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A Particle Migrating Randomly on a Sphere

David R. Brillinger1

Consider a particle moving on the surface of the unit sphere in R3 and heading
towards a specific destination with a constant average speed, but subject to ran-
dom deviations. The motion is modeled as a diffusion with drift restricted to the
surface of the sphere. Expressions are set down for various characteristics of
the process including expected travel time to a cap, the limiting distribution, the
likelihood ratio and some estimates for parameters appearing in the model.

1. INTRODUCTION

There are marine mammals, such as elephant seals, that travel great distan-
ces and are tracked. It is of interest to biologists to describe the routes. One
can wonder for example if the animals follow great circle paths. The
animals will be foraging along the way, i.e., pulled away from the direct
route from origin to destination, and this may be modeled as stochastic
fluctuations. The great circle route is the geodesic, providing the shortest
trip. A ship needs to be changing course continually to stay on it. It is
intriguing that some animals apparently do not need to change course,
they can keep going straight ahead.

An issue that arises in modeling the physical world is whether to work
employing the Ito or the Stratonovich calculus. Reasons have been pre-
sented in various places to the effect that, when developing physical
applications, it is simpler to start with the Stratonovich form and then
switch to the Ito for developing properties of the process. See the discussions
in: Bartholdi et al.(19) Karlin and Taylor.(9)

To start, some of the previous work on the planar case with drift and
the spherical case without drift will be presented.
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2. THE PLANAR CASE

Kendall(10) considers the case of a Brownian motion on the plane with
an "attractive" polar drift. He works with polar coordinates, ( r , $ ) ,
centered at the target center. The particle, in his case a bird, starts at loca-
tion (D, 0). In a time interval of length dt it moves a distance 6 dt towards
the target, then is subject to random Gaussian disturbance, of amount
adU, towards the target and amount a dVt at right angles to the path.
Here Ut and V, are independent standard Brownian motions and a2 their
common variance. In Ito form the motion may be described by

It will be noted later that these equations correspond approximately to
motion on a sphere of large radius. The infinitesimal generator of the rt

process is

Using the criteria developed in Karlin and Taylor(9) or Bhattacharya and
Waymire,(3) for this process the point 0 is unreachable, but an entrance
point.

Next suppose that there is a circle of radius a about the target, then
among the results of the Kendall paper is that the time to get from (D, 0)
to the circle has expected value

This result may be obtained directly from the formulas recorded in
Appendix I, with

and
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x>0. Here (2.3) is the exponential integral Ei(-). The naive expression for
the expected travel time is (D — a)/S corresponding to <r = 0 in (2.2).
Kendall also derives an expression for the variance of the travel time.

The invariant distribution of the process is proportional to m'(x)
above, i.e., a gamma. The likelihood ratio relative to the case 5 = 0 is

following the Cameron-Martin-Girsanov formula recorded in Appendix I.
This is maximized by the choice

When 5 = 0 the equations considered are the polar coordinate form of
Brownian motion in the plane and for rt one has the case n = 2 of the
Bessel process discussed for example in Karlin and Taylor.(9) The transition
density function for that process is given there and is

t > 0 with

3. FORMS OF SPHERICAL BROWNIAN MOTION

Perrin(15) working from a model of a randomly rotating sphere, deter-
mines the density of the angle, wt subtended at the center of the sphere
between the initial position of a point on the surface and its position t time
units later. He finds that density, relative to the measure sin w dw dtp on the
sphere is

with f satisfying

860/10/2-12
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Perrin shows the solution of (3.1), with appropriate initial conditions, is

for t > 0 where Pn is the Legendre polynomial of order n. Perrin provides
some graphs of this function. He also shows that

and further remarks that one can get other moments of Legendre polyno-
mials in cos wt by integrating them against expression (3.2).

Yosida(23) determines spherical Brownian motion as the unique tem-
porally and spatially homogeneous diffusion process on S2. Suppose 9 and
<j> denote longitude and colatitude respectively, 0 <9 =%n and 0 < j > < 2 n .
Yosida finds the transition density from the position ( 0 , 0 ) at time 0 to the
position (6', $') at time t to be

Here Ym(9, <j>) is the spherical harmonic

for n = 0, 1, 2,..., m < n, and Pm is the associated Legendre function and
P° = Pn, see Terras.(20) The representations (3.2) and (3.3) are seen to
correspond when one uses the addition formula for spherical harmonics.
Yosida(23) gives the infinitesimal generator of the process as a2 zf*/2 where
A* is the spherical Laplacian

0<9<n. The Y"' are the eigenfunctions of the operator A*, showing one
source of the formula (3.3).

The Ito equations for the process are

with Ut and Vt independent Brownians.
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The motion of 6 is what Ito and McKean(8) call the Legendre process
on [0, n]. It has generator

Writing

and with if/ circular Brownian (that is aBt (mod 2n], where Bt is a Brownian),
they show that spherical Brownian may be represented as

Stroock(18) works with Y in R3. He obtains the spherical Brownian as
the solution of the Ito equation

supposing Y 7^ 0 and that B is Brownian R -> R3. In this case the
Stratonovich form is

(Here and in the following (S) indicates that the Stratonovich form of equa-
tion is being employed.) This process stays on the surface and the final term
of (3.8) may be thought of as pulling the process back onto the sphere.

With the change to polar coordinates defined by Y = (R sin 9 sin <j>,
R sin 6 cos <j>, R cos 9) expression (3.9) becomes

If one sets 6, = rt/R and takes R large, these become



434 Brillinger

If one converts to the Ito form and <5 = 0, these become (2.1). In another
approach, Oksendal,(14) [pp. 142-143] obtains spherical Brownian as
B/|B| with a particular time change.

Suppose next that one is focusing on the distance, 6t to the North
Pole. With the change of variables, Xt = cos 9t, (3.5) becomes

on [ — 1,1]. This process is considered in Karlin and Taylor,(9) and
Matthews.(12) Its infinitesimal generator is

The eigenfunctions are the Legendre polynomials, P n ( x ) with eigenvalue
2.n = n(n + 1), see Karlin and Taylor.(9) One sees another connection with
(3.2). The so-called scale and speed functions, defined in Appendix I, are

and

respectively. The invariant density, proportional to m'(x), is the uniform.
The points ± 1 constitute an entrance boundary and are unreachable.
Using the expression (A.3) of the Appendix and carrying out the required
integrations, the expected time to travel from x to the point d is

Roberts and Ursell(16) investigate random walks on the sphere with all
directions of movement assumed equally probable. They obtain the
formula (3.2) as the limit when the step size gets small and suggest an
approximation to distribution of wt. Hartman and Watson(7) develop
various properties of the approximate distribution. [See also Bingham,(4)

Watson.(22)]

4. THE GREAT CIRCLE CASE

Suppose that a particle on the sphere is migrating directly towards the
North Pole at speed 6 and subject to Brownian disturbances. The North

-1<x<d<1.
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Pole is taken for convenience. The Ito differential equations for the process
are

so long as 6 t = 0 and with 0t defined mod 2n. It will be supposed that the
particle does not start at 0 = 0 or n. (These points are inaccessible.) The
equations extend (3.4).

The infinitesimal generator of the process is

Clearly the process is bounded, simplifying derivations.
Figure 1 shows a simulation corresponding to the application motivat-

ing this research. It refers to elephant seals migrating from the California
coast into the NW Pacific. One notices the particle meandering once it
reaches the neighborhood of its destination, as was to be anticipated.
Meandering around the destination may be thought of as the animal
foraging there.

Fig. 1. Simulation of diffusion with drift on sphere.
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With the change of variables Xt = cos 9t and using Ito's lemma,
Eq. (4.1) becomes

whose infinitesimal generator is

on [ -1, 1]. This reduces to (3.10) when <5 = 0.
In the case of a sphere of large radius R, if one writes 0, = r t /R one

sees that the Eq. (4.1) become

and replacing Ra by a and RS by S leads back to (2.1). The endpoints of
the interval here are inaccessible, but following the general discussion of
the topic in Karlin and Taylor(9) can be treated as points of entry. The
process is recurrent.

Various characteristics may be derived from the expressions in the
Appendix. Following that material one has

The scale function is given by

and the speed function by
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The invariant density of the process is proportional to

— l<x<l. For d/a2 small, the density is approximately uniform.
Consider next the expected travel time for the process. Suppose the

process starts at x and heads to d, 1 >d>x> — 1. Following the expres-
sion (A.4) in the Appendix this may be evaluated to

In the case that d = 0, it is

as given in Section 3.
The skew product representation (3.7) given earlier holds in the

present case as well. The proof of Ito and McKean,(8) [p. 200], applies
equally.

5. DETERMINATION OF THE PARAMETERS

Following the expression (A.5) in Appendix I, the likelihood ratio of
the process, relative to that of the case S = 0, is

This leads to the maximum likelihood estimate

Because the particle reaches the region of its destination eventually, this
estimate becomes unreasonable as T-> oo.

One can obtain an exact estimate of a2 on the basis of the usual sort
of result for quadratic variation
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derived in the Appendix. Here { t i } is a partition of the interval that gets
finer under the limiting process, the result is conditional on the (con-
tinuous) realization of 6S, 0 < s < T, and it is assumed that there exists £ > 0
such that |sin 6S\ $=e. The curve $, refers to a continuous curve obtained
from the curve <ft by either patching together continuous segments or by
reflecting (j>, whenever it reaches the barriers <j> = 0,n. (It is assumed that
0<(f>0<2n.) These two constructions are illustrated in Fig. 2. The top

Fig. 2.
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graph represents a realization of 0t. The middle results from joining the
two segments continuously and the bottom from reflecting.

When working in practice the data will be available at discrete time
points and the above likelihood ratio is not obtainable. However if one has
an expression for the transition density, then it can be employed to obtain
the likelihood function and estimates of the parameters obtained. An
approximate approach here is to do what a ship's navigator has done tradi-
tionally. Specifically at the start of a day based on a ship's position the
navigator determines the great circle course and that is followed for a day.
The next day the navigator determines the ship's new position, again the
great circle course based on that position is determined and followed for a
day. Unless the ship is heading due north or south, during the course of the
days it will be pulled off the great circle route, but with the course revisions
the destination is approached. This method leads to approximating the
desired transition density by a succession of motions in the plane.

Other approaches to approximating the transition density include:
numerical solution of the partial differential equations, some form of quad-
rature (e.g., that of Dawson(5)) and simulation.

6. NAVIGATOR'S COORDINATES

To obtain the planar approximation just referred to and to prepare
Fig. 1 provided earlier, traditional coordinates are helpful. The relations for
these are as follows. Let (j> and 6 refer to longitude and latitude on the
sphere, in radians, 0 < j < 2 n and — n / 2 < 0 < n / 2 . Suppose that a ship is at
location 0t, 6, at time t heading towards position 0, 0. The great circle
distance, pt, and course, nt, satisfy

with appropriate choice of quadrant in the latter case. These formulas
come from spherical trigonometry and are developed, for example, in
Various(21)
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7. DISCUSSION

Corresponding Ito, Stratonovich and differential equation developments
have been presented. Each has something to offer and will be employed in
the practical study of elephant seal paths in progress.

Another paper working with a diffusion on the sphere, with drift, is
Le Gall and Yor. ( l l ) They add general drift terms to Brownian on the
sphere and study the equations

They obtain asymptotic properties of the windings of the process.
Rogers and Williams(17) develop Brownian motion on submanifolds of

Rd via a Stratonovich equation. This could be extended to include motion
preferring one direction.

APPENDIX

Appendix I—Some Formulas

General results for diffusion processes are developed in Gihman and
Skorokhod,(6) Karlin and Taylor,(9) and Bhatacharya and Waymire(3) for
example. The notation of the latter work is used here.

Consider a diffusion process Xt on the line satisfying

where Bt is Brownian motion. Define

Then the scale function is given by
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and the speed function by

Following Bhatacharya and Waymire(3) the expected travel time may
be written

if — 1 is the lower bound of the state space.
The Cameron-Martin-Girsanov formula for the log likelihood ratio of

the process (A.1), relative to the case of fi(x) = ̂ i0(x), leads to the expression

See also Gihman and Skorokhod(6) [p. 90].

Appendix II—Determining o

One reference is Basawa and Rao.(|2) Consider the quantity

Its behavior will be considered conditional on the continuous realization
{ 9 t , 0<t< T} satisfying |sin 8t\ ^s for some £>0.

The expected value of (A.6) is

which is <CT2r/£2. The variance of (A.6) is bounded by 2a4T
max{ti+1 — ti}/e4 which tends to 0 as the partition gets finer. This gives the
result. The conclusion is basically a result for the quadratic variation of a
martingale.
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