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IS THERE AN OBLIGATION?

Tens of thousands of statisticians around the
world are using statistical packages to arrive
at conclusions-SAS, SPSS, STATA , etc.

These packages are filled with a lot of
obsolete crank-it-out procedures, and very
few up-to-date methods (except Matlab
which is expensive and not in common use).

The statisticians using these packages are the
very large majority in the statistical
profession.

WHAT OBLIGATION DOES ACADEMIC
 STATISTICS  HAVE TO PROVIDE THE
FIELD WITH USEFUL, MODERN
 SOFTWARE?

(PREFERABLY FREE--KUDOS TO R)
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A PERSONAL VIEW

My answer is personal--I think we have to
close the great gap in statistics today
between theory and practice.

We need to develop good software tools
that can help the practice of statistics out in
the field:  the technology transfer from
academic statistics to the field needs to be
greatly increased.

An excellent example of the merging of
theory and practice is wavelets, but there are
few such examples.

The pivotal tool is developing software is the
ability to do it.

Therefore, I have a radical proposal:

That every Ph.D. graduate in statistics be
required to have a good working knowledge
of art least one higher level language--
C, ,JAVA or Fortran 90.

My plan for myself is to put more working
software on my web site for free.  The
following  discusses my next effort.
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A LESSON FROM THE PAST

Three decades ago many statisticians and
quantitative social scientists were enamored
of multilinear regression and its theory of
hypothesis testing on the coefficients.

Every statistical package had a regression
program  variable selection program based
on F-to delete and F to enter.

It was almost impossible to get a paper
published unless you showed that a certain
coefficient was signifigant at the 5% level.

This was regardless of how well the linear
model fit the data and little effort was made
to find out.

Many conclusions were undoubtedly wrong,
and I don't think statisticians now-a-days
dispute the error of these ways.
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ENTER THE COX MODEL

In the last decade or two, the Cox model for
that analysis of survival data has come to
occupy the place in the medical field that
multilinear regression once had in the social
science.

A method for fitting the Cox model appears
in every statistical package under the sun.

My friend and biostatistician Richard Olshen
tells me that use of the Cox model is the
requirement for publication in some medical
journals.

When I voiced my concerns to well-known
biostatisticians over the last few years, the
response was "well, the data is too weak to
do anything else".

I considered this a challenge to create a
better method.
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SURVIVAL ANALYSIS

Data from a survival experiment are of the
form:

(cn, tn,xn ), n =1,..., N}

Here, cn=1 if the nth case died during the
duration of the experiment and 0 if it was
censored by dropping out during the course
of the experiment or lasting until the end.

The tn is the time of death or censoring, and
xn is a vector of covariates.

The goal of survival analysis is to trace the
effects of the covariates on the times of
death.
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HAZARD AND SURVIVAL

Given a random death time T(x) depending
on the covariate vector, define the hazard
function by:

 h(t,x) = P(T(x) ∈ (t + dt, t)|T(x) ≥ t) / dt

and the survival function:

      S(t,x) = P(T(x) ≥ t) = exp(− h(τ ,x
0

t
∫ )dτ )

The Cox model makes the assumption that

h(t,x) = r(t)exp(β • x)

and then makes a clever partial likelihood
jump that allows the r(t) to be canceled out
in the estimation of β .  One result is that all
survival curves have the same shape.

Can this possibly represent the complex action of
nature even as a first approximation?
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THREE SIMULATED DATA SETS

Its useful when testing new methods to
generate simulated data where truth is
known.

Sim1.  This is 300 case data with five
uniformly distributed covariates, 19%
censoring, generated from a Cox model
where the hazard function is:

h(t,x) = exp(x1 − 2x4 + 2x5)

Sim2  This 300 case data with three
uniformly distributed covariates, 15%
censoring, has hazard function::

if x1 ≤.5, h(t,x) = 0 if .5 ≤ t ≤ 2.5, else exp(x2)

if x1 >.5, h(t,x) = 0 if 2.5 ≤ t ≤ 4.5, else exp(x3)

Sim3 This 300 case data set with six
uniformly distributed covariates, 29%
censoring, has hazard function:

   h(t,x) = (1+ z2t)exp*(z1 + z2t)

where  z1 =.5x1, z2 =x4 +x5
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INTRODUCING SURVIVAL FORESTS (SF)

 I am developing a method (survival forests
(SF))  for estimating the survival functions
S(t,x)   At present it is still in the experimental
stage

These functions can also be estimated using
the Cox model by first estimating coefficients
and then doing an ml estimate of r(t).

With simulated data the true survival
functions  S*(t,x) are known.

Define the error in the estimates as:

error = avk,n |S(tk ,xn ) − S *(tk ,xn )|

where the {tk} are the uncensored death
times

Errors

data set Cox SF

Sim1 .054 .066
Sim2 .135 .100
Sim3 .572 .068
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FOUR REAL DATA SETS

Simulated data may not reflect the vagaries
of real data.  I have been working with four
real data sets.

Bcan:  this is a breast cancer data set sent to
me from England.  It has 272 cases, 6
covariates and 17% censoring.

Vcan:  a veterans cancer data set with 136
cases, 6 covariates and 7% censoring.

UIS:  a return to drugs data set with 575
cases, 8 covariates and 19% censoring. (see
the  book "Applied Survival Analysis" by
Hosmer and Lemeshow)

Gcan: the German cancer study with 686
cases, 7 covariates, and 56% censoring.
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ARE SIMULATED AND REAL

COMPARABLE

Do the real data sets have as much
information in them as the simulated?

In SF there is a test set method for estimating
the times of death--estimating td(n) by t̂ d(n).

Measure the error in this estimate by:

error = avn(|td(n) − t̂ d(n)| / t̂ d(n))

and the strength of the data by 100(1-error).
If the error is high the strength is low.

    Data Set    Strength

Sim1 19.5
Sim2 13.5
Sim3 32.0
Bcan 27.4
Vcan 18.9
UIS 35.5
Gcan 45.2

The real data sets have, on average, more
strength than the simulated.  Strength is an
indicator of how well the survival functions
are estimated.  Note that the lowest strength
simulated data set Sim2 also had the highest
error in estimating these functions.
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CORRELATIONS OVER TIME

There are three methods (so far) for using SF
to look at the time process in the data.   The
first method is time-varying correlations.  We
work with

 L(t,x) = −log(S(t,x))

Take the time points {tk} to be 100 order
statistics from the uncensored death times.

At each tk  compute the correlation between
L(tk , xn ) and each of the covariates.  If a Cox
model fits the data, these correlations should
be constant  in time.

Graphs of the corelations follow.
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TIME FITTING COX MODELS

Another tool that is useful is fitting a Cox
model at each time tk  to the L(tk , xn ) .

At each tk  let
yn = L(tk ,xn )

and

f (n, t(k),β(k)) = t(k)exp(β(k) ⋅ xn )

The right hand side is the negative log of the
Cox expression with the t(k),β(k) parameters
to be determined by minimizing

(yn
n
∑ − f (n, t(k),β(k)))2

If the Cox model is a good fit, the β(k) will ce
constant in time and the t(k)} are an
estimate of the integral of the baseline risk.

Again, we show some graphs:
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END NOTE ON APPLICATIONS

When there are changes in time over the
duration of the experiment, the Cox model
gives dubious results.

For instance, in the UIS data the Cox model
singles out the significant variables (in order)
as X1>X4>X7 and no others significant at the
.05 level.

Examination of the correlations in time and
the coefficient traces for the UIS data shows
that there are three important variables
XI,X2,X5.

The Cox model may be dangerous to the
medical experimental  profession.
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           HOW SV WORKS

  Building a Survival Tree

With fixed covariate effects and random
censoring, the log likelihood  can be expressed in
terms of the hazard function h(t,x)as

LL = cn log[h(tn,xn )∑ ] − h(τ ,xn )0
tn∫∑ dτ

This expression is our starting point.   The tree
will be grown to maximize it.

Divide the time-covariate space into a union of L
disjoint rectangles indexed by l.  Call these nodes.

Use the notation  l=Il ⊗ Rl  where Il is a time interval
and Rl  is a rectangle in covariate space.

The essential step is to express h(t,x) as

 h(t,x) = exp[ I(
l
∑ (t,x) ∈ l)α (l)]

where I is the 0,1, indicator function.
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          CONTINUED

Define (1)
     ND(l) = cn

n
∑ I((tn,xn ) ∈ l)

  
Then  ND(l)is the number of deaths in the node l.

Define also (2)

          T(l) = I(xn
n
∑ ∈ Rl )|(0, tn )I Il |

where || denotes length of the enclosed interval.

Substituting the expression for h(t,x), (1) and (2)
into the expression for the LL, gives

LL = α (l)
l
∑ ND(l) − T(l)exp(

l
∑ α (l))

Maximizing this over the α (l) gives

α (l) = log(ND(l) / T(l))

and

        LL = ND(l)
l
∑ log(ND(l) / T(l)) − ND(l)

l
∑
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SPLITTING NODES

The second term above is constant.

At each step the split of l is found which most
increases

            ND(l) log(ND(l) / T(l))

Univariate splits on a covariate are the ordinary
splits as used in CART but using the above
expression to maximize.

Splits on time are tricky.

t1

t2

t(n)

cut

A case with covariate xn keeps traveling through
nodes until it comes to a node such that t1<tn≤t2.

In a time split of a node, all cases in the original
node are in each child node.
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CONTINUED

To work, there have to be many splits on time.

With probability .75 the split on each node is on
the time variable only.

With probability ,25, the split is the best split on
any of the covariates.

The tree is grown until each terminal node has
exactly one uncensored death in it.  But terminal
nodes can contain many other cases.
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GROWING THE FOREST

Each tree in the forest is grown on a bootstrap
sample from the original training set.  Again, about
one-third of the cases are oob.

Let x  be the covariate vector of an oob case.  Put
it down the corresponding tree and estmate S(t,x)
by:

  
log(S(t,x)) = − [ND(l) / T(l)]

l
∑ I(x ∈ Rl )|(0, t)I Il |

where the sum is over all terminal nodes.

This estimate is accumulated and averaged every
time x is not in the tree growing sample.

The averaged survival function, estimated for
cases in the data not used in the corresponding
tree, is automatically a test set estimate.
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TYING UP A LOOSE END WITH SCALING

As in RF, proximities can be defined by of
often two cases occupy the same terminal
node, although there is a different definition
for terminal nodes in SF.

They can also be projected down into two
dimensions.  Recall, we have not yet solved
the problem of how to recognize the action
of the switch variable in Sim2.

Here is a graph of the 2nd scaling coordinate
versus the first for sim 2.
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   AHA!

Noting that it looked symmetric above and
below the zero of 2nd coordinate, I
constructed the histograms of x1 above and
below this zero point.
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FINAL REMARKS

RF has been extensively tested in the field.

SV is still being born and needs more testing,
working with, and extending.

But it may prove the point that algorithmic
models can provide more (and more reliable)
information than stochastic models.

As soon as it is in decent shape, SV will show
up on my web site as free software for use
by the masses.

THANK YOU


