
  Royal Statistical Society and Wiley are collaborating with JSTOR to digitize, preserve and extend access to Journal of the 
Royal Statistical Society. Series B (Methodological).

http://www.jstor.org

Estimation of the Second-Order Intensities of a Bivariate Stationary Point Process 
Author(s): David R. Brillinger 
Source:  Journal of the Royal Statistical Society. Series B (Methodological), Vol. 38, No. 1 (1976), 

 pp. 60-66
Published by:  for the  Wiley Royal Statistical Society
Stable URL:  http://www.jstor.org/stable/2984829
Accessed: 14-03-2016 14:35 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/
 info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content 
in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. 
For more information about JSTOR, please contact support@jstor.org.

This content downloaded from 169.229.32.36 on Mon, 14 Mar 2016 14:35:15 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org
http://www.jstor.org/publisher/black
http://www.jstor.org/publisher/rss
http://www.jstor.org/stable/2984829
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


 60 [No. 1,

 Estimation of the Second-order Intensities of a

 Bivariate Stationary Point Process

 By DAVID R. BRILLINGER

 The University of California, Berkeley

 [Received October 1974. Final revision May 1975]

 SUMMARY

 We consider histogram and smoothed histogram type estimates of the auto and

 cross intensity functions of a bivariate stationary point process. The asymptotic

 distributions are found to be multiples of Poissons in the histogram case and linear

 combinations of Poissons in the smoothed case. These asymptotic distributions

 suggest the plotting of the square roots of the estimates in order to stabilize the

 variance and to make the distributions more nearly normal. Two examples of such

 plots are presented in the paper.

 Keywords: AUTOINTENSITY FUNCTION; CROSSINTENSITY FUNCTION; POINT PROCESS; SQUARE ROOT

 TRANSFORMATION; STATIONARY PROCESS

 1. INTRODUCTION

 LET {Nl(t), N2(t)}, -oo<t<oo, be a bivariate stationary point process with N1(t) being the

 number of events of Type 1 that occurred in the time interval (0, t] and N2(t) the number of

 events of Type 2 in the same interval. Suppose that the process is orderly in the sense that

 there is zero probability that events occur simultaneously. The intensity of events of type a

 is defined by

 Pa = lim Pr {type a event in (t, t + h]}/h (1.

 hl?

 for a = 1,2. The existence of the limit (1.1) was shown by Khintchine (1960). Korolyuk

 showed that, with orderliness,

 E{dNa()} = Pa dt (1.2)

 (see Khintchine, 1960). The second-order product density function of events of type a with

 events of type b is defined by

 Pab(U) = lim Pr {type a event in (t + u, t + u + h]

 h,h'IO

 and type b event in (t, t+h']}/(hh') (1.3)

 for a, b = 1 ,2 and uo 0. The second-order intensity function of events of type a, given events

 of type b, is defined by

 flab(u) = lim Pr {type a event in (t + u, t + u + h] I type b at t}/h

 hlO

 = Pab(U)!Pb (1.4)

 for a, b = 1,2 and u 40. In this paper we are concerned with large sample properties of

 estimates Of Pab(U)g fiab(U) that have the form proposed in Griffith and Horn (1963), Cox (1965)

 and Cox and Lewis (1972). We shall propose a modified form of these estimates and, in the

 light of the large sample properties, recommend the application of a square root transformation.

 Numerous practical examples of estimates of the original form may be found in Bryant et al.

 (1973) for bivariate processes consisting of the input and output spike trains of nerve cells.

 Two examples of the modified estimates are presented in this paper. Numerous additional

 examples are given in a paper by Brillinger, Bryant and Segundo which is in preparation.
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 1976] BRILLINGER - Estimation of Intensities 61

 Suppose that the process {Nl(t), N2(t)} is given for 0< t < T, that is, the times at which

 events occurred in the interval (0, T] are known. Let the times of events of type a beS.1 s2, ..,

 and the times of events of type b be t., t2, .... Let /3>O denote a scale parameter. Next, let

 *{A} denote the number of elements in a set A. Then the estimates of Pab(U) and mab(u),

 considered in Cox and Lewis (1972), are based on the counting variate

 JP'(u) = if{(j k) such that u-/ < si-tk < u+/3 and sj5 tk}. (1.5)

 JT (U) counts the number of a events falling in a cell of bin width 2/3 and midpoint u time

 units along from a b event. It is a histogram type statistic. Cox and Lewis (1972) show that

 EJab(U(T-u) J Pab(V) dv

 2fTPEab(U) (1.6)

 for large T, small /3 and moderate u, suggesting the estimates

 Pab(U) = JTb(u)/(2/3T),

 rnab(U) JT (u)1{22Nb(T)}.

 We shall determine the asymptotic distributions of these estimates under certain regularity

 conditions. In addition we shall propose the use of the following modified estimates

 Pab(U) = Pab(U) +J u j Na(T) Nb(T)!T3, '

 rab(u) =nab(U) + I u| Na(T)1T2 (1.8)

 for I u < T. Under the regularity conditions mentioned, these appear to have better overall

 mean-squared error properties. Their definition will be motivated in Section 3. In the case that

 u is not large compared to T, there is little difference between the estimates of (1.7) and (1.8).

 Their asymptotic distributions are the same.

 2. THE ASYMPTOTIC DISTRIBUTIONS

 Many random processes that occur in practice seem to satisfy some form of mixing

 condition, that is, functionals of the process that are well separated in time are only weakly

 dependent. We will make use of the following condition of that character.

 Definition. A stationary bivariate process {Nl(t), N2(t)}, - oo < t < oo, is called strong

 mixing when

 -() = sup {P(AB)-P(A)P(B) : A e- W og B Ec t+} -> 0 (2.1)

 as -r->oo. Here P(.) denotes the probability measure of the process and X2v, denotes the

 u-algebra of events generated by events of the form

 {Nai(vl) - Nai(Ul) < hl, .*., Na(vK) - NaK(uK) < hK}g

 where ak = 1, 2; u < Uk < Vk < v; hk is a non-negative integer for k = 1, 2, ..., KandK= 1,2, ....

 This condition appears in Volkonskii and Rozanov (1959) for example. We shall also

 require that the second- to fourth-order moments of the process have the following forms:

 E{dNa(t + u) dNb(t)} = Pab(u) dt du,

 E{dNa(t + u) dNb(t + v) dN,(t)} = Pabc(Ug v) dt du dv, (2.2)

 E{dNa(t + u) dNb(t + v) dN,(t + w) dNd(t)} = Pabcd(Ug v, w) dt du dv dw

 for a, b, c, d = 1, 2 and u, v, w, 0 distinct. Finally, let P(k) denote a Poisson variate with mean [u.

 3
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 62 BRILLINGER - Estimation of Intensities [No. 1,

 Theorem 1. Let {Nl(t), N2(t)}, - oo < t < oo, be a stationary bivariate point process that is

 strong mixing, o(r + u) = O{o(-r)} as -r -- oo, and such that pab(u), Pabc(U, v), Pabcd(U, v, w) of

 (2.2) are finite and continuous for a, b, c, d = 1, 2. Then for uk ,T u1-uT I > 2, 1 K k < k' < K

 and P = LIT, L constant, the variates JTb1() , *JT ](UT) are asymptotically independent

 P{2LPakbk(Uk)}, k = 1, ..., K for ak, bk = 1,U2 as T aoo.

 This result is proved in Section 4 of the paper assuming a direct variant of Theorem 1.3

 of Volkonskii and Rozanov (1959). We may take K = 1 and uT = u, here, and so see that

 JT (u) -P(2LPab(U)) for a, b = 1,2. We have allowed the arguments UT to depend on T in

 order to be able to handle the case of a number of bins in the neighbourhood of a given lag u.

 The restriction on I uT- l means that the counting variates refer to distinct bins. In con-

 nection with the estimates Of Pab(U), mab(u) we have:

 Corollary 1. Under the conditions of Theorem 1, Pab@O, Pab(u), given by (1.7), (1.8), are

 asymptotically distributed as (2L)-1P{2Lpab(u)}.

 Corollary 2. Under the conditions of Theorem 1, m cJu), nab(u), given by (1.7), (1.8), are

 asymptotically distributed as (2L)-1pb-1P{2Lpab(U)}.

 Had we so desired, we could have considered collections of estimates, at lags uT, in the

 manner of the theorem, here. The asymptotic distributions of the estimates of (1.7) are not

 affected by the modification to (1.8) because of the convergence of the correction terms to

 zero, in probability. In both cases, the variance of the asymptotic distribution is seen to

 be proportional to the parameter being estimated. This occurrence suggests the application

 of a square root transformation to the estimates. We will return to this comment in the next

 section.

 The estimates discussed here are histogram type estimates, involving a rectangular

 smoothing function. Cox (1965) remarks that one might want to consider other smoothing

 functions. For example, we might base estimates on

 I

 where E wi = 1. From Theorem 1, the asymptotic distribution of this variate is seen to be

 that of E wi Pi, where the Pi are independent P{2LPab(U)} variates. The mean of this asymptotic

 distribution is 2LPab(U). The variance is (E w2) 2LPab(U), a result that again suggests a square

 root transformation.

 3. SOME FURTHER CONSIDERATIONS AND PRACTICAL EXAMPLES

 The second-order product density, Pab(U), and the intensity function, mab(u), both provide

 measures of the degree of statistical dependence of increments of the process Na(-) that are

 u time units ahead of corresponding increments of the process Nb(-). In the case that these

 increments are independent, Pab(U) = PaPb and mab(u) = Pa. In the case that the process is

 stong mixing

 E{dNa(t + u) dNb(t)}- E{dNa(t + u)} E{dNb(t)} = O{(u)} 0

 as Iu I- oo, see Volkonskii and Rozanov (1959) and so

 lim Pab(U) = PaPb and lim mab(U) = Pa- (3.1)

 luleoC- 1ut1-->.

 This suggests that graphs of estimates of the functions Pab(-) or mab( ) should also contain

 estimates of the constant levels PaPb or Pa, as the case may be.

 The relations of (3.1) suggest the source of the estimates Pab(U), mrab(u) of (1.8). For many

 processes, the covariance, cov {dNa(t + u), dNb(t)} will be near 0 for large I u 1. In the case of an

 ordinary bivariate stationary process {X1(t), X2(t)} the covariance function

 Cab(U) = COV {Xa(t + U), Xb(t)}
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 is likewise near 0 for large I u I for mixing processes. This has led workers to feel that for many

 purposes, Cab(U) is best estimated by

 Cab(U) = T 1 {Xa(t+U) -a}{Xb(t) Xb} (3.2)

 0,<t,t+u<T-1

 given values for t = 0, 1, ..., T- 1 with a, lb the sample means a, b = 1, 2. The estimate

 (3.2) has the property of being near 0 for IuI near T. The estimate (3.2) suggests estimating

 the second-order product moment, E{Xa(t + u) Xb(t)} by

 Cab(u) + la lb = T-1 Xa(t + U) Xb(t) + I U I la XbIT (3.3)

 0<t,t+u<T-1

 The estimates (3.2), (3.3) appear to have better overall mean-squared error properties than

 the corresponding "unbiased" estimates with the divisor T replaced by (T-I u I), see Parzen

 (1961, p. 139). The estimate 'Pab(U) is the point process analogue of (3.3). It and the corre-

 sponding rnab(u) may be expected to have better overall mean-squared error for mixing

 processes.

 The conclusions of Corollaries 1 and 2 suggest applying a square root transformation to

 the estimates. This is a common procedure for counting variates. In the cases of mab(u) and

 hab(u), the large sample variances of 1{lab(u)} and l{^a'b(u)} are approximately (8Lpb)1

 which may be estimated by {8PNb(T)}-1. Confidence limits may be set by using either a

 Poisson or a normal approximation. A particularly simple approximation to 95 per cent limits

 is to add + {2PNb(T)}j- to the estimate. In a case where the weighted estimate (2.3) was

 employed, a further factor (E w4)' would be included.

 In practice we have found it exceedingly useful to graph the following four curves on the

 same plot,

 V{mab(U)}, ViPa, Pfa + {2/Nb(T)}- ifia - {2PNb(T)} ,

 where Pa = Na(T)IT, a = 1,2. Figs 1 and 2 give two examples of this. Fig. 1 is based on a

 point process corresponding to the times of 1,355 consecutive beats of a human heart. The

 2.0

 L 1A1 1 z -~~~A _ A ^ n A A A%

 O.5_

 0 2 4 6 8 10

 u seconds

 FIG. 1. Square root of the autointensity histogram of a sequence of times of heartbeats.
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 64 BRILLINGER - Estimation of Intensities [No. 1,

 estimated intensity is A1 = 1P33 beats per sec. The central horizontal line in the Figure corre-

 sponds to Vffl. The Figure suggests that increments of the corresponding process are approxi-

 mately independent when more than 4 or 5 sec apart. The estimate is essentially 0 for the first

 0 4 sec because no heart beats occurred closer together than that interval. This behaviour is

 characteristic of point processes generated by mechanisms with dead times. The equi-spaced

 spikes appear in this estimate because of the periodic character of heartbeats. Fig. 2 is based

 upon the times of the 187 world-wide earthquakes of magnitude 7-9 or greater which occurred

 in the years 1900-71. The estimated intensity is f1 = 0-22 major earthquakes per month. Such

 a process is often thought to be near Poisson. The function of Fig. 2 suggests that there is

 0-53

 0-51-

 049 - - -- V -

 ~f 0A47

 0*45-

 0V43A

 0 160 320 480 640

 u months

 FIG. 2. Square root of the autointensity histogram of a sequence of times of major earthquakes.

 some degree of clustering present. The central horizontal line is at the level VI. The times

 of these earthquakes may be found in Richter (1958) and "Seismological Notes" appearing in

 the Bulletin of the Seismological Society of America.

 4. PROOFS

 The proof of Theorem 1 will be based on Theorem 2.

 Theorem 2. Let MT(t) = {MjT(t), ...,MT(t)}, 0 < t <0o, T = 1,2, ... be a sequence of

 stationary K-variate point processes. Suppose the process MT has mixing coefficient OxT(1r),

 where ofT(r) > 0 uniformly as -r -> oo, XT(-r) x(j). Suppose that the process MkT has intensity

 Pk ET where ET - 0 as T-> oo and that

 E[Mk (tIeT){M k(tIeT)-1}] = 0(t), (4.1)

 E{Mk (tIeT) Mki,(tIT)} = 0(t) J

 as t -> 0, T-oo ~ for 1 A k <k' (K. Then MlT(tlIET), ...,M(tKIeT) are asymptotically inde-

 pendent P(P1 t), . P(1K t) as T-> oo.

 This theorem is a simple variant of Theorem 1.3 of Volkonskii and Rozanov (1959) and

 is not proved here. A related result is discussed in Section 5 of Leadbetter (1969). The

 condition that the mixing coefficients of all the processes are of the same order of magnitude

 means, that with regards degree of mixing, the processes retain the same time scale. The

 intensities are assumed to tend to 0, meaning that events are becoming rare as T-+oo. The

 first condition of (4.1) prevents the processes from having too many events in small intervals.
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 1976] BRILLINGER - Estimation of Intensities 65

 The second condition is what leads to the limit process having independent components. The

 time scaling, tkI8T leads to the limit process having non-zero intensities.

 It is convenient to prove Theorem 1 by applying Theorem 2 to a particular sequence of

 K variate processes associated with the counting of events in intervals of width 2/ derived

 from the given process {Nl(t), N2(t)}. Specifically define the process MT(.) to have j events

 at time t if Nb, has an event at time t and if Nak has j events, at times other than t, between

 t + ulT - P and t + uT + P. In differential notation this corresponds to writing

 dMk(t) = fdNak(S + t) dNbk(t)' (4.2)

 where A is the set {s: uT-<s<uT +f, s#0O}. The counting variates of (1.5) and Theorem 1

 are now given by allowing dMT(t) to range over the interval (3, T-/) whose end points are

 the centres of the first and last bins. Hence

 JTbk(UT) = MT (T- /) - M T(,B) Mk (T).

 Proof of Theorem 1. From (4.2) we note that

 EdM T(t) -29Pa,bk(Uk) dt

 as P is small. This gives the mean values as stated in Theorem 1 for

 EJTbk(uk ) ET EMT'(T) 2LPakbk(Uk)*

 It also suggests defining ET of Theorem 2 to be l/T. The process MT has mixing coefficient

 CoT(_r) = supf{P(AB)-P(A)P(B)j},

 where A ranges over events involving the variates dNak(s), dNbk(s) with s< min (t, t + u'+3)

 and B ranges over events involving these variates with s > max (t + 'r, t + ' + Tl'-/). It follows

 that oxT(,r) = o(r -u -0O uniformly as r -* oc, and that JT(r) o({) as it has been

 assumed that oi('r+u) = O{x(T)} for -r-0oo.

 Next, following expressions (3.15), (3.16) of Brillinger (1972) the expected values of (4.1)

 may both be written

 f X/er f~ pTkk,(Vl - v2) dvl dv2, (4.

 whether k = k' or not, where PkTk' is a second-order product density of the MT process.

 Now from the representation (4.2) and Theorem 3.1 of Brillinger (1972), expression (4.3)

 hence has the value

 L. -X, }Bi TB, [f{ak - bk'} 8(Vl + tl - V2 - t2)Pa1kbzak'((V1 + t1 - V2 - t29 Vl - V2 -t2)

 + S{ak - ak,} 3(V1 ? tl - V2 - t2)P(,kb4b A(Vl + tl - v2, ll - v2)

 + 83bk - ak'} 8(1 -V - t2)Pabkb,bk'(Vl + tl - 1'2, V1 - V2)

 f- S{ak - bk,} {b -ak'} S(vl + tl- V2) 8(v1 - V2 - t2)Palkb,(tl)

 +Pakak,bkbk,(Vl + tl - V2, t2, V1 - V2)] dtl dt2 dvl dv2,

 where A1 denotes the set {uT' < tj < uT + P, tj O}, j = 1, 2, Bj denotes the set {O <t. <

 j = 1,2, S{ }, denotes the Kronecker delta function, 8(.) denotes the Dirac delta function

 and where the domain of integration excludes the values v. - V2=. Making use of the

 boundedness of the densities of (2.2) we find that (4.3) is O(t) + O(t2) + 0(t/T). This tends to 0

 as t -o 0, T-o so. The conditions of Theorem 2 are therefore satisfied and so Theorem 1 follows.

 4
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