
1

WALD LECTURE 1

       MACHINE LEARNING

     Leo Breiman
     UCB Statistics

      leo@stat.berkeley.edu



2

A ROAD MAP

First--a brief overview of what we call machine
learning but consists of many diverse interests
( not including data mining).  How I became a
token statistician in this community.

Second--an exploration of ensemble predictors.

Beginning with bagging.

Then onto boosting



3
ROOTS

Neural Nets--invented circa 1985

Brought together two groups:

A:  Brain researchers applying neural nets to
model some functions of the brain.

B.  Computer scientists working on:

speech recognition
written character recognition
other hard prediction problems.
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JOINED BY

C.  CS groups with research interests in training
robots.

Supervised training

               Stimulus was CART- circa 1985

(Machine Learning)

Self-learning robots

(Reinforcement Learning)

D.  Other assorted groups

Artificial Intelligence

PAC Learning

               etc. etc.
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MY INTRODUCTION

1991

Invited talk on CART at a Machine Learning
Conference.

Careful and methodical  exposition assuming they
had never heard of CART.

(as was true in Statistics)

How embarrassing:

After talk found that they knew all about
CART and were busy using its lookalike 
C4.5
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NIPS

(neural information processing systems)

Next year I went to NIPS--1992-3 and have
gone every year since except for one.

In 1992 NIPS was hotbed of use of 
neural nets for a variety of purposes.

prediction
control
brain models

  A REVELATION!

Neural Nets actually work in prediction:

despite a multitude of
local minima

despite the dangers
of overfitting

Skilled practitioners tailored large 
architectures of hidden units to  accomplish 
special purpose  results in specific problems

i.e. partial rotation and translation invariance
character recognition.



7

NIPS GROWTH

NIPS grew to include many diverse groups:

signal processing
computer vision

etc.

One reason for growth--skiing.
Vancouver --Dec. 9-12th,  Whistler 12-15th

In 2001 about 600 attendees
Many foreigners--especially Europeans

Mainly computer scientists, some engineers,
physicists, mathematical physiologists, etc.

Average age--30--Energy level--out-of-sight
Approach is strictly algorithmic.

For me, algorithmic oriented, who felt like a voice
in the wilderness in statistics, this community was
like home.  My research was energized.

The papers presented at the NIPS 2000
conference are listed in the following to give a
sense of the wide diversity of research interests.
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• What Can a Single Neuron Compute?
• Who Does What? A Novel Algorithm to Determine Function

Localization
• Programmable Reinforcement Learning Agents
• From Mixtures of Mixtures to Adaptive Transform Coding
• Dendritic Compartmentalization Could Underlie Competition and

Attentional Biasing of Simultaneous Visual Stimuli
• Place Cells and Spatial Navigation Based on 2D Visual Feature

Extraction, Path Integration, and Reinforcement Learning
• Speech Denoising and Dereverberation Using Probabilistic Models
• Combining ICA and Top-Down Attention for Robust Speech

Recognition
• Modelling Spatial Recall, Mental Imagery and Neglect
• Shape Context: A New Descriptor for Shape Matching and Object

Recognition
• Efficient Learning of Linear Perceptrons
• A Support Vector Method for Clustering
• A Neural Probabilistic Language Model
• A Variational Mean-Field Theory for Sigmoidal Belief Networks
• Stability and Noise in Biochemical Switches
• Emergence of Movement Sensitive Neurons' Properties by

Learning a Sparse Code for Natural Moving Images
• New Approaches Towards Robust and Adaptive Speech

Recognition
• Algorithmic Stability and Generalization Performance
• Exact Solutions to Time-Dependent MDPs
• Direct Classification with Indirect Data
• Model Complexity, Goodness of Fit and Diminishing Returns
• A Linear Programming Approach to Novelty Detection
• Decomposition of Reinforcement Learning for Admission Control of

Self-Similar Call Arrival Processes
• Overfitting in Neural Nets: Backpropagation, Conjugate Gradient,

and Early Stopping
• Incremental and Decremental Support Vector Machine Learning
• Vicinal Risk Minimization
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• Temporally Dependent Plasticity: An Information Theoretic

Account
• Gaussianization
• The Missing Link - A Probabilistic Model of Document and

Hypertext Connectivity
• The Manhattan World Assumption: Regularities in Scene Statistics

which Enable Bayesian Inference
• Improved Output Coding for Classification Using Continuous

Relaxation
• Koby Crammer, Yoram Singer
• Sparse Representation for Gaussian Process Models
• Competition and Arbors in Ocular Dominance
• Explaining Away in Weight Space
• Feature Correspondence: A Markov Chain Monte Carlo Approach
• A New Model of Spatial Representation in Multimodal Brain 

Areas
• An Adaptive Metric Machine for Pattern Classification
• High-temperature Expansions for Learning Models of Nonnegative

Data
• Incorporating Second-Order Functional Knowledge for Better

Option Pricing
• A Productive, Systematic Framework for the Representation of

Visual Structure
• Discovering Hidden Variables: A Structure-Based Approach
• Multiple Timescales of Adaptation in a Neural Code
• Learning Joint Statistical Models for Audio-Visual Fusion and

Segregation
• Accumulator Networks: Suitors of Local Probability Propagation
• Sequentially Fitting ``Inclusive'' Trees for Inference in Noisy-OR

Networks
• Factored Semi-Tied Covariance Matrices
• A New Approximate Maximal Margin Classification Algorithm
• Propagation Algorithms for Variational Bayesian Learning
• Reinforcement Learning with Function Approximation 

Converges to a Region
• The Kernel Gibbs Sampler
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• From Margin to Sparsity
• `N-Body' Problems in Statistical Learning
• A Comparison of Image Processing Techniques for Visual Speech

Recognition Applications
• The Interplay of Symbolic and Subsymbolic Processes in Anagram

Problem Solving
• Permitted and Forbidden Sets in Symmetric Threshold-Linear

Networks
• Support Vector Novelty Detection Applied to Jet Engine Vibration

Spectra
• Large Scale Bayes Point Machines
• A PAC-Bayesian Margin Bound for Linear Classifiers:  Why SVMs

w o r k
• Hierarchical Memory-Based Reinforcement Learning
• Beyond Maximum Likelihood and Density Estimation: A Sample-

Based Criterion for Unsupervised Learning of Complex 
Models

• Ensemble Learning and Linear Response Theory for ICA
• A Silicon Primitive for Competitive Learning
• On Reversing Jensen's Inequality
• Automated State Abstraction for Options using the U-Tree

Algorithm
• Dopamine Bonuses
• Hippocampally-Dependent Consolidation in a Hierarchical Model of

Neocortex
• Second Order Approximations for Probability Models
• Generalizable Singular Value Decomposition for Ill-posed Datasets
• Some New Bounds on the Generalization Error of Combined 

Classifiers
• Sparsity of Data Representation of Optimal Kernel Machine and

Leave-one-out Estimator
• Keeping Flexible Active Contours on Track using Metropolis 

Updates
• Smart Vision Chip Fabricated Using Three Dimensional Integration

Technology
• Algorithms for Non-negative Matrix Factorization
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• Color Opponency Constitutes a Sparse Representation for the

Chromatic Structure of Natural Scenes
• Foundations for a Circuit Complexity Theory of Sensory Processing
• A Tighter Bound for Graphical Models
• Position Variance, Recurrence and Perceptual Learning
• Homeostasis in a Silicon Integrate and Fire Neuron
• Text Classification using String Kernels
• Constrained Independent Component Analysis
• Learning Curves for Gaussian Processes Regression: A Framework

for Good Approximations
• Active Support Vector Machine Classification
• Weak Learners and Improved Rates of Convergence in 

Boosting
• Recognizing Hand-written Digits Using Hierarchical Products of 

Experts
• Learning Segmentation by Random Walks
• The Unscented Particle Filter
• A Mathematical Programming Approach to the Kernel Fisher

Algorithm
• Automatic Choice of Dimensionality for PCA
• On Iterative Krylov-Dogleg Trust-Region Steps for Solving Neural

Networks Nonlinear Least Squares Problems
• Eiji Mizutani, James W. Demmel
• Sex with Support Vector Machines
• Baback Moghaddam, Ming-Hsuan Yang
• Robust Reinforcement Learning
• Partially Observable SDE Models for Image Sequence Recognition

Tasks
• The Use of MDL to Select among Computational Models of

Cognition
• Probabilistic Semantic Video Indexing
• Finding the Key to a Synapse
• Processing of Time Series by Neural Circuits with Biologically

Realistic Synaptic Dynamics
• Active Inference in Concept Learning



1 2
• Learning Continuous Distributions: Simulations With Field

Theoretic Priors
• Interactive Parts Model: An Application to Recognition of On-line

Cursive Script
• Learning Sparse Image Codes using a Wavelet Pyramid 

Architecture
• Kernel-Based Reinforcement Learning in Average-Cost 

Problems: An Application to Optimal Portfolio Choice
• Learning and Tracking Cyclic Human Motion
• Higher-Order Statistical Properties Arising from the Non-

Stationarity of Natural Signals
• Learning Switching Linear Models of Human Motion
• Bayes Networks on Ice: Robotic Search for Antarctic Meteorites
• Redundancy and Dimensionality Reduction in Sparse-Distributed

Representations of Natural Objects in Terms of Their Local
Features

• Fast Training of Support Vector Classifiers
• The Use of Classifiers in Sequential Inference
• Occam's Razor
• One Microphone Source Separation
• Using Free Energies to Represent Q-values in a Multiagent

Reinforcement Learning Task
• Minimum Bayes Error Feature Selection for Continuous Speech

Recognition
• Periodic Component Analysis: An Eigenvalue Method for

Representing Periodic Structure in Speech
• Spike-Timing-Dependent Learning for Oscillatory Networks
• Universality and Individuality in a Neural Code
• Machine Learning for Video-Based Rendering
• The Kernel Trick for Distances
• Natural Sound Statistics and Divisive Normalization in the

Auditory System
• Balancing Multiple Sources of Reward in Reinforcement Learning
• An Information Maximization Approach to Overcomplete and

Recurrent Representations
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• Development of Hybrid Systems: Interfacing a Silicon Neuron to a

Leech Heart Interneuron
• FaceSync: A Linear Operator for Measuring Synchronization of

Video Facial Images and Audio Tracks
• The Early Word Catches the Weights
• Sparse Greedy Gaussian Process Regression
• Regularization with Dot-Product Kernels
• APRICODD: Approximate Policy Construction Using Decision

Diagrams
• Four-legged Walking Gait Control Using a Neuromorphic Chip

Interfaced to a Support Vector Learning Algorithm
• Kernel Expansions with Unlabeled Examples
• Analysis of Bit Error Probability of Direct-Sequence CDMA

Multiuser Demodulators
• Noise Suppression Based on Neurophysiologically-motivated SNR

Estimation for Robust Speech Recognition
• Rate-coded Restricted Boltzmann Machines for Face Recognition
• Structure Learning in Human Causal Induction
• Sparse Kernel Principal Component Analysis
• Data Clustering by Markovian Relaxation and the Information

Bottleneck Method
• Adaptive Object Representation with Hierarchically-Distributed

Memory Sites
• Active Learning for Parameter Estimation in Bayesian Networks
• Mixtures of Gaussian Processes
• Bayesian Video Shot Segmentation
• Error-correcting Codes on a Bethe-like Lattice
• Whence Sparseness?
• Tree-Based Modeling and Estimation of Gaussian Processes on

Graphs with Cycles
• Algebraic Information Geometry for Learning Machines with

Singularities
• Feature Selection for SVMs?
• On a Connection between Kernel PCA and Metric Multidimensional

Scaling
• Using the Nystr{\"o}m Method to Speed Up Kernel Machines
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• Computing with Finite and Infinite Networks
• Stagewise Processing in Error-correcting Codes and Image

Restoration
• Learning Winner-take-all Competition Between Groups of Neurons

in Lateral Inhibitory Networks
• Generalized Belief Propagation
• A Gradient-Based Boosting Algorithm for Regression Problems
• Divisive and Subtractive Mask Effects: Linking Psychophysics and

Biophysics
• Regularized Winnow Methods
• Convergence of Large Margin Separable Linear Classification
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PREDICTION REMAINS A MAIN THREAD

Given a training set of data

T= (yn ,xn ) n =1, ... , N}

where the yn  are the response vectors and the
xn are vectors of predictor variables:

Find a function f operating on the space
of prediction vectors with values in the
response vector space such that:

If the (yn ,xn )  are i.i.d from the distribution
(Y,X) and given a  function L(y,y')  that measures
the loss between  y and the prediction y': the
prediction  error

       PE( f ,T) = EY,XL(Y, f (X,T))

is small.

Usually y is one dimensional.  If numerical, the
problem is regression.  If unordered labels,  it is
classification.  In regression, the loss is squared
error.  In classification, if the predicted label does
not equal the true label the loss is one, zero other
wise
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RECENT BREAKTHROUGHS

Two types of classification algorithms originated
in 1996 that gave improved accuracy.

A.  Support vector Machines (Vapnik)

B. Combining Predictors:

Bagging (Breiman 1996)
Boosting (Freund and Schapire 1996)

 Both bagging and boosting use ensembles of
predictors defined on the prediction variables  in
the training set.

Let { f1(x,T), f2(x,T),..., f K (x,T)} be predictors
constructed using the training set T such that for
every value of x in the predictor space they
output a value of y in the response space.

In regression, the predicted value of y
corresponding to an input x is av

k
f
k

(x,T)

In classification the output takes values in
the class labels {1,2,...,J}.  The predicted value of
y is plur

k
f
k

(x,T)

The averaging and voting can be weighted,
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        THE STORY OF BAGGING

as illustrated to begin with by
pictures of three one dimensional
smoothing examples using the same 
smoother.

They are not really smoothers-but
predictors of the underlying function
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 WHAT SMOOTH?

Here is a weak learner--
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A WEAK LEARNER

The smooth is an average of 1000 weak learners.
Here is how the weak learners are formed:
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FORMING THE WEAK LEARNER

Subset of fixed size is selected at random.  Then
all the (y,x) points in the subset are connected by
lines.

Repeated 1000 times and the 1000 weak learners
averaged.



2 4
THE PRINCIPLE

Its easier to see what is going on in regression:

PE( f ,T) = EY,X(Y − f (X,T))2

Want to average over all training sets of same
size drawn from the same distribution:

PE( f ) = EY,X,T(Y − f (X,T))2

This is decomposable into:

                   
PE( f ) = EY,X(Y − ET f (X,T))2 +

EX,T( f (X,T) − ET f (X,T))2

Or

                          PE( f ) = (bias)2 + var iance

(Pretty Familiar!)



2 5

BACK TO EXAMPLE

The kth weak learner is of the form:

f k (x,T) = f (x,T,Θk )

where Θk   is the random vector that selects
the points to be in the weak learner.  The
Θk   are i.i.d.

The ensemble  predictor is:

 F(x,T) = 1
K

f (x,T,Θk )
k
∑

 Algebra and the LLN leads to:

Var(F) =
EX,Θ,Θ' [ρT( f (x,T,Θ) f (x,T,Θ' ))VarT( f (x,T,Θ)

 where Θ,Θ'  are independent.  Applying the
 mean value theorem--

Var(F) = ρVar( f )
and

Bias2(F) = EY,X(Y − ET,Θ f (x,T,Θ))2
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THE MESSAGE

A big win is possible with weak learners as long
as their correlation and bias are low.

In sin curve example, base predictor is connect all
points in order of x(n).

bias2=.000
variance=.166

For the ensemble

bias2 = .042
variance =.0001

Bagging is of this type--each predictor is grown
on a bootstrap sample, requiring a random vector
Θ that puts weights 0,1,2,3,  on the cases in the
training set.

But bagging does not produce as low as possible
correlation between the predictors.  There are
variants that produce lower correlation and better
accuracy

This Point Will Turn Up Again Later.
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   BOOSTING--A STRANGE ALGORITHM

I discuss boosting, in part, to illustrate the
difference between the machine learning
community and  statistics in terms of theory.

But mainly because the story of boosting is
fascinating and multifaceted.

Boosting is a classification algorithm that gives
consistently lower error rates than bagging.

Bagging works by taking a bootstrap sample
from the training set.

Boosting works by changing the weights on the
training set.

It assumes that  the predictor construction can
incorporate weights on the cases.

The procedure for growing the ensemble is--
Use the current weights to grow a predictor.

Depending on the training set errors of this
predictor, change the weights and grow the next
predictor.
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THE ADABOOST ALGORITHM

The weights w(n) on the nth case in the training
set are non-negative and sum to one.  Originally
they are set equal.  The process goes like so:

i) let w(k) (n) be the weights for the kth step.
   f

k
 the classifier constructed using these     

weights.

ii)     Run the training set down f
k

 and let
d(n)=1 if the nth case is classified in error, 
otherwise zero.

iii)   The weighted error is εk = w(k)(n)
n
∑ d(n)

set βk =(1−ε
k

)/ε
k

iv)    The new weights are

w(k +1)(n) = w(k)(n)βk
d(n) / w(k)(n)βk

d(n)

n
∑

v)  Voting for class is weighted with kth classifier
having vote weight β

k
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THE MYSTERY THICKENS

Adaboost created a big splash in machine learning
and led to hundreds, perhaps thousands of
papers.  It was the most accurate classification
algorithm available at that time.

It differs significantly from bagging.  Bagging uses
the biggest trees possible as the weak learners to
reduce bias.

Adaboost uses small trees as the weak learners,
often being effective using trees formed by a
single split (stumps).

There is empirical evidence that it reduces bias as
well as variance.

It seemed to converges with the test set error
gradually decreasing as hundreds or thousands of
trees were added.

On simulated data its error rate is close to the
Bayes rate.

But why it worked so well was a mystery that
bothered me.  For the last five years I have
characteriized the understanding of Adaboost as
the most important open problem in machine
learning.
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IDEAS ABOUT WHY IT WORKS

A. Adaboost raises the weights on cases
previously misclassified, so it focusses on the
hard cases ith the easy cases just carried along.

wrong:  empirical results showed that Adaboost
tried to equalize the misclassification rate over all
cases.

B.  The margin explanation:  An ingenious work
by Shapire, et.al. derived an upper bound on the
error rate of a convex combination of predictors in
terms of the VC dimension of each predictor in the
ensemble and the margin distribution.

The margin for the nth case is the vote in the
ensemble for the correct class minus the largest
vote for any of the other classes.

The authors conjectured that Adaboost was so
poweful because it produced high margin
distributions.

I devised and published an algorithm that
produced uniformly higher margin disrbutions
than Adaboost, and yet was less accurate.

So much for margins.
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     THE DETECTIVE STORY CONTINUES

There was little continuing interest in machine
learning about how and why Adaboost worked.

Often the two communities, statistics and machine
learning, ask different questions

Machine Learning:  Does it work?
Statisticians:  Why does it work?

One breakthrough occurred in my work in 1997.

In the two-class problem, label the classes as 
-1,+1.  Then all the classifiers in the ensemble 
also take the values -1,+1.

Denote by F(xn ) any ensemble evaluated at 
xn  If F(xn )>0 the prediction is class 1, else 
class -1.

On average, want ynF(xn ) to be as large as 
possible. Consider trying to minimize

φ(yn
n
∑ Fm(xn ))

where φ(x) is decreasing.
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GAUSS-SOUTHWELL

The Gauss-Southwell method for minimizing a 
differentiable function g(x1,...,xm ) of m real 
variables goes this way:

i) At a point x compute all the partial 
derivatives  ∂f (x1,...,xm )/∂x

k
.

ii) Let the minimum of these be at x j..  Find step

of size α  that minimizes g(x1,...,x j +α ,...,xm )

iii) Let the new x be x1,...,x j +α ,...,xm  for the 

minimizing α  value.
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     GAUSS SOUTHWELL AND ADABOOST

To minimize exp(−yn
n
∑ F(xn ))  using Gauss-

Southwell.   Denote the current ensemble as

Fm(xn ) = ak
1

m
∑ f k (xn )

i)  Find the k=k* that minimizes

\

∂
∂f k

exp(−yn
n
∑ Fm(xn ))

ii)  Find that a=a* that minimizes

exp(−yn[
n
∑ Fm(xn ) + a * f k *(xn )])

iii)  Then  Fm+1(xn )=Fm (xn )+a* f
k*(xn )

The Asdaboost algorithm is identical to Gauss-
Southwell as applied above.

This gave a rational basis for the odd form of 
Adaboost.  Following was a plethora of papers in
machine learning proposing other functions of 
yF(x) to minimize using Gauss-Southwell
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NAGGING QUESTIONS

The classification by the mth ensemble is defined 
by

    sign(Fm(x))

The most important question I chewed on

 Is Adaboost consistent?

Does P(Y≠sign(Fm (X,T))) converge to the Bayes 
risk as m→∞ and then |T|→ ∞?

I am not a fan of endless asymptotics, but I 
believe that we need to know whether 
predictors are consistent or inconsistent

For five years I have been bugging my theoretical
colleagues with these questions.

For a long time I thought the answer was yes.

There was a paper 3 years ago which claimed    
that Adaboost overfit after 100,000 iterations, but
I ascribed that to numerical roundoff error
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THE BEGINNING OF THE END

In 2000, I looked at the analog of Adaboost in
population space, i.e.  using the Gauss-Southwell
approach, minimize

EY,X exp(−YF(X))

The weak classifiers were the set of all trees with
a fixed number (large enough) of terminal nodes.

Under some compactness and continuity
conditions I proved that:

Fm → F in L2(P)

P(Y ≠ sign(F(X)) = Bayes Risk

But there was a fly in the ointment
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          THE FLY

Recall the notation

Fm(x) = ak
1

m
∑ f k (x)

An essential part of the proof in the population
case was showing that:

         ak
2∑ < ∞

But in the N-sample case, one can show that

ak ≥ 2 / N

So there was an essential difference between the
population case and the finite sample case no matter
how large N
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  ADABOOST IS INCONSISTENT

Recent work by Jiang, Lugosi, and Bickel-Ritov
have clarified the situation.

The graph below illustrates.  The2-dimensional
data consists of two circular Gaussians with about
150 cases in each with some overlap.  Error is
estimated using  a 5000 case test set.  Stumps (one
split trees) were used.

2 3

2 4

2 5

2 6

2 7

te
st

 s
et

 e
rr

or
 r

at
e

0 1 0 2 0 3 0 4 0 5 0
number of trees-thousands

ADABOOST ERROR RATE

The minimum occurs at about 5000 trees.  Then
the error rate begins climbing.
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          WHAT ADABOOST DOES

In its first stage, Adaboos tries to emulate the
population version.  This continues for thousands
of trees.  Then it gives up and moves into a
second phase of increasing error .

Both Jiang and Bickel-Ritov have proofs that for
each sample size N, there is a stopping time h(N)
such that if Adaboost is stopped at h(N), the
resulting sequence of ensembles is consistent.

There are still questions--what is happening in the
second phase?  But this will come in the future.

For years I have been telling everyone in earshot
that the behavior of Adaboost, particularly
consistency, is a problem that plagues Machine
learning.

Its solution is at the fascinating interface between
algorithmic behavior and statistical theory.

          THANK YOU
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