
1

WALD LECTURE II

    LOOKING INSIDE THE BLACK BOX

Leo Breiman
UCB Statistics

  leo@stat.berkeley.edu



2
ORIGIN OF BLACK BOXES

Statistics uses data to explore problems.

Think of the data as being generated by a black
box .

A vector of  input variables  x (independent
variables) go into one side.

Response variables y come out on the other side.

Inside the black box, nature  functions to
associate the input variables with the response
variables, so the picture is like this:

All we see are a sample of data

(yn ,xn ) n =1,..., N )

From this, ststisticians want to draw conclusions
about the mechanism operating inside the black box.
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STOCHASTIC DATA MODELING

starts with assuming a stochastic data model for
the inside of the black box.

A common data model is that data are generated
by independent draws from:

  response variables
f(predictor variables,random noise, parameters)

Parameters are estimated from the data and the
model then used for information and/or
prediction.   The black box is filled in like this:

Model validation is yes-no using goodness-of-fit
tests and residual examination

Inferring a mechanism for the black box is a highly
risky and ambiguous venture.

Nature's mechanisms are  generally complex and
cannot summarized by a relatively simple stochastic
model, even as a first approximation. The attraction:
a deceptively simple picture of the inside.
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FITTING THE DATA

An important principle

The better the model fits the data, the more sound
the inferences about the black box are.

Goodness-of-fit tests and residual analysis are
not reliable.  They accept a multitude of badly
fitting models.

Suppose there is a model f (x)that outputs an
estimate ŷ of the true y for each value of x .

Then a measure of how well f fits the data is
given by how close ŷ is to y.  This can be
measured as follows: given an independent test
set

(y' n ,x' n ) n =1,..., N' )

and a loss function L(y,ŷ) , define the estimated
prediction error as

PE = avn.' L(yn
' , f (xn'

' ))

If there is no test set, use cross-validation to
estimate PE.

The lower the PE, the better the fit to the data
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RANDOM FORESTS

A random forest (RF) is a collection of tree predictors

f (x,T,Θk ), k =1,2,..., K )

where the Θk are i.i.d random vectors.

In regression, the forest prediction is unweighted
average over the forest: in classification, the
unweighted plurality.

Unlike boosting, the LLN insures convergence as
k→∞.

The key to accuracy is low correlation and bias.
To keep bias low, trees are grown to maximum
depth.

To keep correlation low, the current version uses
this randomization.

1)  Each tree is grown on a bootstrap sample of
the training set.

2)  A number m is specified much smaller than the
total number of variables M.  At each node, m
variables are selected at random out of the M,
and the split is the best split on these m variables.

 (see Random Forests , Machine Learning(2001)  45 5-320)
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 RF AND OUT-OF-BAG  (OOB)

In empirical tests, RF has proven to have low
prediction error.  On a variety of data sets, it is
more accurate than Adaboost (see my paper)

It handles hundreds and thousands of input
variables with no degeneration in accuracy

An important feature is that it carries along an
internal test set estimate of the prediction
error.

For every tree grown, about one-third of the
cases are out-of-bag (out of the bootstrap
sample).  Abbreviated oob.

Put these oob cases down the corresponding tree
and get response estimates for them.

For each case n, average or pluralize the
response estimates over all time that n was oob to
get a test set estimate ŷn for yn.

Averaging the loss over all n give the test set
estimate of prediction error.

The only adjustable parameter in RF is m.  The
default value for m is M .  But RF is not sensitive
to the value of m over a wide range.
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  HAVE WE PRODUCED ONLY A GOLEM?

With scientific data sets more is required than an
accurate prediction, i.e. relevant information 
about the relation between the inputs and 
outputs and about the data--

looking inside the black box is necessary

Stochastic data modelers have criticized the 
machine learning efforts on the grounds that the 
accurate predictors constructed are so complex 
that it is nearly impossible to use them to get 
insights into the underlying structure of the 
data.

They are simply large bulky incoherent single
purpose machines.

 The contrary is true

Using RF we can get more reliable information
about the inside of the black box than using any
stochastic model.

But it is not in the form of simple equations.
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RF & LOOKING INSIDE THE BLACK BOX

The design of random forests is to give the user a
good deal of information about the data besides
an accurate prediction.

Much of this information comes from using the
oob cases in the training set that have been left
out of the bootstrapped training set.

The information includes:

i)  Variable importance measures

ii)  Effects of variables on predictions

iii)  Intrinsic proximities between cases

iv)   Clustering

v)  Scaling coordinates based on the proximities

vi)  Outlier detection

I will explain how these work and give
applications, both for labeled and unlabeled data.
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VARIABLE IMPORTANCE.

Because of the need to know which variables are
important in the classification, RF has three
different ways of looking at variable importance.

 Sometimes influential variables are hard to spot--
using these three measures provides more
information.

Measure 1

To estimate the importance of the mth variable, in
the oob cases for the kth tree, randomly permute
all values of the mth variable

Put these altered oob  x-values down the tree
and get classifications.

Proceed as though computing a new internal
error rate.

The amount by which this new error exceeds the
original test set error is defined as the importance
of the mth variable.
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Measures 2 and 3

For the nth case in the data, its margin at the end
of a run is the proportion of votes for its true
class minus the maximum of the proportion of
votes for each of the other classes.

The 2nd measure of importance of the mth
variable is the average lowering of the margin
across all cases when the mth variable is
randomly permuted as in method 1.

The third measure is the count of how many
margins are lowered minus the number of
margins raised.

We illustrate the use of this information by some
examples.
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AN EXAMPLE--HEPATITIS DATA

Data:   survival or non survival of 155 hepatitis
patients with 19 covariates.

Analyzed by  Diaconis and Efron in 1983 Scientific
American.

The original Stanford Medical School analysis
concluded that the important variables were
numbers 6, 12, 14, 19.

Efron and Diaconis drew 500 bootstrap samples
from the original data set and used a similar
procedure, including logistic regression, to isolate
the important variables in each bootstrapped data
set.

 Their conclusion , "Of the four variables
originally selected not one was selected in more
than 60 percent of the samples.

Hence the variables identified in the original
analysis cannot be taken too seriously."
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  LOGISTIC REGRESSION ANALYSIS

 Error rate for logistic regression  is 17.4%.

Variables importance is based on absolute values
of the coefficients of the variables divided by their
standard deviations.
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FIGURE 1  STANDARDIZED COEFFICIENTS-LOGISTIC REGRESSION

The conclusion is that variables 7 and 11 are the
most important covariates.  When logistic
regression is run using only these two variables,
the cross-validated error rate rises to  22.9% .
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       ANALYSIS USING RF

The error rate is 12.3%--30% reduction from the
logistic regression error.  Variable importances
(measure 1) are graphed below:
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FIRURE 2 VARIABLE IMPORTANCE-RANDOM FOREST

Two variables are singled out--the 12th and the
17th  The test set error rates running 12 and 17
alone were  14.3% each.

Running both together did no better.  Virtually all
of the predictive capability is provided by a single
variable, either 12 or 17.  (they are highly
correlated)
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REMARKS

There are 32 deaths and 123 survivors in the
hepatitis data set.  Calling everyone a survivor
gives a baseline error rate of 20.6%.

Logistic regression lowers this  to 17.4%.   It is not
extracting much useful information from the data,
which may explain its inability to find the
important variables.

Its weakness might have been unknown and the
variable importances accepted at face value if its
predictive accuracy is not evaluated.

The standard procedure when fitting data models
such as logistic regression  is to delete variables.

Diaconis and Efron (1983) state , "...statistical
experience suggests that it is unwise to fit a
model that depends on 19 variables with only 155
data points available."

RF  thrives on variables--the more the better.
There is no need for variable selection ,On a
sonar data set with 208 cases and 60 variables,
the RF error rate is 14%. Logistic Regression has
a 50% error rate.
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MICROARRAY ANALYSIS

RF was run on a microarray lymphoma data set
with three classes, sample size of 81 and 4682
variables (genes) without any variable selection.
The error rate was  low (1.2%).

What was also interesting from a scientific
viewpoint  was an estimate of the importance of
each of the 4682 gene expressions.

RF was run and the measures of importance
computed.  Here are the results for the first
measure of importance.
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    VARIABLE IMPORTANCE-MEASURE 1
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Next are the results for the second measure

- 2 5

1 5

5 5

9 5

135

175

215

Im
po

rt
an

ce

0 1000 2000 3000 4000 5000
Variable

        Variable Importance Measure 2

The graphs show that measure 1 has the least
sensitivity, showing only one significant variable.

 Measure 2 has more, showing not only the
activity around the gene singled out by measure
1 but also a secondary burst of activity higher up.

Measure 3 (not shown) has too much sensitivity,
fingering too many variables.
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EFFECTS OF VARIABLES ON PREDICTIONS

Besides knowing which variables are important,
another piece of information needed is how the
values of each variable effects the prediction.

Each time case n is oob it receives a vote for a
class from its associated tree.

At the end of the run, there are available the
proportions of the vote for each class and for
each case.  Call these the cpv's

For each class and each variable m, compute the
cpv for the jth minus the cpv with the mth
variable noised.

Plot this against the values of the mth variable
and do a smoothing of the curve.

To illustrate, we use the glass data set. It's six
class with 214 samples  and nine variables
consisting of chemical proportions.

The figure below is a plot of the decreases in
cpv's  due to noising up the 8th variable in the
glass data.
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EFFECT OF THE 8TH VARIABLE
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The sixth class cpv is significantly decreased,
implying that the eighth variable is important for
singling out this class.

The other class cpv's increase somewhat,
implying that the other classes can be predicted
more accurately with the eighth variable
removed.
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A PROXIMITY MEASURE AND CLUSTERING

Since an individual tree is unpruned, the terminal
nodes will contain only a small number of
instances.

Run all cases in the training set down the tree. If
case i  and case j both land in the same terminal
node. increase the proximity between i and j by
one.

At the end of the run, the proximities are divided
by the number of trees  in the run and proximity
between a case and itself set equal to one.

This is an intrinsic proximity measure, inherent in
the data and the RF algorithm.

To cluster-use the above proximity measures.
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      EXAMPLE-BUPA LIVER DISORDERS

This is a two-class biomedical data set consisting
of six covariates, the last being alcohol
consumption per day.

The first  five attributes are the results of blood
tests thought to be related to liver functioning.
The 345 patients are classified into two classes by
the severity of their liver disorders.

What can we learn about this data?

The misclassification error rate is 28% in a Random
Forests run.

A) Variable Importance (method 1)
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FIGURE 2  VARIABLE IMPORTANCE-BUPA LIVER

Blood tests 3 and 5 are the most important, 
followed by test 4.
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B)  Clustering

Using the proximity measure outputted by Random
Forests to cluster,  there are two class #2 clusters.

In each of these clusters, the average of each variable
is computed and plotted:

Figure 3  Cluster Variable Averages

Something interesting emerges.  The class two
subjects consist of two distinct groups:

Those that have high scores on blood tests 3, 4,
and 5  Those that have low scores on those tests.

We will revisit this example below.
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SCALING COORDINATES

The proximities between cases n and k form a
matrix {prox(n,k)}.  From their definition, it
follows that the values 1-prox(n,k) are squared
distances in a Euclidean space of high dimension.

Then, one can compute scaling coordinates which
project the data onto lower dimensional spaces
while preserving (as much as possible) the
distances between them.

We illustrate with three examples.   The first is
the graph of 2nd vs. 1st scaling coordinates for
the liver data
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The two arms of the class #2 data in this picture
correspond to the two clusters found and
discussed above.

The next example uses the microarray data.  With
4682 variables, it is difficult to see how to cluster
this data.  Using proximities and the first two
scaling coordinates gives this picture:
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Random forests misclassifies one case.  This case
is represented by the isolated point in the lower
left hand corner of the plot.

The third example is glass data with 214 cases, 9
variables and 6 classes.  This data set has been
extensively analyzed (see Pattern recognition and
Neural Networkks-by B.D Ripley).  Here is a plot
of the 2nd vs. the 1st scaling coordinates.:
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None of the analyses to data have picked up this
interesting and revealing structure of the data--
compare the plots in Ripley's book.

We don't understand its implications yet.
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OUTLIER LOCATION

Outliers are defined as cases having small
proximities to all other cases.

Since the data in some classes is more spread out
than others, outlyingness is defined only with
respect to other data in the same class as the
given case.

To define a measure of outlyingness,
we first compute, for a case n, the sum of the
squares of prox(n,k) for all k in the same class as
case n.

Take the inverse of this sum--it will be large if the
proximities prox(n,k) from n to the other cases k
in the same class  are generally small.

Denote this quantity by out(n).

For all n in the same class, compute the median of
the out(n), and then the mean absolute deviation
from the median.

Subtract the median from each out(n) and divide
by the deviation to give a normalized measure of
outlyingness.
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The values less than zero are set to zero.
Generally, a value above 10 is reason to suspect
the case of being outlying.  Here is a graph of
outlyingness for the microarray data
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There are two possible outliers--one is the first case in
class 1,  the second is the first case in class 2.

As a second example, we plot the outlyingness for the
Pima Indians hepatitis data.
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This data set has 768 cases, 8 variables and 2
classes.
It has been used often as an example in Machine
Learning research and is suspected of containing
a number of outliers.
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If 10 is used as a cutoff point, there are 12 cases 
suspected of being outliers.
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ANALYZING UNLABELED DATA

Using an interesting device, it is possible to turn
problems about the structure of unlabeled data
(i.e. clusters, etc.) into a classification context.

Unlabeled date consists of N vectors {x(n)} in M
dimensions.  These vectors are assigned class
label 1.

Another set of N vectors is created and assigned
class label 2.

The second synthetic set is created by
independent sampling from the one-dimensional
marginal distributions of the original data.

For example, if the value of the mth coordinate of
the original data  for the nth case is x(m,n), then a
case in the synthetic data is constructed as
follows:

Its first coordinate is sampled at random from the
N  values x(1,n), its second coordinate is sampled
at random from the N values x(2,n), and so on.

Thus the synthetic data set can be considered to
have the distribution of M independent variables
where the distribution of the mth variable is the
same as the univariate distribution of the mth
variable in the original data.
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RUN  RF

When this two class data is run through random
forests a high misclassification rate--say over 40%,
implies that there is not much dependence
structure in the original data.

That is, that its structure is largely that of M
independent variables--not a very interesting
distribution.

But if there is a strong dependence structure
between the variables in the original data, the
error rate will be low.

n this situation, the output of random forests can
be used to learn something about the structure of
the data.

The following is an example that comes from data
supplied by Merck.
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APPLICATION TO CHEMICAL SPECTRA

Data supplied by Merck consists of the first 468
spectral intensities in the spectrums of 764
compounds.  The challenge presented by Merck
was to find small cohesive groups of outlying
cases in this data.

 Creating the 2nd synthetic class there was
excellent separation with an error rate of 0.5%,
indicating strong dependencies in the original
data.  We looked at outliers and generated this
plot.
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USING SCALING

This plot gives no indication of outliers.  But
outliers must be fairly isolated  to show up in the
outlier display.  To search for outlying groups
scaling coordinates were computed.  The plot of
the 2nd vs. the 1st is below:
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This shows, first, that the spectra fall into two
main clusters. There is a possibility of a small
outlying group in the upper left hand corner.

To get another picture, the 3rd scaling coordinate
is plotted vs. the 1st.
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ANOTHER PICTURE
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The group in question is now in the lower left hand
corner and its separation from the body of the spectra
has become more apparent.



3 4

TO SUMMARIZE

 i )  With any model fit to data, the information 
extracted is about the model--not nature.

ii)  The better the model emulates nature, the 
more reliable our information.

iii)  A prime criterion as to how good the 
emulation is the error rate  in predicting 
future outcomes.

iv) The most accurate current prediction 
algorithms can be applied to very high 
dimensional data, but are also complex.

v)  But a complex predictor can yield a wealth
of "interpretable" scientific information about
the prediction mechanism and the data.

CURTAIN!

Curtain Call:

Random Forests is free software.

www.stat.berkeley,edu/users/breiman
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