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1. Introduction

Data of process type are now routinely collected and analyzed in the

environmental sciences. This is a consequence, in part, of today’s general

availabilty of sophisticated computing, storage, display and analysis equip-

ment. At the same time stochastic models have been developed that take

detailed note of the special characteristics of such data and hence allow

more appropriate and efficient analyses to be carried through. The prob-

lems can be difficult, but often an aproach is suggested by basic scientific

background and the parameters have physical interpretations. Recognizing

a process type is an important step along the way to its analysis. The goal

of this work is to bring out some basic ideas by presenting a number of

elementary examples of random process data analysis.

The work proceeds by describing some basic types of stochastic

processes and then presenting some techniques for addressing general

problems arising. The emphasis is on processes, their characteristics and

understanding their nature by descriptive statistics and elementary analyses

rather than by developing background theory. By presenting examples,

from different fields, and doing so in comparative fashion the intention is

to bring out both similarities and differences. The examples have differing

goals.

Concern will be with how the data might be presented visually and

described analytically. The next section presents a few basic formal con-

cepts. Section 3 is concerned with temporal point and marked point
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processes and an application to a risk assessment problem in space sci-

ence. Section 4 is concerned with a count-valued time series relating to

concerns with childbirth risk. Section 5 focuses on spatial-temporal

processes with an example from neuroscience. Section 6 focuses on parti-

cle processes with an example from marine biology and the beginnings of

an example from pest management. Finally there are some general

remarks and discussion.

Techniques highlighted include: plotting the data, likelihood analysis,

the EM method, generalized linear modeling, Fourier inference and state

space modelling.

2. Some Basic Concepts and Methods

A classical and effective approach for addressing a broad variety of

environmental problems is to view the data that have come to hand as part

of a realization of a stochastic process. In simplest terms a

random process is a family of random variables indexed by a label. In

the present work the label will refer to time or space-time. The data of

concern may be real-valued, vector-valued, categorical-valued, or general-

ized function-valued amongst other possibilities.

A random process may be described as a family of jointly distributed

random variables. The values it takes on and the character of the index

labelling the members of the family are what provide special features. For

example a temporal point process , referring to the occurence times of

some event of interest, might be described by providing the joint distribu-

tions of the count-valued random variables N (A 1), ..., N (Ak ) where

A 1, . . . , Ak , k in Z = {0,±1,±2,...}, refer to any Borel subsets of

R = (−∞,∞) and N (A ) is the number of occurences of the event in the set
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A . Of course the distributions must be consistent for the process to be

well-defined. In the stationary case these distributions will be invariant

under translations in time. Stationarity is basic to the definition of impor-

tant parameters describing processes and to the derivation of the statistical

properties of quantities computed from process data. In Section 6 an

example of points distributed in both the plane and time is considered.

Then the Borel subsets are contained in R 3.

Two general approaches will be made use of in the analyses

presented. In the Method o f Moments basic use is made of moments and

cumulants to define parameters of importance and to develop properties of

polynomial-type statistics based on data at hand. In Likelihood Analysis a

serious attempt is made to set down a full model and thereby obtain

efficient procedures. Bayesians would recomend multiplying the likeli-

hood further by a prior distribution.

3. Point Processes and Marked Point Processes

3.1. Background

A temporal point process is a collection of occurrence times of

events, {τ j }, supposed distinct and ordered by τ j < τ j +1, j in Z and

τ j in R .

Practically, it is often useful to describe a point process via its

conditional intensity function. Among those introducing this approach

into statistics were Cox and Lewis (1972), Rubin (1972) and Snyder

(1975). To describe the conditional intensity of a temporal point process

write

N (t ) = # {τ j in [0,t )} = N [0,t )
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and Ht = {τj with τ j ≤ t }. This last is referred to as the history of the

process up to time t . When it exists, the conditional intensity , µ(t  Ht ),

is given by

Prob {dN (t ) = 1 Ht } = µ(t  Ht )dt

with the interpretation that µ(t  Ht ) is the rate of occurence of events at

time t given the history until and including then. With occurrence times

0 ≤ τj < T and supposing the process distribution to depend on a parame-

ter θ the likelihood f unction is given by

j
Π µ(τ j  Ht ,θ) exp{−

0
∫
T

µ(t  Ht ,θ)dt }

It may be used to make inferences concerning θ.

Important characteristics of a stationary point procss may sometimes

be inferred from an estimate of its autointensity function

m (u ) = Prob {dN (t +u ) = 1 dN (t ) = 0}⁄dt (3.1)

giving the rate at which points occur at lag u after an existing point. It

may be estimated directly, see Brillinger (1978).

A marked temporal point process is a sequence of pairs {(τ j ,Mj )},

with τ j in R refering to the j-th time and Mj an associated quantity (or

mark) at that time. The likelihood function may be based on the probabil-

ity element

Prob {dN (t ) = 1 and m < MN (t ) < m +dm  Ht } = ν(t ,dm  Ht )dt

(3.2)

see Fishman and Snyder (1976). For example one then has

Prob {no point in (t ,t +u ) with mark ≥ m  Ht } = exp{−
t
∫

t +u

m
∫
∞

ν(s ,dm  Hs )ds }
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(3.3)
Writing

o (s ,dm  Ht ) = E {ν(s ,dm  Ht )} (3.4)
the probability (3.3) is bounded by

t
∫

t +u

m
∫
∞

o (s ,dm  Ht )ds (3.5)

see Brillinger (1982).

A common question is whether the temporal and mark variations are

statistically independent.

3.2. An Example From Space Science

Astronauts living and working in space are subject to a wide variety

of risks of which an important one is that they, or their space craft, may

be hit by orbiting debris. To assess this risk NASA sampled the popula-

tion of orbiting objects, see Committee on Orbital Debris (1995). A nar-

row radar beam was used to detect and estimate characteristics of debris,

data being collected over a number of observation periods when the Hays-

tack telescope was avaiable.

Figure 1a displays, N (t ), the cumulative count of times at which

pieces of orbital debris, at altitudes between 700 and 1100 km, passed

through the field of view of a radar beam for one observation period. For

the data graphed 33 pieces were detected passing through in 160.1

minutes. In the stationary case the step function should fluctuate around a

straight line, as appears reasonably the case here.

Were the process homogeneous Poisson the intervals would be

independent exponentials with the same mean. Figure 1b provides a plot

of the points (Y (j ),j ⁄(n +1)) where the Y (j ) are the order statistics of the

intervals, τ j +1−τ j , between successive times. In preparing the figure the
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data for all the observation periods were employed. The plot would be

approximately linear were the intervals homogeneous exponentials. A

straight line has been applied to the plot as a reference and the exponential

appears a reasonable working hypothesis, but there is a hint of departure.

A point process may be a renewal process, that is the intervals

independent and identically distributed. Turning to this possibility the

presence of serial correlation amongst the intervals is assessed. Given a

stretch of values, Yj , j =0,...,J −1, the periodogram is defined by

2πJ
1_ ___  Σ Yj exp{−i λj }  2

In the case of independence this statistic will fluctuate about a constant

level. Figure 2a provides the average of the periodograms of the

sequences of intervals between objects averaging over the observation

stretches. Also included on the plot is an estimate of that constant level

and approximate 90% confidence interval lines assuming the basic pro-

cess stationary and mixing. There is little evidence against the assumption

of a renewal process for this data set.

The autointensity function (3.1) may also be used to examine the

Poisson assumption. In the Poisson case it would be constant at the mean

rate of the process. Figure 2b provides an estimate of the square root.

The estimate employed merges the data from all observation periods.

Approximate 90% confidence limits are indicated by the dotted lines. One

sees a suggestion that the intensity is raised at lags .04 to .08, but the

suggestion is not strong. A possibility is that the process could be

renewal with a non-exponential interval distribution. The square root has

been graphed here because in the case of reasonably lengthy stretches of

data the sampling fluctuations are approximately constant.
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In summary, a homogeneous Poisson process appears a plausible

working hypothesis for the point process of passage times of these objects.

3.3 Continuing the Space Science Example

Figure 3a provides the times of passage of the same particles as in

Figure 1a, but now the estimated altitudes of the particles are also indi-

cated by the heights of the vertical lines. In collecting the data the sizes

of the objects were also estimated, by the so-called radar cross section.

This measure has an (imperfect) connection with the physical size, see

Levanon (1988). Figure 3b extends Figure 3a by including the sizes of

the particles. The altitude is still indicated by the y -axis height but the

sizes of the objects are indicated by the radii of circles. The data here

may be viewed as part of a realization of a marked point process with

mark M = (altitude , radar cross section ).

Questions of interest include whether the sequence of marks {Mj } is

independent of the sequence of times {τ j }, and whether the sequences of

altitudes and sizes are themselves independent and identically distributed

(i.i.d.). The first question was raised in the context of earthquake

sequences by Vere-Jones (1970). As will be seen below it may be

addressed by spectrum analysis. Figures 4a and 4b provide average

periodograms of the altitude and size values in the manner of Figure 2a.

They both have the character of white noise processes. The estimates are

almost totally within the approximate 90% confidence limits.

As mentioned above it is of interest to ask whether the sequence of

mark values is independent of the temporal point process. One might

wonder for example do larger sized objects tend to follow longer gaps?

This question may be addressed via cross-spectral analysis in the case that

it appears plausible to assume the inherent process stationary. Figures 4c
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and 4d are estimates of the coherences of the sequence of intervals,

Yj = τj +1−τ j , with the altitude and size sequences respectively. These

figures provide no evidence of substantial dependence.

Having an approximate model one can now use expressions (3.3),

(3.4) to estimate some risks of interest. Taking as working model the

basic point process to be Poisson of rate µ, the altitude sequence as

independently i.i.d. with density f A (a ) and the sizes as further indepen-

dently i.i.d. with density f S (s ), the intensity function o of (3.2) is given

by

µf A (a )f S (s )

as is o of (3.4). The quantities appearing here may be estimated simply

and thereby bounds such as (3.5) estimated.

The strength of the data analyses presented is that a broad class of

alternative possibilities have been considered prior to obtaining a very

simple working model.

4. Time Series

4.1. Background

A time series is a wiggly line, {Y (t )}, with Y (t ) in R and t in Z or

in R . If Y (t ) is binary, taking on the values 0, 1, and the 1’s are rare

then the series Y appears like a temporal point process.

Given expressions for the conditional mass or density functions, such

as

Prob {y ≤ Y (t +1) < y +dy  Ht ,θ} = p (t +1 Ht ,θ)dy

in the case of t in Z , one can express the likelihood as
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t
Π p (t +1 Ht ,θ) (4.1)

Here Ht is the history {Y (u ), u ≤t }. The likelihood can be used to make

inferences concerning θ.

4.2 Example from Public Health

The United States has a worrying high level of cesarean deliveries

compared to most developed nations, Clarke and Taffel (1995). This

shows itself in a substantially reduced number of babies born on week-

ends. Besides cesareans, the increased proportion of weekday births may

be due to the number of births that are induced. Both of these are causes

of concern because of increased maternal and infant health risks, ibid .

The preceding authors list average numbers of births each day of the week

for the whole USA from Sunday to Saturday as 8754, 11398, 12333,

11957, 11895, 11957, 9420 respectively for the year 1992.

In this section the dependence of delivery day on the day of the week

is studied for the city of Toronto in 1986. Figure 5a graphs the number of

births for each day of the year. One notes a rapid oscillation and a bow-

ing up in the middle. The bowing corresponds to more births in the sum-

mer. The apparent dependence of the number of births on the time of

year, in addition to day of the week, is something that has been noted

various times before. The smooth curve added is an estimate of an under-

lying slowly changing rate as obtained by the function lowess() of the sta-

tistical package S, see Becker, Chambers and Wilks (1988), Cleveland et

al (1992). Figure 5b provides parallel box plots of the birth counts for

each day of the week. The lower counts for the first and last days

correspond to the reduced number of Saturday and Sunday births. The

weekday-weekend phenomenon mentioned is quite pronounced here.
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The series values, Y (t ), are actually counts and so it appears sensible

to employ a model taking some note of this. Consider modelling the

count on day t as Poisson with mean

µt = exp{Tt + S <t >}

where Tt is a slowly varying trend component and S <t > refers to day of

week effect, <t > being the day of the week date t falls on. Further con-

sider modelling the sucessive daily counts as statistically independent.

Because of the assumed independence expression (4.1) simplifies to

t
Π

Y (t )!
1_ ____(µt )Y (t )exp{−µt }

This model may be fit directly via the function gam() of S, Hastie (1992).

The estimates T̂t , Ŝ <t > obtained are similar to those suggested by Fig-

ure 5. To examine the Poisson assumption the residuals of the fit may be

examined for overdispersion. The estimate of the overdispersion parame-

ter is 1.07502 so any overdispersion appears mild.

Figure 6a provides the periodogram of the original count values. The

weekly effect is apparent through the presence of the peaks near 1/7 and

2/7. The trend shows itself in the higher values near frequency 0. Figure

6b is the periodogram of the Pearson residuals, having removed the

estimated trend and day of the week effects. Included on the plot are

approximate 95% confidence limits about the independent noise level.

There is no strong suggestion of autocorrelation amongst the residuals.

The model of independent Poisson counts therefore appears useful.

Were some autocorrelation suggested in the latter plot one could use

the function gam() of S to include it by approximating the series by 0-1

series and including lagged values in the predictor, see Brillinger and
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Segundo (1979). Becker (1986) fits an epidemic process via a conditional

binomial generalized linear model.

A model such as the one obtained may be used, for example, to esti-

mate possible changes in costs resulting from fewer elective cesareans.

5. Spatial-temporal Processes

5.1 Background

Spatial −temporal process data may be written Y (r,t ) with r = (x ,y )

or (x ,y ,z ) and (r,t ) in some subset of R 3 or R 4. One argument, t , has a

privileged character. Such data may often be conveniently displayed by a

sequence of images, by a video or by spinning a surface.

The process may be available everywhere in a lattice or correspond to

irregularly placed points. The latter case corresonds to a spatial-temporal

point process {(rj ,tj ) ≡ (xj ,yj ,tj )}. Let Ht denote the history of this pro-

cess up to and including time t . The conditional intensity is given by

Prob {dN (x ,y ,t ) = 1 Ht } = ν(x ,y ,t  Ht )dxdydt

An example of spatial-temporal point process data will be presented in

Section 6.3 . References include: Fishman and Snyder (1976), Vere-Jones

and Thomson (1984), Rathburn (1993).

5.2 Example from Neuroscience

The next example concerns the olfactory system, that is the sense of

smell. Data were collected of the response of a rabbit’s sniffing an odor.

The rabbitt was conditioned to respond to a particular odor. An array of

sensors was applied to the brain above the olfactory bulb and electroen-

cepholograms recorded. The array had 64 sensors laid out in an 8 by 8

latice, 3.5 mm by 3.5 mm. Bursts between breaths were measured with
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values taken 2 ms apart. There were T = 38 temporal values recorded for

each burst and J = 12 replicates. For a description of the experiments see

Freeman and Grajski (1987).

The data may be written [Yj (x ,y ,t )] with (x ,y ) location, t time and j

replicate, x ,y = 1,...,8, t = 1,...,38, j = 1,..,12. Figure 7 shows the data of

the first replicate. One notes oscillations at a possibly common frequency,

with the amplitude of the oscillations varying with position in the array.

The analysis presented focuses on the separation of space and time

variation. In spatial-temporal circumstances separation of variables is an

important analytic technique.

For the j -th replicate, consider the model

Y j (x ,y ,t ) = a (x ,y )γj (t ) + εj (x ,y ,t ) (5.1)

with a (.), fixed and standardized by Σ a (x ,y )2 = 1, with the γj (.)

independent stationary time series of common power spectrum f (.) and

with the ε j (.) independent white noise processes of variance σ2.

The relationship (5.1) is a form of random effects model. In the case

that the γj , ε j are Gaussian one can consider estimating the unknowns by

maximum likelihood. This fitting is conveniently carried out in the fre-

quency domain employing the EM method (Dempster et al (1977). The

steps are: first Fourier transform with respect to t to obtain

Yj (x ,y ,λ) = a (x ,y )Γj (λ) + Ej (x ,y ,λ)

with λ taking the values 2πj ⁄38. Then having some initial values compute

â (x ,y ) =
j ,λ
Σ Yj (x ,y ,λ)Γj (λ)   ⁄C

followed by
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Γ̂j (λ) = [
x ,y
Σ Yj (x ,y ,λ)a (x ,y )]f (λ)⁄(f (λ) + σ2)

and

f̂ (λ) =
j
Σ   Γj (λ) 2⁄J

σ̂2 =
j ,x ,y ,λ

Σ  Yj (x ,y ,λ) − a (x ,y )Γj (λ) 2⁄JXY Λ

respectively. Finally iterate to convergence. The divisor C is chosen so

that Σ â (x ,y )2 = 1, while J = 12, Λ = 19 and X ,Y = 8.

Figures 8 and 9 show the results of the computations. Figure 8

displays the fitted spatial function, â (x ,y ) in both perspective and contour

fashion. It shows an apparent focus of activity. Figure 9 contains the

twelve estimated time series components, γ̂j (t ). The estimated replicate

time series show oscillations, as was to be anticipated from Figure 7. The

amplitudes do vary noticeably with replicate.

Figure 10 shows the residual series Y (x ,y ,t ) − â (x ,y )γ̂1(t ), for the

first replicate on the same scale as Figure 7. One sees the amplitudes to

be much reduced and the series to be noisier.

Following a classic approximation one can act as if the empirical

Fourier transform values Ej are approximately Gaussian, with values at

the Fourier frequencies independent, but the assumption of Gaussian γ is

basic to the maximum likelihood analysis presented.

This type of work may be seen as establishing base values preparatory

to seeking possible changes from base values resulting from some treat-

ment.

6. Particle Processes
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6.1 Background

A particle process represents the path or trajectory of an object mov-

ing along a line, around in a plane or about in space. In the case of the

plane the trajectory may be represented by (X (t ),Y (t )) where X (t ) and

Y (t ) give the x −y coordinates of the particle’s location at time t . The

particle could be meandering or pole-seeking. The representation

(X (t ),Y (t )) is that of a bivariate time series, but the conceptualization of

the problem is often quite different.

An example on a grand scale is provided in Eddy and Que (1995)

where there is discussion of how to display and analyse aircraft flights

over the continental United States. The process is a collection of paths,

(Xj (t ),Yj (t ),Zj (t )), in R 3.

6.2 An Example from Ecology

Next an example from ecology is presented - the migration path of an

elephant seal. These animals were near extinct at the turn of the century

so there is a societal need to learn more about their behavior. Figure 11

graphs the path of one animal as an example. The animal starts from the

Channel Islands off Santa Barbara, California, proceeds to the northwest

and then returns. A great circle route has been added to the figure for

reference. This animal seems to know surprisingly well where she is

going. The problem of how to describe such paths is of interest.

In Brillinger and Stewart (1998) a pole seeking model on the sphere is

considered. Suppose θ, φ, δ respectively denote longitude, colatitude and

speed in a coordinate system such that the animal is traveling to the North

Pole. Since the method of estimating the noontime location is quite

indirect, (based on times of sunrise, noon, sunset recovered when the

animal returns) there is measurement error involved. The equations set
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down in Brillinger and Stewart (1998) have the form

θt ′ = θt + τεt ′ (6.1)

φt ′ = φt + τγt ′⁄sin θt ′ (6.2)

θt +1 − θt =
2tan θt

σ2
_ ______ − δ + σεt +1 (6.3)

φt +1 − φt =
sin θt

σ_ _____γt +1 (6.4)

with ε, γ, ε′, γ′ unit variance independent Gaussian noise processes. The

latter two processes correspond to measurement error.

First the model (6.3-4) for the case of no measurement error is fit by

maximum likelihood. The values obtained are:

δ̂ = .0112(.0011)radians

σ̂ = .00805radians

The full model (6.3-4) is a nonlinear state space model, see eg. Har-

vey (1989). A likelihood may be found based on it once one has an

expression for the conditional density, p (θt +1′,φt +1′  Ht ,δ,σ,τ), as in (4.1).

This is not directly available but may be estimated by Monte Carlo by

generating realizations of the processes θ, φ and then averaging.

In the case with measurement error, and supposing the outbound

speed is δ while the inbound is δ1, the estimates are:

δ̂ = .0126(.0001)

δ̂1 = .0109(.0001)

σ̂ = .000489(.000004)
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τ̂ = .0175(.0011)

all in radians. Now the measurement errors, εt ′, γt ′ appear dominant, not

the foraging movement given by the ε and γ of (6.3-4).

More complex Monte Carlo sampling schemes are available to use

here, see eg. Stoffer and Wall (1991), Kitagawa (1996), but were unneces-

sary because of the small sample size and number of parameters involved.

6.3 Example from Pest Management

This last example is not developed as much as the preceding ones. It

is meant to illustrate a data type and the beginnings of model develop-

ment. It could also have been presented in Section 5.

In 1975 a medfly epidemic took place in the Los Angeles area of Cal-

ifornia, see Routhier (1977), Hagen et al. (1981). It covered the period

September 24 to December 1. Figure 12a plots the locations at which

medflies or their larvae were discovered. The map is the area north of

Santa Monica and the shaded area is the Pacific Ocean. The incident

began in the lower part of the figure in Culver City, and ended with trap-

pings at the lower and upper reaches of the region. Figure 12b graphs the

numbers observed each day, with a peak the 37th day. These data are

once again spatial-temporal. Figure 12 separates the spatial and temporal

variables.

To bring out the joint spatial-temporal character Figure 13 shows the

locations of medfly sightings for successive nine day periods. Figure 14

plots the distances from the location of the initial sighting for the succes-

sive sightings. One sees sightings at a distance as the epidemic ends. A

lowess line has been added as a reference.

The interpretation of this data set is complicated by many things
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including: the locations of the traps, the inefficencies of the traps (often

described as low), the timing of visits to the traps and the eradication

treatment. Treatment began early in October with application of malathion

to host plants. It was soon realized that this approach was too slow to

acieve eradication. In November a sterile fly release program began and

eventually about 20 million such flues were being released each week.

Alltold 500 million sterile flies were released and some 280,000 of these

were trapped in the eight months of the program, see Routhier (1977).

The basic entomological and geographical processes are interesting.

The bugs will be spreading by flying, sometimes assisted by the wind.

Also the numbers will be increasing rapidly as eggs are laid and become

adults. Adults will be dieing. If at some time a bug flies near a trap they

may be attracted and caught. The data will become available only when a

trap is examined. The bug trajectories might be modelled as particle

processes, as the elephant seal migration was above. The locations of the

traps, the ranges of the traps and the timing of trap examinations all affect

the data obtained. The eradication effort will need to be included in the

models. The mathematics of the spatial-temporal birth and death process

are pertinent, see eg. Cox and Isham (1980).

One problem is how to use such data to estimate the characteristics of

the overall population.

7. Other Types of Processes, Data and Techniques

There are various other data sets and associated processes that could

well have been discssed in the spirit of the paper. Perhaps foremost are

the spatial processes, Y (r) with r = (x ,y ) or (x ,y ,z ). One can also men-

tion line processes, hybrids eg. sampled values, Y (τ j ), processes on
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graphs, trees, shapes, tesselations and other geometric entities. Stoyan et

al. (1987) is one reference.

Another topic that might have been presented is the case where the

values of a process are discrete, falling into categories. The categories

may be ordered, that is the values ordinal.

Difficulties arising in working with data have not been discussed.

There are problems with: biased estimates, long range dependence,

outliers, missing values, ...

8. Discussion

The goal of this paper has been to present in comparative, parallel

fashion examples where the basic data may be seen as part of a realization

of a random process. Statistics texts often contain substantial material on

descriptive statistics, focusing on numerical quantities and figures

separately from any stochastic modelling. In part this has been the

approach of the present paper. The classic problems of uncertainty esti-

mation and goodness of fit are ever present, but the paper has not focused

on these.
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Figure Legends

Figure 1. The top graph, 1a, plots the cumulative count of debris pieces

passing through the field of view of the radar after observing has

started for some period. Figure 1b is an exponential probability plot

for all the observed intervals between successive objects passing.

Figure 2a is the average of the periodograms for the data of the various

observation periods. Also included are approximate 95% marginal

confidence limits. Figure 2b is the estimated autointensity function

with approximate 95% confidence limits.

Figure 3a represents the times of objects passing through and the

corresponding altitude. Figure 3b is as Figure 3a, but now circles are

included to represent the sizes of the objects.

Figures 4a and 4b are the averages of the periodograms of the altitudes

and sizes, averaging over the available observation periods. Figures

4c and 4d are coherence estimates for the intervals beween successive

passages with the altitude and size series repectively. The upper null

95% marginal confidence line has been added.

Figure 5a provides the number of births in Toronto 1986 for each day of

the year. A smooth lowess curve has been superposed. Figure 5b

presents parallel stem-and-leafs split by day of the week.

Figure 6a is the periodogram of the series of Figure 5a. Figure 6b is the

periodogram of the residuals having removed an estimated trend and

the daily effects.

Figure 7. The electroencephalograms of the first replicate of the experi-

ment for the 8 by 8 array.
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Figure 8. The estimated spatial function, a (x ,y ), of the model (5.1).

Figure 9. The estimated latent series for the 12 replicates.

Figure 10. The residual series having fit the model (5.1).

Figure 11. The outbound and inbound tracks of an elephant seal heading

into the Northwest Pacific from near Santa Barbara, California.

Figure 12a is a plot of the locations of trappings of medflies, adults and

larvae, during an outbreak in 1975. The shaded region is the Pacific

Ocean. Figure 12b graphs the counts noted each day during the epi-

demic.

Figure 13. The plot of Figure 12a, but for successive 9 day periods.

Figure 14. The distances of each sighting from the original, for each day.
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Daily births in Toronto in 1986
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An elephant seal’s migration
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1975 medfly captures in Los Angeles, Ca.
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