and the weak-star σ-field to handle measurability. In a complete separable
metric space, all reasonable σ-fields coincide—ranging from the Borel σ-field to (for
instance) the σ-field generated by the bounded, uniformly continuous functions.
The space of probability measures is complete in the variation distance but not
separable. That is the source of the measure-theoretic complications.

7.3. Random means. Let P be a random pick from Dα, as defined in Section 7.1
above. Let f be a measurable function on X. Consider the random variable

∫
X f dP .

(Of course, the random variable is defined only when the integral converges.) Feigen
and Tweedie (1989) prove the following result.

Proposition 7.1.
∫
X
|f(x)|P (dx) <∞ for Dα-almost all P if and only if

∫
X

log(1 + |f(x)|)α(dx) <∞.
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We now specialize X to the real line (−∞,∞), and f(x) to x. Suppose

(7.13)
∫ ∞

−∞
log(1 + |x|)α(dx) <∞.

Then

(7.14) X(P ) =
∫ ∞

−∞
x dP, P ∼ Dα

is a random variable—being the mean of a P picked at random from Dα.
Formula (7.14) must be distinguished from (7.11). In (7.11), you pick P at

random from Dα, and take the mean over all P ’s relative to Dα: for any measurable
A ⊂ X, ∫

P
P (A)Dα(dP ) = α(A)/‖α‖.

In (7.14), you pick P at random from Dα, and take the mean over all x’s relative
to P . That gives a random variable X(P ) =

∫∞
−∞ x dP .

In a number of cases, the distribution of X relative to Dα can be be computed
explicitly, using the idea of iterated random functions. For instance, Cifarelli and
Regazzini (1990) show that unless α is a point mass, P → ∫

x dP has an absolutely
continuous distribution, and they give formulas for the density. Additional results
are obtained by Diaconis and Kemperman (1996).

Example 7.1. Suppose α concentrates on two points, 0 and 1. Relative to Dα,
P → X(P ) has the Beta(α0, α1) distribution. This is immediate from the discussion
in Section 7.1 above: after all, X(P ) is the mass P assigns to 1.

Example 7.2. If α is uniform on [0, 1], then X has the density

e

π
x−x(1 − x)−(1−x) sin(πx) for 0 < x < 1.

Example 7.3. If α is Cauchy then X also has the Cauchy distribution. See Ya-
mamoto (1984). Of course,

∫
xα(dx) does not converge. On the other hand, (7.13)

holds, so that for almost all P drawn from Dα, the integral in (7.14) does converge.
Picks from Dα have a shorter tail than α.

Example 7.4. Let Z be Cauchy. If α is the law of eZ/(1+ eZ), then X is uniform
on [0, 1].

For the mathematics behind examples (7.2–3–4), we refer to Diaconis and Kem-
perman (1996) where connections to the Markov moment problem and recent work
of Kerov (1993) are explained. We conclude by showing how the law of X in (7.14)
can be obtained as the stationary distribution under random iterated functions.
This is fairly immediate on the basis of Section 7.1. The state space is the real line.
From x, the chain moves to Ux+ (1−U)W , where U is Beta(‖α‖, 1), and W is an
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independent pick from α/‖α‖. The limiting stationary distribution, which is L(X),
is the distribution of

(1 − U1)W1 + U1(1 − U2)W2 + U1U2(1 − U3)W3 + · · · ,

where (Ui,Wi) are i.i.d. copies of (U,W ): see (7.3).
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and Yuval Peres for many useful suggestions. We also thank our very helpful editors,
Dan Rockmore and Nick Trefethen.

Technical Report No. 511
Department of Statistics
University of California

Berkeley, CA 94720

References

Anderson, T. W. (1959), On asymptotic distributions of estimates of parameters of stochastic
difference equations, Ann. Math. Statist. 30, 676–87.

Arnold, L. (1998), Random Dynamical Systems, University of Bremen (to appear).
Arnold, L. and Crauel, H. (1992), Iterated function systems and multiplicative ergodic theory,

Diffusion Theory and Related Problems in Analysis II (M. Pinsky and V. Wihstatz, ed.),
Birkhauser, Boston, pp. 283–305.

Babillot, M., Bougerol, P., and Elie, L. (1997), The random difference equation Xn = AnXn−1 +
Bn in the critical case, Ann. Prob. 25, 478–93.

Baccelli, F. (1992), Ergodic theory of stochastic Petri networks, Ann. Prob. 20, 375–396.
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Häggström, O., van Lieshout, M.-C., and Mo/ller, J. (1998), Characterization results and Markov

chain Monte Carlo algorithms including exact simulation for some spatial point processes,

Bernoulli Journal (to appear).

Hammersley, J. and Handscomb, D. (1964), Monte Carlo Methods, Chapman and Hall, London.

Hutchinson, J. (1981), Fractals and self–similarity, Indiana University Math. Jour. 30, 713–747.

Jessen, A. and Wintner, A. (1935), Distribution functions and the Riemann zeta function, Trans.

Amer. Math. Soc. 38, 48–88.

Kerov, S. (1993), Transition probabilities for continual Young diagrams and the Markov moment

problem, Technical Report, Institute for Electricity and Communications, St. Petersburg,

191665, Russia.

Kesten, H. (1973), Random difference equations and renewal theory for products of random ma-

trices, Acta Math. 131, 207–248.

Kifer, Y. (1986), Ergodic Theory of Random Transformations, Birkhauser, Boston.

Kinderman, R. and Snell, J. L. (1980)., Markov Random Fields, American Mathematical Society,
Contemp. Math. vol. 1.

Letac, G. (1986), A contraction principle for certain Markov chains and its applications, Contemp.
Math. 50, 263–273.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953), Equations of
state calculations by fast computing machines, Jour. Chem. Physics 21, 1087–92.

Mo/ller, J. (1998), Markov Chain Monte Carlo and spatial point processes, Stochastic geometry,
Likelihood, and Computation (O. Barndorff-Nielsen, W. S. Kendall and M.-C. van Lieshout,
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