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Abstract

Log-linear and maximum-margin models are two commonly-used methods in supervised
machine learning, and are frequently used in structured prediction problems. Efficient
learning of parameters in these models is therefore an important problem, and becomes a
key factor when learning from very large data sets. This paper describes exponentiated
gradient (EG) algorithms for training such models, where EG updates are applied to the
convex dual of either the log-linear or max-margin objective function; the dual in both the
log-linear and max-margin cases corresponds to minimizing a convex function with simplex
constraints. We study both batch and online variants of the algorithm, and provide rates
of convergence for both cases. In the max-margin case, O( 1

ε ) EG updates are required
to reach a given accuracy ε in the dual; in contrast, for log-linear models only O(log( 1

ε ))
updates are required. For both the max-margin and log-linear cases, our bounds suggest
that the online EG algorithm requires a factor of n less computation to reach a desired
accuracy than the batch EG algorithm, where n is the number of training examples. Our
experiments confirm that the online algorithms are much faster than the batch algorithms
in practice. We describe how the EG updates factor in a convenient way for structured
prediction problems, allowing the algorithms to be efficiently applied to problems such as
sequence learning or natural language parsing. We perform extensive evaluation of the
algorithms, comparing them to to L-BFGS and stochastic gradient descent for log-linear
models, and to SVM-Struct for max-margin models. The algorithms are applied to multi-
class problems as well as a more complex large-scale parsing task. In all these settings, the
EG algorithms presented here outperform the other methods.
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1. Introduction

Structured prediction problems involve learning to map inputs x to labels y, where the
labels have rich internal structure, and where the set of possible labels for a given input is
typically exponential in size. Examples of structured prediction problems include sequence
labeling and natural language parsing. Several models that implement learning in this
scenario have been proposed over the last few years, including log-linear models such as
conditional random fields (CRFs, Lafferty et al., 2001), and maximum-margin models such
as maximum-margin Markov networks (Taskar et al., 2004a).

For both log-linear and max-margin models, learning is framed as minimization of a
regularized loss function which is convex. In spite of the convexity of the objective function,
finding the optimal parameters for these models can be computationally intensive, especially
for very large data sets. This problem is exacerbated in structured prediction problems,
where the large size of the set of possible labels adds an additional layer of complexity.
The development of efficient optimization algorithms for learning in structured prediction
problems is therefore an important problem.

In this paper we describe learning algorithms that exploit the structure of the dual
optimization problems for log-linear and max-margin models. For both log-linear and max-
margin models the dual problem corresponds to the minimization of a convex function Q
subject to simplex constraints (Jaakkola and Haussler, 1999; Lebanon and Lafferty, 2002;
Taskar et al., 2004a). More specifically, the goal is to find

argmin
∀i, αi∈∆

Q(α1,α2, . . . ,αn) (1)

where n is the number of training examples, each αi is a vector of dual variables for the i’th
training example, and Q(α) is a convex function.1 The size of each vector αi is |Y|, where
Y is the set of possible labels for any training example. Furthermore, αi is constrained to
belong to the simplex of distributions over Y, defined as:

∆ =

p ∈ R|Y| : py ≥ 0 ,
∑
y∈Y

py = 1

 (2)

Thus each αi is constrained to form a distribution over the set of possible labels. The
max-margin and log-linear problems differ only in their definition of Q.

The algorithms in this paper make use of exponentiated gradient (EG) updates (Kivinen
and Warmuth, 1997) in solving the problem in Eq. 1, in particular for the cases of log-
linear or max-margin models. We focus on two classes of algorithms, which we call batch
and online. In the batch case, the entire set of αi variables is updated simultaneously at
each iteration of the algorithm; in the online case, a single αi variable is updated at each
step. The “online” case essentially corresponds to coordinate-descent on the dual function
Q, and is similar to the SMO algorithm (Platt, 1998) for training SVMs. The online
algorithm has the advantage of updating the parameters after every sample point, rather
than after making a full pass over the training examples; intuitively, this should lead to
considerably faster rates of convergence when compared to the batch algorithm, and indeed

1. In what follows we use α to denote the variables α1, . . . ,αn.
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our experimental and theoretical results support this intuition. A different class of online
algorithms consists of stochastic gradient descent (SGD) and its variants (e.g., see LeCun
et al., 1998; Vishwanathan et al., 2006). In contrast to SGD, however, the EG algorithm is
guaranteed to improve the dual objective at each step, and this objective may be calculated
after each example without performing a pass over the entire data set. This is particularly
convenient when making a choice of learning rate in the updates.

We describe theoretical results concerning the convergence of the EG algorithms, as well
as experiments. Our key results are as follows:

• For the max-margin case, we show that O(1
ε ) time is required for both the online

and batch algorithms to converge to within ε of the optimal value of Q(α). This
is qualitatively similar to recent results in the literature for max-margin approaches
(e.g., see Shalev-Shwartz et al., 2007). For log-linear models, we show convergence
rates of O(log(1

ε )), a significant improvement over the max-margin case.

• For both the max-margin and log-linear cases, our bounds suggest that the online
algorithm requires a factor of n less computation to reach a desired accuracy, where n is
the number of training examples. Our experiments confirm that the online algorithms
are much faster than the batch algorithms in practice.

• We describe how the EG algorithms can be efficiently applied to an important class
of structured prediction problems where the set of labels Y is exponential in size. In
this case the number of dual variables is also exponential in size, making algorithms
which deal directly with the αi variables intractable. Following Bartlett et al. (2005),
we focus on a formulation where each label y is represented as a set of “parts”, for
example corresponding to labeled cliques in a max-margin network, or context-free
rules in a parse tree. Under an assumption that part-based marginals can be calculated
efficiently—for example using junction tree algorithms for CRFs, or the inside-outside
algorithm for context-free parsing—the EG algorithms can be implemented efficiently
for both max-margin and log-linear models.

• In our experiments we compare the online EG algorithm to various state of the art
algorithms. For log-linear models, we compare to the L-BFGS algorithm (Byrd et al.,
1995) and to stochastic gradient descent. For max-margin models we compare to the
SVM-Struct algorithm of Tsochantaridis et al. (2004). The methods are applied to
a standard multi-class learning problem, as well as a more complex natural language
parsing problem. In both settings we show that the EG algorithm converges to the
optimum much faster than these algorithms.

• In addition to proving convergence results for the definition of Q(α) used in max-
margin and log-linear models, we give theorems which may be useful when optimizing
other definitions of Q(α) using EG updates. In particular, we give conditions for
convergence which depend on bounds relating the Bregman divergence derived from
Q(α) to the Kullback-Liebler divergence. Depending on the form of these bounds for
a particular Q(α), either O(1

ε ) or O(log(1
ε )) rates of convergence can be derived.

The rest of this paper is organized as follows. In Section 2, we introduce the log-
linear and max-margin learning problems, and describe their dual optimization problems.
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Section 3 describes the batch and online EG algorithms; in Section 4, we describe how
the algorithms can be efficiently applied to structured prediction problems. Section 5 then
gives convergence proofs for the batch and online cases. Section 6 discusses related work.
Sections 7 and 8 give experiments, and Section 9 discusses our results.

This work builds on previous work described by Bartlett et al. (2005) and Globerson
et al. (2007). Bartlett et al. (2005) described the application of the EG algorithm to max-
margin parameter estimation, and showed how the method can be applied efficiently to part-
based formulations. Globerson et al. (2007) extended the approach to log-linear parameter
estimation, and gave new convergence proofs for both max-margin and log-linear estimation.
The work in the current paper gives several new results. We prove rates of convergence for
a randomized version of the EG online algorithm; previous work on EG algorithms had
not given convergence rates for the online case. We also report new experiments, including
experiments with the randomized strategy. Finally, the O(log(1

ε )) convergence rates for the
log-linear case are new. The results in Globerson et al. (2007) gave O(1

ε ) rates for the batch
algorithm for log-linear models, and did not give any theoretical rates of convergence for
the online case.

2. Primal and Dual Problems for Regularized Loss Minimization

2.1 The Primal Problems

Consider a supervised learning setting with objects x ∈ X and labels y ∈ Y.2 In the
structured learning setting, the labels may be sequences, trees, or other high-dimensional
data with internal structure. Assume we are given a function φ(x, y) : X × Y → Rd that
maps (x, y) pairs to feature vectors. Our goal is to construct a linear prediction rule

f(x,w) = arg max
y∈Y

w · φ(x, y) (3)

with parameters w ∈ Rd, such that f(x,w) is a good approximation of the true label of x.
The parameters w are learned by minimizing a regularized loss

L(w; {(xi, yi)}ni=1, C) =
n∑
i=1

`(w, xi, yi) +
C

2
‖w‖2 (4)

defined over a labeled training set {(xi, yi)}ni=1. Here C > 0 is a constant determining the
amount of regularization. The function ` measures the loss incurred in using w to predict
the label of xi, given that the true label is yi.

In this paper we will consider two definitions for `(w, xi, yi). The first definition, orig-
inally introduced by Taskar et al. (2004a), is a variant of the hinge loss, and is defined as
follows:

`MM(w, xi, yi) = max
y∈Y

[
e(xi, yi, y)−w · (φ(xi, yi)− φ(xi, y))

]
. (5)

Here e(xi, yi, y) is some measure of the error incurred in predicting y instead of yi as the
label of xi. We assume that e(xi, yi, yi) = 0 for all i, so that no loss is incurred for

2. In general the set of labels for a given example x may be a set Y(x) that depends on x; in fact, in our
experiments on dependency parsing Y does depend on x. For simplicity, in this paper we use the fixed
notation Y for all x; it is straightforward to extend our notation to the more general case.
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correct prediction, and therefore `MM(w, xi, yi) is always non-negative. This loss function
corresponds to a maximum-margin approach, which explicitly penalizes training examples
for which, for some y 6= yi,

w · (φ(xi, yi)− φ(xi, y)) < e(xi, yi, y).

The second loss function that we will consider is based on log-linear models, and is
commonly used in conditional random fields (CRFs, Lafferty et al., 2001). First define the
conditional distribution

p(y |x; w) =
1
Zx
ew·φ(x,y), (6)

where Zx =
∑

y e
w·φ(x,y) is the partition function. The loss function is then the negative

log-likelihood under the parameters w:

`LL(w, xi, yi) = − log p(yi |xi; w) . (7)

The function L is convex in w for both definitions `MM and `LL. Furthermore, in both
cases minimization of L can be re-cast as optimization of a dual convex problem. The dual
problems in the two cases have a similar structure, as we describe in the next two sections.

2.2 The Log-Linear Dual

The problem of minimizing L with the loss function `LL can be written as

P-LL : w∗ = argmin
w

−
∑
i

log p(yi |xi; w) +
C

2
‖w‖2

This is a convex optimization problem, and has an equivalent convex dual which was derived
by Lebanon and Lafferty (2002). Denote the dual variables by αi,y where i = 1, . . . , n and
y ∈ Y. We also use α to denote the set of all variables, and αi the set of all variables
corresponding to a given i. Thus α = [α1, . . . ,αn]. We assume α is a column vector.
Define the function QLL(α) as

QLL(α) =
∑
i

∑
y

αi,y logαi,y +
1

2C
‖w(α)‖2

where
w(α) =

∑
i

∑
y

αi,yψi,y (8)

and where ψi,y = φ(xi, yi)−φ(xi, y). We shall find the following matrix notation convenient:

QLL(α) =
∑
i

∑
y

αi,y logαi,y +
1
2
αTAα (9)

where A is a matrix of size n|Y|×n|Y| indexed by pairs (i, y), and A(i,y),(j,z) = 1
Cψi,y ·ψj,z.
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In what follows we denote the set of distributions over Y, i.e. the |Y|-dimensional
probability simplex, by ∆, as in Eq. 2. The Cartesian product of n distributions over Y
will be denoted by ∆n. The dual optimization problem is then

D-LL : α∗ = argmin QLL(α)
s.t. α ∈ ∆n (10)

The minimum of D-LL is equal to −1 times the minimum of P-LL. The duality between
P-LL and D-LL implies that the primal and dual solutions satisfy Cw∗ = w(α∗).

2.3 The Max-Margin Dual

When the loss is defined using `MM(w, xi, yi), the primal optimization problem is as follows:

P-MM : w∗ = argmin
w

−
∑
i

max
y

[
e(xi, yi, y)−w · (φ(xi, yi)− φ(xi, y))

]
+
C

2
‖w‖2

The dual of this minimization problem was derived in Taskar et al. (2004a) (see also Bartlett
et al., 2005). We first define the dual objective

QMM(α) = −bTα+
1
2
αTAα. (11)

Here, the matrix A is as defined above and b ∈ Rn|Y| is a vector defined as bi,y = e(xi, yi, y).
The convex dual for the max-margin case is then given by

D-MM : α∗ = argmin QMM(α)
s.t. α ∈ ∆n (12)

The minimum of D-MM is equal to −1 times the minimum of P-MM. (Note that for D-MM
the minimizer α∗ will not be unique since A is singular; in this case we take α∗ to be any
member of the set of minimizers of QMM(α)). The optimal primal parameters are again
related to the optimal dual parameters, through Cw∗ = w(α∗). Here again the constraints
are that αi is a distribution over Y for all i.

It can be seen that the D-LL and D-MM problems have a similar structure, in that they
both involve minimization of a convex function Q(α) over the set ∆n. This will allow us to
describe algorithms for both problems using a common framework.

3. Exponentiated Gradient Algorithms

In this section we describe batch and online algorithms for minimizing a convex function
Q(α) subject to the constraints α ∈ ∆n. The algorithms can be applied to both the D-LL
and D-MM optimization problems that were introduced in the previous section. The algo-
rithms we describe are based on exponentiated gradient (EG) updates, originally introduced
by Kivinen and Warmuth (1997) in the context of online learning algorithms.3

3. Kivinen and Warmuth (1997) study a setting with an infinite stream of data, as opposed to a fixed data
set which we study here. They are thus not interested in minimizing a fixed objective, but rather study
regret type bounds. This leads to algorithms and theoretical analyses that are quite different from the
ones considered in the current work.
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The EG updates rely on the following operation. Given a sequence of distributions
α ∈ ∆n, a new sequence of distributions α′ can be obtained as

α′i,y =
1
Zi
αi,ye

−η∇i,y ,

where ∇i,y = ∂Q(α)
∂αi,y

, Zi =
∑

ŷ αi,ŷe
−η∇i,ŷ is a partition function ensuring normalization

of the distribution α′i, and the parameter η > 0 is a learning rate. We will also use the
notation α′i,y ∝ αi,ye−η∇i,y where the partition function should be clear from the context.

Clearly α′ ∈ ∆n by construction. For the dual function QLL(α) the gradient is

∇i,y = 1 + logαi,y +
1
C

w(α) ·ψi,y

and for QMM(α) the gradient is

∇i,y = −bi,y +
1
C

w(α) ·ψi,y

In this paper we will consider both parallel (batch), and sequential (online) applications
of the EG updates, defined as follows:

• Batch: At every iteration the dual variables αi are simultaneously updated for all
i = 1, . . . , n.

• Online: At each iteration a single example k is chosen uniformly at random from
{1, . . . , n} and αk is updated to give α′k. The dual variables αi for i 6= k are left
unchanged.

Pseudo-code for the two schemes is given in Figures 1 and 2. From here on we will refer
to the batch and online EG algorithms applied to the log-linear dual as LLEG-Batch, and
LLEG-Online respectively. Similarly, when applied to the max-margin dual, they will be
referred to as MMEG-Batch and MMEG-Online.

Note that another plausible online algorithm would be a “deterministic” algorithm that
repeatedly cycled over the training examples in a fixed order. The motivation for the
alternative, randomized, algorithm is two-fold. First, we are able to prove bounds on the
rate of convergence of the randomized algorithm; we have not been able to prove similar
bounds for the deterministic variant. Second, our experiments show that the randomized
variant converges significantly faster than the deterministic algorithm.

The EG online algorithm is essentially performing coordinate descent on the dual objec-
tive, and is similar to SVM algorithms such as SMO (Platt, 1998). For binary classification,
the exact minimum of the dual objective with respect to a given coordinate can be found in
closed form,4 and more complicated algorithms such as the exponentiated-gradient method
may be unnecessary.5 However for multi-class or structured problems, the exact minimum

4. This is true for the max-margin case. For log-linear models, minimization with respect to a single
coordinate is a little more involved.

5. Note, however, that it is not entirely clear that finding the exact optimum with respect to each coordinate
would result in faster convergence than the EG method.
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Inputs: A convex function Q : ∆n → R, a learning rate η > 0.

Initialization: Set α1 to a point in the interior of ∆n.

Algorithm:

• For t = 1, . . . , T , repeat:

– For all i, y, calculate ∇i,y = ∂Q(αt)
∂αi,y

– For all i, y, update αt+1
i,y ∝ αti,ye−η∇i,y

Output: Final parameters αT+1.

Figure 1: A general batch EG Algorithm for minimizing Q(α) subject to α ∈ ∆n. We use
αt to denote the set of parameters after t iterations.

Inputs: A convex function Q : ∆n → R, a learning rate η > 0.

Initialization: Set α1 to a point in the interior of ∆n.

Algorithm:

• For t = 1, . . . , T , repeat:

– Choose kt uniformly at random from the set {1, 2, . . . , n}

– For all y, calculate: ∇kt,y = ∂Q(αt)
∂αkt,y

– For all y, update αt+1
kt,y
∝ αtkt,y

e−η∇kt,y .

– For all i 6= kt, set αt+1
i = αti

Output: Final parameters αT+1.

Figure 2: A general randomized online EG Algorithm for minimizing Q(α) subject to α ∈
∆n.

with respect to a coordinate αi (i.e., a set of |Y| dual variables) cannot be found in closed
form: this is a key motivation for the use of EG algorithms in this paper.

In Section 5 we give convergence proofs for the batch and online algorithms. The tech-
niques used in the convergence proofs are quite general, and could potentially be useful in
deriving EG algorithms for convex functions Q other than QLL and QMM. Before giving con-
vergence results for the algorithms, we describe in the next section how the EG algorithms
can be applied in structured problems.

4. Structured Prediction with the EG Algorithms

We now describe how the EG updates can be applied to structured prediction problems, for
example parameter estimation in CRFs or natural language parsing. In structured problems
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the label set Y is typically very large, but labels can have useful internal structure. As one
example, in CRFs each label y is an m-dimensional vector specifying the labeling of all m
vertices in a graph. In parsing each label y is an entire parse tree. In both of these cases,
the number of labels typically grows exponentially quickly with respect to the size of the
inputs x.

We follow the framework for structured problems described by Bartlett et al. (2005).
Each label y is defined to be a set of parts. We use R to refer to the set of all possible
parts.6 We make the assumption that the feature vector for an entire label y decomposes
into a sum over feature vectors for individual parts as follows:

φ(x, y) =
∑
r∈y

φ(x, r).

Note that we have overloaded φ to apply to either labels y or parts r.
As one example, consider a CRF which has an underlying graph with m nodes, and a

maximum clique size of 2. Assume that each node can be labeled with one of two labels,
0 or 1. In this case the labeling of an entire graph is a vector y ∈ {0, 1}m. Each possible
input x is usually a vector in Xm for some set X , although this does not have to be the
case. Each part corresponds to a tuple (u, v, yu, yv) where (u, v) is an edge in the graph, and
yu, yv are the labels for the two vertices u and v. The feature vector φ(x, r) can then track
any properties of the input x together with the labeled clique r = (u, v, yu, yv). In CRFs
with clique size greater than 2, each part corresponds to a labeled clique in the graph. In
natural language parsing, each part can correspond to a context-free rule at a particular
position in the sentence x (see Bartlett et al., 2005; Taskar et al., 2004b, for more details).

The label set Y can be extremely large in structured prediction problems. For example,
in a CRF with an underlying graph with m nodes and k possible labels at each node, there
are km possible labelings of the entire graph. The algorithms we have presented so far
require direct manipulation of dual variables αi,y corresponding to each possible labeling
of each training example; they will therefore be intractable in cases where there are an
exponential number of possible labels. However, in this section we describe an approach
that does allow an efficient implementation of the algorithms in several cases. The approach
is based on the method originally described in Bartlett et al. (2005).

The key idea is as follows. Instead of manipulating the dual variables αi for each i
directly, we will make use of alternative data structures θi for all i. Each θi is a vector
of real values θi,r for all r ∈ R. In general we will assume that there are a tractable
(polynomial) number of possible parts, and therefore that the number of θi,r variables is
also polynomial. For example, for a CRF with m nodes and k labels at every node, and
where the underlying graph has a maximum clique size of 2, each part takes the form
r = (u, v, yu, yv), and there are m2k2 possible parts.

In the max-margin case, we follow Taskar et al. (2004a) and make the additional as-
sumption that the error function decomposes into “local” error functions over parts:

e(xi, yi, y) =
∑
r∈y

e(xi, yi, r) (13)

6. As with the label set Y, the set of parts R may in general be a set R(x) that depends on x. For simplicity,
we assume that R is fixed.
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For example, when Y is a sequence of variables, the cost could be the Hamming distance
between the correct sequence yi and the predicted sequence y; it is straightforward to
decompose the Hamming distance as a sum over parts as shown above. For brevity, in what
follows we use ei,r instead of e(xi, yi, r).

The θi variables are used to implicitly define regular dual values αi = σ(θi) where
σ : R|R| → ∆ is defined as

σy(θ) =
exp

{∑
r∈y θr

}
∑

y′ exp
{∑

r∈y′ θr

}
To see how the θi variables can be updated, consider again the EG updates on the dual α
variables. The EG updates in all algorithms in this paper take the form

α′i,y =
αi,y exp{−η∇i,y}∑
ŷ αi,ŷ exp{−η∇i,ŷ}

where for QLL

∇i,y = 1 + logαi,y +
1
C

w(α) · (φ(xi, yi)− φ(xi, y))

and for QMM,

∇i,y = −bi,y +
1
C

w(α) · (φ(xi, yi)− φ(xi, y))

where bi,y = e(xi, yi, y) as in Section 2.3.
Notice that, for both objective functions, the gradients can be expressed as a sum over

parts. For the QLL objective function, this follows from the fact that αi = σ(θi) and from
the assumption that the feature vector decomposes into parts. For the QMM objective,
it follows from the latter, and the assumption that the loss decomposes into parts. The
following lemma describes how EG updates on the α variables can be restated in terms of
updates to the θ variables, provided that the gradient decomposes into parts in this way.

Lemma 1 For a given α ∈ ∆n, and for a given i ∈ [1 . . . n], take α′i to be the updated value
for αi derived using an EG step, that is,

α′i,y =
αi,y exp{−η∇i,y}∑
ŷ αi,ŷ exp{−η∇i,ŷ}

.

Suppose that, for some Gi and gi,r, we can write ∇i,y = Gi +
∑

r∈y gi,r for all y. Then if
αi = σ(θi) for some θi ∈ R|R|, and for all r we define

θ′i,r = θi,r − ηgi,r,

it follows that α′i = σ(θ′i).

Proof: We show that, for αi = σ(θi), updating the θi,r as described leads to σ(θ′i) = α′i.
For suitable partition functions Zi, Z ′i, and Z ′′i , we can write

σy(θ′i) =
exp

{∑
r∈y(θi,r − ηgi,r)

}
Zi
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=
αi,y exp

{
−η
∑

r∈y gi,r

}
Z ′i

=
αi,y exp {−η(∇i,y −Gi)}

Z ′i

=
αi,y exp {−η∇i,y}

Z ′′i
= α′i,y.

In the case of the QLL objective, a suitable update is

θ′i,r = θi,r − η
(
θi,r −

1
C

w(α) · φ(xi, r)
)
.

In the case of the QMM objective, a suitable update is

θ′i,r = θi,r − η
(
−ei,r −

1
C

w(α) · φ(xi, r)
)
.

Because of this result, all of the EG algorithms that we have presented can be restated
in terms of the θ variables: instead of maintaining a sequence αt = {αt1,αt2, . . . ,αtn}
of dual variables, a sequence θt = {θt1,θt2, . . . ,θtn} is maintained and updated using the
method described in the above lemmas. To illustrate this, Figure 3 gives a version of the
randomized algorithm in Figure 2 that makes use of θ variables. The batch algorithm can
be implemented in a similar way.

The main computational challenge in the new algorithms comes in computing the pa-
rameter vector w(σ(θt)). The value for w(σ(θt)) can be expressed as a function of the
marginal probabilities of the part variables, as follows:

w(σ(θt)) =
∑
i

∑
y

αi,y (φ(xi, yi)− φ(xi, y))

=
∑
i

φ(xi, yi)−
∑
i,y

σy(θti)φ(xi, y)

=
∑
i

φ(xi, yi)−
∑
i,y

∑
r∈y

σy(θti)φ(xi, r)

=
∑
i

φ(xi, yi)−
∑
i

∑
r∈R

µi,r(θti)φ(xi, r).

Here the µi,r terms correspond to marginals, defined as

µi,r(θti) =
∑
y:r∈y

σy(θti).

The mapping from parameters θti to marginals µi,r(θti) can be computed efficiently in several
important cases of structured models. For example, in CRFs belief propagation can be used
to efficiently calculate the marginal values, assuming that the tree-width of the underlying

11
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Inputs: Examples {(xi, yi)}ni=1, learning rate η > 0.

Initialization: For each i = 1 . . . n, set θ1
i to some (possibly different) point in R|R|.

Algorithm:

• Calculate
w1 =

∑
i

φ(xi, yi)−
∑
i,y

σy(θ1
i )φ(xi, y)

• For t = 1, . . . , T , repeat:

– Choose kt uniformly at random from the set [1, 2, . . . , n]

– For all r ∈ R,

If optimizing QLL: θt+1
kt,r

= θtkt,r − η
(
θtkt,r −

1
C

wt · φ(xkt
, r)
)

If optimizing QMM: θt+1
kt,r

= θtkt,r − η
(
−ekt,r −

1
C

wt · φ(xkt , r)
)

– For all i 6= kt, for all r, set θt+1
i,r = θti,r.

– Calculate

wt+1 =
∑
i

φ(xi, yi)−
∑
i,y

σy(θt+1
i )φ(xi, y)

= wt +
∑
y

σy(θtkt
)φ(xkt , y)−

∑
y

σy(θt+1
kt

)φ(xkt , y)

Output: Final dual parameters θT+1 or primal parameters 1
CwT+1.

Figure 3: An implementation of the algorithm in Figure 2 using a part-based representation. The
algorithm uses variables θi for i = 1 . . . n as a replacement for the dual variables αi in
Figure 2.

graph is small. In weighted context-free grammars the inside-outside algorithm can be
used to calculate marginals, assuming that set of parts R corresponds to context-free rule
productions. Once marginals are computed, it is straightforward to compute w(σ(θt)) and
thereby implement the part-based EG algorithms.

5. Convergence Results

In this section, we provide convergence results for the EG batch and online algorithms
presented in Section 3. Section 5.1 provides the key results, and the following sections give
the proofs and the technical details.

12
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Batch Algorithm Online Algorithm

QMM

n2

ε |A|∞D[α∗‖α1] n
ε

(
|A|∞D[α∗‖α1] + Q(α1)−Q(α∗)

)
QLL n(1 + n|A|∞) log(c1ε ) n(1 + |A|∞) log(c2ε )

Table 1: Each entry shows the amount of computation (measured in terms of the num-
ber of training sample processed using the EG updates) required to obtain
E [|Q(α)−Q(α∗)|] ≤ ε for a given ε > 0. The constants are c1 = (1 +
n|A|∞)D[α∗‖α1], and c2 =

[
(1 + |A|∞)D[α∗‖α1] +Q(α1)−Q(α∗))

]
.

5.1 Main Convergence Results

Our convergence results give bounds on how quickly the error |Q(α) − Q(α∗)| decreases
with respect to the number of iterations, T , of the algorithms. In all cases we have
|Q(α) − Q(α∗)| → 0 as T →∞.

In what follows we use D[p‖q] to denote the KL divergence between p,q ∈ ∆n (see
Section 5.2). We also use |A|∞ to denote the maximum magnitude element of A (i.e., |A|∞ =
max(i,y),(j,z) |A(i,y),(j,z)|). The first theorem provides results for the EG-batch algorithms,
and the second for the randomized online algorithms.

Theorem 1 For the batch algorithm in Figure 1, for QLL and QMM,

Q(α∗) ≤ Q(αT+1) ≤ Q(α∗) +
1
ηT

D[α∗‖α1] (14)

assuming that the learning rate η satisfies 0 < η ≤ 1
1+n|A|∞ for QLL, and 0 < η ≤ 1

n|A|∞ for
QMM. Furthermore, for QLL,

Q(α∗) ≤ Q(αT+1) ≤ Q(α∗) +
e−ηT

η
D[α∗‖α1] (15)

assuming again that 0 < η ≤ 1
1+n|A|∞ .

The randomized online algorithm will produce different results at every run, since dif-
ferent points will be processed on different runs. Our main result for this algorithm char-
acterizes the mean value of the objective Q(αT+1) when averaged over all possible random
orderings of points. The result implies that this mean will converge to the optimal value
Q(α∗).

Theorem 2 For the randomized algorithm in Figure 2, for QLL and QMM,

Q(α∗) ≤ E
[
Q(αT+1)

]
≤ Q(α∗) +

n

ηT
D[α∗‖α1] +

n

T

[
Q(α1)−Q(α∗)

]
(16)

assuming that the learning rate η satisfies 0 < η ≤ 1
1+|A|∞ for QLL, and 0 < η ≤ 1

|A|∞ for
QMM. Furthermore, for QLL, for the algorithm in Figure 2,

Q(α∗) ≤ E
[
Q(αT+1)

]
≤ Q(α∗) + e−

ηT
n

[
1
η
D[α∗‖α1] +Q(α1)−Q(α∗)

]
(17)

13
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assuming again that 0 < η ≤ 1
1+|A|∞ .

The above result characterizes the average behavior of the randomized algorithm, but
does not provide guarantees for any specific run of the algorithm. However, by applying
the standard approach of repeated sampling (see, for example, Mitzenmacher and Upfal,
2005; Shalev-Shwartz et al., 2007), one can obtain a solution that, with high probability,
does not deviate by much from the average behavior. In what follows, we briefly outline
this derivation.

Note that the random variable Q(αT+1) − Q(α∗) is nonnegative, and so by Markov’s
inequality, it satisfies

Pr
{
Q(αT )−Q(α∗) ≥ 2

(
E
[
Q(αT )

]
−Q(α∗)

)}
≤ 1

2
.

Given some δ > 0, if we run the algorithm k = log2(1
δ ) times7, each time with T iterations,

and choose the best α̂ of these k results, we see that

Pr
{
Q(α̂)−Q(α∗) ≥ 2

(
E
[
Q(αT )

]
−Q(α∗)

)}
≤ δ.

Thus, for any desired confidence 1−δ, we can obtain a solution that is within a factor of 2 of
the bound for T iterations in Theorem 2 by using T log2(1

δ ) iterations. In our experiments,
we found that repeated trials of the randomized algorithm did not yield significantly different
results.

The first consequence of the two theorems above is that the batch and randomized online
algorithms converge to an α with the optimal value Q(α∗). This follows since Equations
14 and 16 imply that as T →∞ the value of Q(αT+1) approaches Q(α∗).

The second consequence is that we can find the number of iterations that the algorithms
will take to reach an α such that E [|Q(α)−Q(α∗)|] ≤ ε for a given ε > 0 (the expected
value is redundant for the batch algorithm). Table 1 shows the computation required by
the different algorithms, where the computation is measured by the number of training
examples that need to be processed using the EG updates.8 The entries in the table assume
that the maximum possible learning rates are used for each of the algorithms—that is,

1
1+n|A|∞ for LLEG-Batch, 1

1+|A|∞ for LLEG-Online, 1
n|A|∞ for MMEG-batch, and 1

|A|∞ for
MMEG-Online.

Crucially, note that these rates suggest that the online algorithms are significantly more
efficient than the batch algorithms; specifically, the bounds suggest that the online algo-
rithms require a factor of n less computation in both the QLL and QMM cases. Thus these
results suggest that the randomized online algorithm should converge much faster than the
batch algorithm. Roughly speaking, this is a direct consequence of the learning rate η being
a factor of n larger in the online case (see also Section 9). This prediction is confirmed in
our empirical evaluations, which show that the online algorithm is far more efficient than
the batch algorithm.

7. Assume for simplicity that log2( 1
δ
) is integral.

8. Note that if we run the batch algorithm for T iterations (as in the figure), nT training examples are
processed. In contrast, running the online algorithm for T iterations (again, as shown in the figure) only
requires T training examples to be processed. It is important to take this into account when comparing
the rates in Theorems 1 and 2; this is the motivation for measuring computation in terms of the number
of examples that are processed.
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A second important point is that the rates for QLL lead to an O(log(1
ε )) dependence on

the desired accuracy ε, which is a significant improvement over QMM, which has an O(1
ε )

dependence. Note that the O(1
ε ) dependence for QMM has been shown for several other

algorithms in the literature (e.g., see Shalev-Shwartz et al., 2007).
To gain further intuition into the order of magnitude of iterations required, note that

the factor D[α∗‖α1] which appears in the above expressions is at most n log |Y|, which can
be achieved by setting α1

i to be the uniform distribution over Y for all i. Also, the value of
|A|∞ can easily be seen to be 1

C maxi,y ‖ψi,y‖2.
In the remainder of this section we give proofs of the results in Theorems 1 and 2. In

doing so, we also give theorems that apply to the optimization of general convex functions
Q : ∆n → R.

5.2 Divergence Measures

Before providing convergence proofs, we define several divergence measures between distri-
butions. Define the KL divergence between two distributions αi,βi ∈ ∆ to be

D[αi‖βi] =
∑
y

αi,y log
αi,y
βi,y

.

Given two sets of n distributions α,β ∈ ∆n define their KL divergence as

D[α‖β] =
∑
i

D[αi‖βi] .

Next, we consider a more general class of divergence measures, Bregman divergences
(e.g., see Bregman, 1967; Censor and Zenios, 1997; Kivinen and Warmuth, 1997). Given a
convex function Q(α), the Bregman divergence between α and β is defined as

BQ[α‖β] = Q(α)−Q(β)−∇Q(β) · (α− β)

Convexity of Q implies BQ[α‖β] ≥ 0 for all α,β ∈ ∆n.
Note that the Bregman divergence with Q(α) =

∑
i,y αi,y logαi,y is the KL divergence.

We shall also be interested in the Mahalanobis distance

MA[α‖β] =
1
2

(α− β)TA(α− β)

which is the Bregman divergence for Q(α) = 1
2α

TAα.
In what follows, we also use the Lp norm defined for x ∈ Rm as ‖x‖p = p

√∑
i |xi|p.

5.3 Dual Improvement and Bregman Divergence

In this section we provide a useful lemma that determines when the EG updates in the batch
algorithm will result in monotone improvement of Q(α). The lemma requires a condition
on the relation between the Bregman and KL divergences which we define as follows (the
second part of the definition will be used in the next section):
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Definition 5.1 : A convex function Q : ∆n → R is τ -upper-bounded for some τ > 0 if for
any p,q ∈ ∆n,

BQ[p‖q] ≤ τD[p‖q].

In addition, we say Q(α) is (µ, τ)-bounded for constants 0 < µ < τ if for any p,q ∈ ∆n,

µD[p‖q] ≤ BQ[p‖q] ≤ τD[p‖q].

The next lemma states that if Q(α) is τ -upper-bounded, then the change in the objective
as a result of an EG update can be related to the KL divergence between consecutive values
of the dual variables.

Lemma 2 If Q(α) is τ -upper-bounded, then if η is chosen such that 0 < η ≤ 1
τ , it holds

that for all t in the batch algorithm (Figure 1):

Q(αt)−Q(αt+1) ≥ 1
η
D[αt‖αt+1] (18)

Proof: Given an αt, the EG update is

αt+1
i,y =

1
Zti
αti,ye

−η∇ti,y

where

∇ti,y =
∂Q(αt)
∂αi,y

, Zti =
∑
ŷ

αti,ŷe
−η∇ti,y

Simple algebra yields∑
i

(
D[αti‖αt+1

i ] +D[αt+1
i ‖α

t
i]
)

= η
∑
i,y

(αti,y − αt+1
i,y )∇ti,y

Equivalently, using the notation for KL divergence between multiple distributions:

D[αt‖αt+1] +D[αt+1‖αt] = η(αt −αt+1) · ∇Q(αt)

The definition of the Bregman divergence BQ then implies

−ηBQ[αt+1‖αt] +D[αt‖αt+1] +D[αt+1‖αt] = η(Q(αt)−Q(αt+1)) (19)

Since Q(α) is τ -upper-bounded and η ≤ 1
τ it follows that D[αt+1‖αt] ≥ ηBQ[αt+1‖αt], and

together with Eq. 19 we obtain the desired result η(Q(αt)−Q(αt+1)) ≥ D[αt‖αt+1].

Note that the condition in the lemma may be weakened to requiring that τD[αt‖αt+1] ≥
BQ[αt‖αt+1] for all t. For simplicity, we require the condition for all p,q ∈ ∆n. Note also
that D[p‖q] ≥ 0 for all p,q ∈ ∆n, so the lemma implies that for an appropriately chosen
η, the EG updates always decrease the objective Q(α). We next show that the log-linear
dual QLL(α) is in fact τ -upper-bounded.
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Lemma 3 Define |A|∞ to be the maximum magnitude of any element of A, i.e., |A|∞ =
max(i,y),(j,z) |A(i,y),(j,z)|. Then QLL(α) is τLL-upper-bounded with τLL = 1 + n|A|∞.

Proof: First notice that the Bregman divergence BQ is linear in Q. Thus, we can write
BQLL

as a sum of two terms (see Eq. 9).

BQLL
[p‖q] = D[p‖q] +MA[p‖q].

We first boundMA[p‖q] in terms of squared L1 distance between p and q. Denote r = p−q.
Then:

MA[p‖q] =
1
2

∑
i,y,j,z

ri,yrj,zA(i,y),(j,z) ≤
|A|∞

2

∑
i,y,j,z

|ri,y||rj,z| =
|A|∞

2
‖p− q‖21. (20)

Next, we use the inequality D[p1‖p2] ≥ 1
2‖p1− p2‖21 (also known as Pinsker’s inequality, see

Cover and Thomas, 1991, p. 300), which holds for any two distributions p1 and p2. Consider
the two distributions p̂ = 1

np and q̂ = 1
nq, each defined over an alphabet of size n|Y|. Then

it follows that:9

|A|∞
2
‖p− q‖21 =

n2|A|∞
2
‖p̂− q̂‖21 ≤ n2|A|∞D[p̂‖q̂] = n|A|∞D[p‖q] (21)

and thus MA[p‖q] ≤ n|A|∞D[p‖q]. So for the Bregman divergence of QLL(α) we obtain

BQLL
[p‖q] ≤ (1 + n|A|∞)D[p‖q]

yielding the desired result.

The next lemma shows that a similar result can be obtained for the QMM objective.

Lemma 4 The function QMM(α) is τMM-upper-bounded with τMM = n|A|∞.

Proof: For QMM defined in Eq. 11, we have

BQMM
[p‖q] = MA[p‖q]

We can then use a similar derivation to that of Lemma 3 to obtain the result.

We thus have that the condition in Lemma 2 is satisfied for both the QLL(α) and
QMM(α) objectives, implying that their EG updates result in monotone improvement of the
objective, for a suitably chosen η:

Corollary 1 The LLEG-Batch algorithm with 0 < η ≤ 1
τLL

satisfies for all t

QLL(αt)−QLL(αt+1) ≥ 1
η
D[αt‖αt+1] (22)

and the MMEG-Batch algorithm with 0 < η ≤ 1
τMM

satisfies for all t

QMM(αt)−QMM(αt+1) ≥ 1
η
D[αt‖αt+1] . (23)

9. Note that D[p̂‖q̂] is a divergence between two distributions over |Y|n symbols and D[p‖q] is a divergence
between two sets of n distributions over |Y| symbols.
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5.4 Convergence Rates for the EG Batch Algorithms

The previous section showed that for appropriate choices of the learning rate η, the batch
EG updates are guaranteed to improve the QLL and QMM loss functions at each iteration. In
this section we build directly on these results, and address the following question: how many
iterations does the batch EG algorithm require so that the |Q(αt)−Q(α)| ≤ ε for a given
ε > 0? We show that as long as Q(α) is τ -upper-bounded, the number of iterations required
is O(1

ε ). This bound thus holds for both the log-linear and max-margin batch algorithms.
Next, we show that if Q(α) is (µ, τ)-bounded, the rate can be significantly improved to
requiring O(log(1

ε )) iterations. We conclude by showing that QLL(α) is (µ, τ)-bounded,
implying that the O(log(1

ε )) rate holds for LLEG-Batch.
The following result gives an O(1

ε ) rate for QLL and QMM:

Lemma 5 If Q(α) is τ -upper-bounded and 0 ≤ η ≤ 1
τ , then after T iterations of the

EG-Batch algorithm, for any u ∈ ∆n including u = α∗,

Q(αT+1)−Q(u) ≤ 1
ηT

D[u‖α1] . (24)

Proof: See Appendix A.

The lemma implies that to get ε-close to the optimal objective value, O(1
ε ) iterations are

required—more precisely, if a choice of η = 1
τ is made, then at most τ

εD[u‖α1] iterations
are required. Since its conditions are satisfied by both QLL(α) and QMM(α) (given an
appropriate choice of η) the result holds for both the LLEG-Batch and MMEG-Batch
algorithms.

A much improved rate may be obtained if Q(α) is not only τ -upper-bounded, but also
(µ, τ)-bounded (see Definition 5.1).

Lemma 6 If Q(α) is (µ, τ)-bounded and 0 < η ≤ 1
τ then after T iterations of the EG-Batch

algorithm, for any u ∈ ∆n including u = α∗,

Q(αT+1)−Q(u) ≤ e−ηµT

η
D[u||α1] (25)

Proof: See Appendix B.

The lemma implies that an accuracy of ε may be achieved by using O(log(1
ε )) iterations.

To see why QLL(α) is (µ, τ)-bounded note that for any p,q ∈ ∆n,

BQLL
[p‖q] = D[p‖q] +MA[p‖q] ≥ D[p‖q] (26)

implying (together with Lemma 3) that QLL(α) is (1, τLL)-bounded.
Finally, note that Lemmas 5 and 6, together with the facts that QLL is (1, τLL)-bounded

and QMM is τMM-upper-bounded, imply Theorem 1 of Section 5.1.
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5.5 Convergence Results for the Randomized Online Algorithm

This section analyzes the rate of convergence of the randomized online algorithm in Figure 2.
Before stating the results, we need some definitions. We will use Qα,i : ∆ → R to be the
function defined as

Qα,i(β) = Q(α1,α2, . . . ,αi−1,β,αi+1, . . . ,αn)

for any β ∈ ∆. We denote the Bregman divergence associated with Qα,i as BQα,i [x‖y]. We
then introduce the following definitions:

Definition 5.2 : A convex function Q : ∆n → R is τ -online-upper-bounded for some τ > 0
if for any i ∈ 1 . . . n and for any p,q ∈ ∆,

BQα,i [p‖q] ≤ τD[p‖q].

In addition, Q is (µ, τ)-online-bounded for 0 < µ < τ if Q is τ -online-upper-bounded, and
in addition, for any p,q ∈ ∆n,

µD[p‖q] ≤ BQ[p‖q]

Note that the lower bound in the above definition refers to Q and not to Qα,i. Also, note
that if a function is (µ, τ)-online-bounded then it must also be τ -online-upper-bounded.

The following lemma then gives results for the QLL and QMM functions:

Lemma 7 The regularized log-likelihood dual QLL(α) is (µ, τ)-online-bounded for µ = 1
and τ = 1 + |A|∞. The max-margin dual QMM(α) is τ -online-upper-bounded for τ = |A|∞.

Proof: See Appendix C.

For any (µ, τ)-online-bounded Q, the online EG algorithm converges at an exponential
rate, as shown by the following lemma.

Lemma 8 Consider the algorithm in Figure 2 applied to a convex function Q(α) that is
(µ, τ)-online-bounded. If η > 0 is chosen such that η ≤ 1

τ , then it follows that for all u ∈ ∆n

E
[
Q(αT+1)

]
≤ Q(u) + e−

ηµT
n

[
1
η
D[u‖α1] +Q(α1)−Q(α∗)

]
(27)

where α∗ = argminα∈∆n Q(α).

Proof: See Appendix D.

The previous lemma shows, in particular, that the online EG algorithm converges at an
exponential rate for the function QLL. However, these results do not apply to QMM, which
is only τ -online-upper-bounded. The following lemma shows that such functions exhibit a
O( 1

T ) rate of convergence.
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Lemma 9 Consider the algorithm in Figure 2 applied to a convex function Q(α) that is
τ -online-upper-bounded. If η > 0 is chosen such that η ≤ 1

τ , then it follows that for all
u ∈ ∆n

E
[
Q(αT+1)

]
≤ Q(u) +

n

ηT
D[u‖α1] +

n

T

[
Q(α1)−Q(α∗)

]
(28)

where E
[
Q(αT+1)

]
is the expected value of Q(αT+1), and α∗ = argminα∈∆n Q(α).

Proof: See Appendix E.

Note that Lemmas 7, 8 and 9 complete the proof of Theorem 2 in Section 5.1.

6. Related Work

The idea of solving regularized loss-minimization problems via their convex duals has been
addressed in several previous papers. Here we review those, specifically focusing on the
log-linear and max-margin problems.

Zhang (2002) presented a study of convex duals of general regularized loss functions,
and provided a methodology for deriving such duals. He also considered a general procedure
for solving such duals by optimizing one coordinate at a time. However, it is not clear how
to implement this procedure in the structured learning case (i.e., when |Y| is large), and
convergence rates are not given.

In the specific context of log-linear models, several works have studied dual optimization.
Earlier work (Jaakkola and Haussler, 1999; Keerthi et al., 2005; Zhu and Hastie, 2001)
treated the logistic regression model, a simpler version of a CRF. In the binary logistic
regression case, there is essentially one parameter αi with the constraint 0 ≤ αi ≤ 1 and
therefore simple line search methods can be used for optimization. Minka (2003) shows
empirical results which show that this approach performs similarly to conjugate gradient.
The problem becomes much harder when αi is constrained to be a distribution over many
labels, as in the case discussed here. Recently, Memisevic (2006) addressed this setting,
and suggests optimizing αi by transferring probability mass between two labels y1, y2 while
keeping the distribution normalized. This requires a strategy for choosing these two labels,
and the author suggests one which seems to perform well. We note that our EG updates
change the whole distribution αi and are thus expected to yield much better improvement
of the objective.

While some previous work on log-linear models proved convergence of dual methods (e.g.,
Keerthi et al., 2005), we are not aware of rates of convergence that have been reported in
this context. Convergence rates for related algorithms, in particular a generalization of EG,
known as the Mirror-Descent algorithm, have been studied in a more general context in the
optimization literature. For instance, Beck and Teboulle (2003) describe convergence results
which apply to quite general definitions of Q(α), but which have only O( 1

ε2
) convergence

rates, as compared to our results of O(1
ε ) and O(log(1

ε )) for the max-margin and log-linear
cases respectively. Also, their work considers optimization over a single simplex, and does
not consider online-like algorithms such as the one we have presented.

For max-margin models, numerous dual methods have been suggested, an earlier ex-
ample being the SMO algorithm of Platt (1998). Such methods optimize subsets of the α
parameters in the dual SVM formulation (see also Crammer and Singer, 2002). Analysis
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of a similar algorithm (Hush et al., 2006) results in an O(1
ε ) rate, similar to the one we

have here. Another algorithm for solving SVMs via the dual is the multiplicative update
method of Sha et al. (2007). These updates are shown to converge to the optimum of the
SVM dual, but convergence rate has not been analyzed, and extension to the structured
case seems non-trivial. An application of EG to binary SVMs was previously studied by
Cristianini et al. (1998). They show convergence rates of O( 1

ε2
), that are slower than our

O(1
ε ), and no extension to structured learning (or multi-class) is discussed.
Recently, several new algorithms have been presented, along with a rate of convergence

analysis (Joachims, 2006; Shalev-Shwartz et al., 2007; Teo et al., 2007; Tsochantaridis et al.,
2004). All of these algorithms are similar to ours in having a relatively low dependence on n
in terms of memory and computation. Among these, Shalev-Shwartz et al. (2007) and Teo
et al. (2007), present an O(1

ε ) rate, but where accuracy is measured in the primal or via the
duality gap, and not in the dual as in our analysis. Thus, it seems that a rate of O(1

ε ) is
currently the best known result for algorithms that have a relatively low dependence on n
(general QP solvers, which may have O(log(1

ε )) behavior, generally have a larger dependence
on n, both in time and space).

7. Experiments on Regularized Log-Likelihood

In this section we analyze the performance of the EG algorithms for optimization of reg-
ularized log-likelihood. We describe experiments on two tasks: first, the MNIST digit
classification task, which is a multiclass classification task; second, a log-linear model for a
structured natural-language dependency-parsing task. In each case we first give results for
the EG method, and then compare its performance to L-BFGS (Byrd et al., 1995), which
is a batch gradient descent method, and to stochastic gradient descent.10

We do not report results on LLEG-Batch, since we found it to converge much more
slowly than the online algorithm. This is expected from our theoretical results, which
anticipate a factor of n speed-up for the online algorithm. We also report experiments
comparing the randomized online algorithm to a deterministic online EG algorithm, where
samples are drawn in a fixed order (e.g., the algorithm first visits the first example, then
the second, etc.).

Although EG is guaranteed to converge for an appropriately chosen η, it turns out to
be beneficial to use an adaptive learning rate. Here we use the following crude strategy:
we first consider only 10% of the data-set, and find a value of η that results in monotone
improvement for at least 95% of the samples. Denote this value by ηini (for the experiments
in Section 7.1 we simply use ηini = 0.5). For learning over the entire data-set, we keep a
learning rate ηi for each sample i (where i = 1, . . . , n), and initialize this rate to ηini for
all points. When sample i is visited, we halve ηi until an improvement in the objective is
obtained. Finally, after the update, we multiply ηi by 1.05, so that it does not decrease
monotonically.

It is important that when updating a single example using the online algorithms, the
improvement (or decrease) in the dual can be easily evaluated, allowing the halving strategy
described in the previous paragraph to be implemented efficiently. If the current dual

10. We also experimented with conjugate gradient algorithms, but since these resulted in worse performance
than L-BFGS, we do not report these results here.
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parameters are α, the i’th coordinate is selected, and the EG updates then map αi to α′i,
the change in the dual objective is

∑
y

α′i,y logα′i,y +
1

2C

∥∥∥∥∥w(α) +
∑
y

(
α′i,y − αi,y

)
ψi,y

∥∥∥∥∥
2

−
∑
y

αi,y logαi,y −
1

2C
‖w(α)‖2

The primal parameters w(α) are maintained throughout the algorithm (see Figure 3), so
that this change in the dual objective can be calculated efficiently. A similar method can
be used to calculate the change in the dual objective in the max-margin case.

We measure the performance of each training algorithm (the EG algorithms, as well
as the batch gradient and stochastic gradient methods) as a function of the amount of
computation spent. Specifically, we measure computation in terms of the number of times
each training example is visited. For EG, an example is considered to be visited for every
value of η that is tested on it. For L-BFGS, all examples are visited for every evaluation
performed by the line-search routine. We define the measure of effective iterations to be
the number of examples visited, divided by n.

7.1 Multi-class Classification

We first conducted multi-class classification experiments on the MNIST classification task.
Examples in this dataset are images of handwritten digits represented as 784-dimensional
vectors. We used a training set of 59k examples, and a validation set of 10k examples.11

We define a ten-class logistic-regression model where

p(y |x) ∝ ex·wy (29)

and x,wy ∈ R784, y ∈ {1, . . . , 10}.
Models were trained for various values of the regularization parameter C: specifically, we

tried values of C equal to 1000, 100, 10, 1, 0.1, and 0.01. Convergence of the EG algorithm
for low values of C (i.e., 0.1 and 0.01) was found to be slow; we discuss this issue more in
Section 7.1.1, arguing that it is not a serious problem.

Figure 4 shows plots of the validation error versus computation for C equal to 1000,
100, 10, and 1, when using the EG algorithm. For C equal to 10 or more, convergence is
fast. For C = 1 convergence is somewhat slower. Note that there is little to choose between
C = 10 and C = 1 in terms of validation error.

Figure 5 shows plots of the primal and dual objective functions for different values of C.
Note that EG does not explicitly minimize the primal objective function, so the EG primal
will not necessarily decrease at every iteration. Nevertheless, our experiments show that
the EG primal decreases quite quickly. Figure 6 shows how the duality gap decreases with
the amount of computation spent (the duality gap is the difference between the primal and
dual values at each iteration). The log of the duality gap decreases more-or-less linearly
with the amount of computation spent, as predicted by the O(log(1

ε )) bounds on the rate
of convergence.

11. In reporting results, we consider only validation error; that is, error computed during the training process
on a validation set. This measure is often used in early-stopping of algorithms, and is therefore of interest
in the current context. We do not report test error since our main focus is algorithmic.
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Figure 4: Validation error results on the MNIST learning task for log-linear models trained using
the EG randomized online algorithm. The X axis shows the number of effective iterations
over the entire data set. The Y axis shows validation error percentages. The left figure
shows plots for values of C equal to 1, 10, 100, and 1000. The right figure shows plots
for C equal to 1 and 10 at a larger scale.

Finally, we compare the deterministic and randomized versions of the EG algorithm.
Figure 7 shows the primal and dual objectives for both algorithms. It can be seen that the
randomized algorithm is clearly much faster to converge. This is even more evident when
plotting the duality gap, which converges much faster to zero in the case of the randomized
algorithm. These results give empirical evidence that the randomized strategy is to be
preferred over a fixed ordering of the training examples (note that we have been able to
prove bounds on convergence rate for the randomized algorithm, but have not been able to
prove similar bounds for the deterministic case).

7.1.1 Convergence for Low Values of C

As mentioned in the previous section, convergence of the EG algorithm for low values of C
can be very slow. This is to be expected from the bounds on convergence, which predict that
convergence time should scale linearly with 1

C (other algorithms, e.g., see Shalev-Shwartz
et al., 2007, also require O( 1

C ) time for convergence). This is however, not a serious problem
on the MNIST data, where validation error has reached a minimum point for around C = 10
or C = 1.

If convergence for small values of C is required, one strategy we have found effective is
to start C at a higher value, then “anneal” it towards the target value. For example, see
Figure 8 for results for C = 1 using one such annealing scheme. For this experiment, if we
take t to be number of iterations over the training set, where for any t we have processed
t × n training examples, we set C = 10 for t ≤ 5, and set C = 1 + 9 × 0.7t−5 for t > 5.
Thus C starts at 10, then decays exponentially quickly towards the target value of 1. It
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Figure 5: Primal and dual objective values on the MNIST learning task for log-linear models trained
using the EG randomized online algorithm. The dual values have been negated so that
the primal and dual problems have the same optimal value. The X axis shows the number
of effective iterations over the entire data set. The Y axis shows the value of the primal
or dual objective functions. The left figure shows plots for values of C equal to 1000 and
100; the right figure shows plots for C equal to 10, and 1. In all cases the primal and
dual objectives converge to the same value, with faster convergence for larger values of
C.

can be seen that convergence is significantly faster for the annealed method. The intuition
behind this method is that the solution to the dual problem for C = 10 is a reasonable
approximation to the solution for C = 1, and is considerably more easy to solve; in the
annealing strategy we start with an easier problem and then gradually move towards the
harder problem of C = 1.

7.1.2 An Efficient Method for Optimizing a Range of C Values

In practice, when estimating parameters using either regularized log-likelihood or hinge-
loss, a range of values for C are tested, with cross-validation or validation on a held-out
set being used to choose the optimal value of C. In the previously described experiments,
we independently optimized log-likelihood-based models for different values of C. In this
section we describe a highly efficient method for training a sequence of models for a range
of values of C.

The method is as follows. We pick some maximum value for C; as in our previous
experiments, we will choose a maximum value of C = 1000. We also pick a tolerance value
ε, and a parameter 0 < β < 1. We then optimize C using the randomized online algorithm,
until the duality gap is less than ε×p, where p is the primal value. Once the duality gap has
converged to within this ε tolerance, we reduce C by a factor of β, and again optimize to
within an ε tolerance. We continue this strategy—for each value of C optimizing to within
a factor of ε, then reducing C by a factor of β—until C has reached a low enough value. At

24



Exponentiated Gradient Algorithms for CRFs and Max-Margin Markov Networks

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 20  40  60  80  100  120  140  160  180  200

D
ua

lit
y 

G
ap

 (
%

)

Eff. Iteration

C=1000
C=100
C=10
C=1
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Figure 7: Results on the MNIST learning task, comparing the randomized and deterministic online
EG algorithms, for C = 1. The left figure shows primal and dual objective values
for both algorithms. The right figure shows the normalized value of the duality gap:
(primal(t)− dual(t))/opt, where opt is the value of the joint optimum of the primal and
dual problems, and t is the iteration number. The X axis counts the number of effective
iterations over the entire data set.

the end of the sequence, this method recovers a series of models for different values of C,
each optimized to within a tolerance of ε.
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Figure 8: Results on the MNIST learning task, for C = 1, comparing the regular EG randomized
algorithm with an annealed version of the algorithm (see Section 7.1.1). The left figure
shows primal objective values calculated for C = 1; the right figure shows validation
error. The annealed strategy gives significantly faster convergence.

It is crucial that each time we decrease C, we take our initial dual values to be the final
dual values resulting from optimization for the previous value of C. In practice, if C does
not decrease too quickly, the previous dual values are a very good starting point for the
new value of C; this corresponds to a “warm start” in optimizing values of C that are less
than the maximum value. A similar initialization method is used in Koh et al. (2007) in
the context of `1 regularized logistic regression.

As one example of this approach, we trained models in this way with the starting
(maximum) value of C set to 1000, ε set to 0.001 (i.e., 0.1%), and β set to 0.7. Table 2
shows the number of iterations of training required for each value of C. The benefits of
using the previous dual values at each new value of C are clear: for 9.69 ≤ C ≤ 700 at
most 5 iterations are required for convergence; even for C = 0.798 only 14 iterations are
required; a range of 25 different values of C between 1000 and 0.274 can be optimized with
less than 200 effective iterations over the training set.

7.1.3 Comparisons to Stochastic Gradient Descent

This section compares performance of the EG algorithms to stochastic gradient descent
(SGD) on the primal objective. In SGD the parameters w are initially set to be 0. At each
step an example index i is chosen at random, and the following update is performed:

w = w − η ∂

∂w

(
− log p(yi |xi; w) +

C

2n
‖w‖2

)
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C Iterations Total Error
Iterations

1000 11 11 0.1011
700 3 14 0.0968
490 4.01 18.01 0.0926
343 4.09 22.1 0.0895
240.1 4.24 26.34 0.0869
168.07 4.32 30.67 0.0846
117.649 4.3 34.97 0.0829
82.3543 4.29 39.27 0.0809
57.648 4.32 43.6 0.0803
40.3536 4.33 47.93 0.0775
28.2475 4.34 52.28 0.0768
19.7733 4.36 56.64 0.0758
13.8413 4.38 61.03 0.076
9.6889 5.47 66.51 0.0744
6.78223 5.49 72 0.0741
4.74756 5.51 77.52 0.0732
3.32329 6.6 84.12 0.0736
2.32631 7.69 91.82 0.0735
1.62841 8.78 100.61 0.0729
1.13989 12 112.62 0.074
0.797923 15.24 127.86 0.0747
0.558546 20.61 148.47 0.0749
0.390982 27.05 175.53 0.074
0.273687 35.63 211.17 0.0747

Table 2: Table showing number of effective iterations required to optimize a sequence of values for
C for the MNIST task, using the method described in Section 7.1.2. The column C shows
the sequence of decreasing regularizer constants. Iterations shows the number of effective
iterations over the training set required to optimized each value of C. Total iterations
shows the cumulative value of Iterations, and Error shows the validation error obtained
for every C value. It can be seen that the optimal error is reached at C = 1.62841.
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where η > 0 is a learning rate. The term

∂

∂w

(
− log p(yi |xi; w) +

C

2n
‖w‖2

)
can be thought of as an estimate of the gradient of the primal objective function for the
entire training set.

In our experiments, we chose the learning rate η to be

η =
η0

1 + k/n

where η0 > 0 is a constant, n is the number of training examples, and k is the number of
updates that have been performed up to this point. Thus the learning rate decays to 0 with
the number of examples that are updated. This follows the approach described in LeCun
et al. (1998); we have consistently found that it performs better than using a single, fixed
learning rate.

We tested SGD for C values of 1000, 100, 10, 1, 0.1 and 0.01. In each case we chose the
value of η0 as follows. For each value of C we first tested values of η0 equal to 1, 0.1, 0.01,
0.001, and 0.0001, and then chose the value of η0 which led to the best validation error after
a single iteration of SGD. This strategy resulted in a choice of η0 = 0.01 for all values of C
except C = 1000, where η0 = 0.001 was chosen. We have found this strategy to be a robust
method for choosing η0 (note that we do not want to run SGD for more iterations with all
(C, η0) combinations, as this would require 5 times as much computation as picking a single
value of η0).

Figure 9 compares validation error rates for SGD and the randomized EG algorithm.
For the initial (roughly 5) iterations of training, SGD has better validation error scores, but
beyond this the EG algorithm looks very competitive on this task. Note that the amount
of computation for SGD does not include the iterations required to find the optimal value
of η0; if this computation was included the SGD curves would be shifted 5 iterations to the
right.

To compare the primal objective obtained by EG and SGD, we used the EG weight
vector 1

Cw(αt) to compute primal values. Figure 10 shows graphs comparing performance
in optimizing the primal objective value for EG and SGD. For C equal to 1000, 100, and
10, the results are similar: SGD is initially better than EG, but after around 5 iterations
EG overtakes SGD, and converges much more quickly to the optimal point. The difference
between EG and SGD appears to become more pronounced as C becomes smaller. For
C = 1 our strategy for choosing η0 does not pick the optimal value for η0 at least when
evaluating the primal objective; see the caption to the figure for more discussion. EG again
appears to out-perform SGD after the initial few iterations.

7.1.4 Comparisons to L-BFGS

One of the standard approaches to training log-linear models is using the L-BFGS gradient-
based algorithm (Sha and Pereira, 2003). L-BFGS is a batch algorithm, in the sense that
its updates require evaluating the primal objective and gradient, which involves iterating
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Figure 9: Graphs showing validation error results on the MNIST learning task, comparing the EG
randomized algorithm to stochastic gradient descent (SGD). The X axis shows number
of effective training iterations, the Y axis shows validation error in percent. The EG
results are shown for C = 10; SGD results are shown for several values of C. For SGD
for C = 1, C = 0.1, and C = 0.01 the curves were nearly identical, hence we omit the
curves for C = 1 and C = 0.1. Note that the amount of computation for SGD does not
include the iterations required to find the optimal value for the learning rate η0.

over the entire data-set. To compare L-BFGS to EG, we used the implementation based on
Byrd et al. (1995).12

For L-BFGS, a total of n training examples must be processed every time the gradient or
objective function is evaluated; note that because L-BFGS uses a line search, each iteration
may involve several such evaluations.13

As in Section 7.1.3, we calculated primal values for EG. Figure 11 shows the primal
objective for EG, and L-BFGS. It can be seen that the primal value for EG converges
considerably faster than the L-BFGS one. Also shown is a curve of validation error for both
algorithms. Here we show the results for EG with C = 10 and L-BFGS with various C
values. It can be seen that L-BFGS does not outperform the EG curve for any value of C.

12. Specifically, we used the code by Zhu, Byrd, Lu, and Nocedal’s (www.ece.northwestern.edu/∼nocedal/)
with L. Stewart’s wrapper (www.cs.toronto.edu/∼liam/).

13. The implementation of L-BFGS that we use requires both the gradient and objective when performing
the line-search. In some line-search variants, it is possible to use only objective evaluations. In this case,
the EG line search will be somewhat more costly, since the dual objective requires evaluations of both
marginals and partition function, whereas the primal objective only requires the partition function. This
will have an effect on running times only if the EG line search evaluates more than one point, which
happened for less than 10% of the points in our experiments.
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Figure 10: Graphs showing primal objective values on the MNIST learning task, comparing the EG
randomized algorithm to stochastic gradient descent (SGD). The X axis shows number
of effective training iterations, the Y axis shows primal objective. The graphs are for
C equal to 1000, 100, 10, and 1. For C = 1 we show EG results with and without
the annealed strategy described in Section 7.1.1. For C = 1 we also show two SGD
curves, for learning rates 0.01 and 0.1: in this case η0 = 0.01 was the best-performing
learning rate after one iteration for both validation error and primal objective, however
a post-hoc analysis shows that η0 = 0.1 converges to a better value in the limit. Thus
our strategy for choosing η0 was not optimal in this case, although it is difficult to
know how η0 = 0.1 could be chosen without post-hoc analysis of the convergence for
the different values of η0. For other values of C our strategy for picking η0 was more
robust.

7.2 Structured learning - Dependency Parsing

Parsing of natural language sentences is a challenging structured learning task. Dependency
parsing (McDonald et al., 2005) is a simplified form of parsing where the goal is to map
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Figure 11: Results on the MNIST learning task, comparing the EG algorithm to L-BFGS. The
figures on the first and second row show the primal objective for both algorithms, for
various values of C. The bottom curve shows validation error for L-BFGS for various
values of C and for EG with C = 10.
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sentences x into projective directed spanning trees over the set of words in x. Each label
y is a set of directed arcs (dependencies) between pairs of words in the sentence. Each
dependency is a pair (h,m) where h is the index of the head word of the dependency,
and m is the index of the modifier word. Assuming we have a function φ(x, h,m) that
assigns a feature vector to dependencies (h,m), we can use a weight vector w to score a
given tree y by w ·

∑
(h,m)∈y φ(x, h,m). Dependency parsing corresponds to a structured

problem where the parts r are dependencies (h,m); the approach described in Section 4 can
be applied efficiently to dependency structures. For projective dependency trees (e.g., see
Koo et al., 2007), the required marginals can be computed efficiently using a variant of the
inside-outside algorithm (Baker, 1979).

In the experiments below we use a feature set φ(x, h,m) similar to that in McDonald
et al. (2005) and Koo et al. (2007), resulting in 2, 500, 554 features. We report results on the
Spanish data-set which is part of the CoNLL-X Shared Task on multilingual dependency
parsing (Buchholz and Marsi, 2006). The training data consists of 2, 306 sentences (58, 771
tokens). To evaluate validation error, we use 1, 000 sentences (30, 563 tokens) and report
accuracy (rate of correct edges in a predicted parse tree) on these sentences.14

As in the multi-class experiments, we compare to SGD and L-BFGS. The implementa-
tion of the algorithms is similar to that described in Section 7.1. The gradients for SGD
and L-BFGS were obtained by calculating the relevant marginals of the model, using the
inside-outside algorithm that was also used for EG. The learning rate for SGD was chosen
as in the previous section; that is, we tested several learning rates (η0 = 1, 0.1, 0.001, 0.0001)
and chose the one that yielded the minimum validation error after one iteration.

Figure 12 shows results for EG and L-BFGS on the parsing task. We experiment with
values of C in the set {0.1, 1, 10, 100, 1000}. Of these, the value that results in optimal
validation error was C = 10. The performance of L-BFGS, SGD and EG is demonstrated
in terms of the primal objective for a subset of the C values. L-BFGS and EG both
converge to the optimal value, and EG is significantly faster. On the other hand, SGD
does not converge to the optimum for all C values (e.g., for C = 1, 10), and when it does
converge to the optimum, it is slower than EG.

Figure 12 also shows the validation error for EG at the optimal C value, compared to
validation error for L-BFGS and SGD at various C values. Again, it can be seen the EG
curve significantly outperforms those of L-BFGS. For SGD, performance is comparable to
EG. However, as mentioned earlier, SGD in fact does not successfully optimize the primal
objective for low values of C, and for higher values of C the SGD primal objective is slower
to converge.

As in the multi-class experiments (see Figure 10), it is possible to find learning rates for
SGD such that it converges to the primal optimum for C = 1, 10. However, the optimality
of these rates only becomes evident after 10 iterations or more (results not shown). Thus, to
find a learning rate for SGD that actually solves the optimization problem would typically
require an additional few tens of iterations, making it significantly slower than EG.

Finally, it is possible to use EG to efficiently optimize over a set of regularization con-
stants, as in Section 7.1.2. Table 3 shows results for a sequence of regularization constants.

14. All 3, 306 sentences were obtained from the training data section of the CoNLL-X Spanish data-set (Civit
and Mart́ı, 2002).
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C Iterations Total Accuracy
Iterations

1000 8 8 72.44
700 3.01 11.01 73.42
490 4.76 15.77 74.35
343 4.9 20.67 75.29
240.1 4.91 25.58 76.13
168.07 6.1 31.68 77.13
117.649 6.06 37.74 77.82
82.354 6.08 43.82 78.74
57.648 7.23 51.05 79.41
40.353 7.23 58.28 79.99
28.247 8.33 66.61 80.38
19.773 9.4 76.01 80.60
13.841 12.6 88.61 80.77
9.688 13.71 102.32 80.72
6.782 19.03 121.35 80.67
4.747 23.33 144.68 80.61
3.323 30.82 175.5 80.31
2.326 37.22 212.72 80.18
1.628 45.8 258.52 79.98
1.139 57.53 316.05 79.63
0.797 73.6 389.65 79.36

Table 3: Table showing number of effective iterations required to optimize a sequence of values
for C for the parsing task, using the method described in Section 7.1.2. The column
C shows the sequence of decreasing regularizer constants. Iterations shows the number
of effective iterations over the training set required to optimized each value of C. Total
iterations shows the cumulative value of Iterations, and Accuracy shows the validation
accuracy obtained for every C value. It can be seen that the optimal accuracy is reached
at C = 13.841.
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Figure 12: Results on the dependency-parsing task, comparing the EG algorithm to L-BFGS and
SGD. All algorithms are trained on the log-linear objective function. The figures on
the first and second rows show the primal objective for the three algorithms, for various
values of C. The left bottom plot shows validation accuracy (measured as the fraction of
correctly predicted edges) for L-BFGS for various values of C and for EG with C = 10.
The right bottom plot show validation accuracy for EG (with C = 10) and SGD.
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8. Experiments on Max-Margin Models

The max-margin loss (Eq. 5) has a discontinuity in its derivative. This makes optimization of
max-margin models somewhat more involved than log-linear ones, since gradient algorithms
such as L-BFGS cannot be used. This difficulty is exacerbated in the case of structured
prediction models, since maximization in Eq. 5 is potentially over an exponentially large
set.

In this section, we apply the EG algorithm to the max-margin problem, and compare its
performance to the SVM-Struct algorithm presented in Tsochantaridis et al. (2004).15 SVM-
Struct is based on a cutting-plane algorithm that operates on the dual max-margin problem
(D-MM) and results in monotone improvement in this dual. In this sense, it is similar to
our EG algorithm. In order to facilitate a fair comparison, we report the performance of
the two algorithms as a function of time. We do not report results by iteration since EG
and SVM-struct involve different computation per iteration (e.g., SVM-Struct solves a QP
per iteration).

We applied SVM-Struct and EG to the dependency parsing problem described in Sec-
tion 7.2. To apply SVM-Struct to this problem, we supply it with a routine that finds
the y ∈ Y which attains the maximum of the hinge-loss in Eq. 5. This maximum can
be found using a Viterbi-style algorithm. For the value of C we experimented with C ∈
{1, 10, 100, 1000, 10000}. The optimal value in terms of validation error was C = 100.

Figure 13 shows results in terms of primal and dual objective and in terms of accuracy.
It can be seen that EG is considerably faster than SVM-Struct for most C values. The
performance is comparable only for C = 1, where convergence is slow for both algorithms.

9. Conclusion

We have presented novel algorithms for large-scale learning of log-linear and max-margin
models, which provably converge to the optimal value of the respective loss functions. Al-
though the algorithms have both batch and online variants, the online version turns out to
be much more effective, both in theory and in practice. Our theoretical results (see Sec-
tion 5.1) suggest that the online algorithm requires a factor of n less iterations to achieve
a desired accuracy ε in the dual objective. This factor results from the fact that the online
algorithm can use a learning rate η that is n times larger than the batch case to obtain
updates that decrease the dual objective. Intuitively, this difference is associated with the
fact that the batch algorithm updates all α values simultaneously. The dual objective has
a term αTAα which involves all the αi variables and second order interactions between
them. It turns out that for batch updates only a relatively small change in the αi is al-
lowed, if one still requires an improvement in the dual objective after the update. It is
possible that our bounds for the batch convergence rate are more conservative than those
for the online case. However, we have observed in practice that the batch algorithm is much
slower to converge. Furthermore, we also observed that other batch-based algorithms such
as L-BFGS and conjugate gradient converge more slowly than the online EG algorithm.

Our results provide an O(log(1
ε )) rate for the log-linear model, as opposed to O(1

ε ) for
max-margin. If these bounds are tight, they would imply that log-linear models have an

15. Code available from svmlight.joachims.org/svm struct.html
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Figure 13: Results on the dependency-parsing task, comparing the EG algorithm to SVM-Struct.
Both algorithms are trained on a max-margin model. The figures on the first and second
rows show the primal objective for both algorithms, for various values of C. The bottom
curve shows validation accuracy (measured as the fraction of correctly predicted edges)
for SVM-Struct for various values of C and for EG with C = 100 (the value that yielded
the highest validation accuracy). The X axis on all curves is running time in hours.
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advantage over max-margin ones in terms of training efficiency. However, it is possible that
the analysis is not tight, and that improved rates may also be obtained for the max-margin
model. In any case, this raises the interesting question of comparing classification models
not only in terms of accuracy but also in terms of optimization efficiency.

Our convergence rates are with respect to accuracy in the dual objective. Some previous
work (e.g. Shalev-Shwartz et al., 2007) has considered the accuracy with respect to the
primal objective. It is relatively easy to show that in our case this still results in an
O(log(1

ε )) for the log-linear problem but a slower rate of O( 1
ε2

) for the max-margin case. It
is possible that more refined analysis will result in O(1

ε ), but we leave this for further study.
Most of our proofs rely on a relation between BQ and the KL divergence. This relation

holds for max-margin learning as well, a fact that simplifies previous results in this setting
(Bartlett et al., 2005). We expect a similar analysis to hold for other functions Q.

An interesting extension of our method is to using second order derivative information,
or its approximations, as in L-BFGS (Byrd et al., 1995). Such information may be used to
obtain more accurate minimization for each αi and may speed up convergence. Another
possible improvement is to the line search method. In the experiments reported here we
use a crude mechanism for adapting the learning rate, and it is possible that a more careful
procedure will improve convergence rates in practice.

Finally, our results show that the EG algorithms are highly competitive with state-of-
the-art methods for training log-linear and max-margin models. We thus expect them to
become useful as learning algorithms, specifically in the structured prediction setting, where
some of the standard multi-class algorithms are not applicable.
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Appendix A. O(1
ε
) Rate for Batch Algorithms - Proof of Lemma 5

We use a similar proof technique to that of Kivinen and Warmuth (2001). In particular, we
need the following Lemma, which is very similar to results used by Kivinen and Warmuth
(2001):

Lemma 10 (See Kivinen and Warmuth (2001), Proof of Lemma 4) For any convex func-
tion Q(α) over ∆n, for any u ∈ ∆n, and any αt in the interior of ∆n, if αt+1 is derived
from αt using the EG updates with a learning rate η, then

ηQ(αt)− ηQ(u) = D[u‖αt]−D[u‖αt+1] +D[αt‖αt+1]− ηBQ[u‖αt] (30)

Proof: By the definition of Bregman divergence, we have

ηQ(αt)− ηQ(u) = −η∇Q(αt) · (u−αt)− ηBQ[u‖αt] (31)

Given that αt+1 is derived from αt using EG updates,

αt+1
i,y =

αti,ye
−η∇i,y

Zti

where Zti is a normalization constant, and ∇i,y = ∂Q(αt)
∂αi,y

. Simple algebra then shows that
if αt+1 is derived from αt using EG updates, then

D[u‖αt]−D[u‖αt+1] +D[αt‖αt+1] =
∑
i,y

(
ui,y log

ui,y
αti,y
− ui,y log

ui,y

αt+1
i,y

+ αti,y log
αti,y

αt+1
i,y

)

=
∑
i,y

(ui,y − αti,y) log
αt+1
i,y

αti,y

=
∑
i,y

(ui,y − αti,y)(−η∇i,y − logZti )

=
∑
i,y

(ui,y − αti,y)(−η∇i,y)

= −η∇Q(αt) · (u−αt) (32)

Note that we have used
∑

i,y(ui,y−αti,y) logZti = 0, which follows because
∑

i,y ui,y logZti =∑
i,y α

t
i,y logZti =

∑
i logZti .

Combining Eq. 31 and Eq. 32 gives Eq. 30, thus proving the Lemma.
We can now prove Lemma 5:
Proof of Lemma 5: Using −ηBQ[u‖αt] ≤ 0, Lemma 10 implies that for all t

ηQ(αt)− ηQ(u) ≤ D[u‖αt]−D[u‖αt+1] +D[αt‖αt+1] (33)

By the assumptions of Lemma 5, Q(α) is τ -upper-bounded, and 0 ≤ η ≤ 1
τ , hence by

Lemma 3 we have
Q(αt)−Q(αt+1) ≥ 1

η
D[αt‖αt+1] (34)
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Combining Eqs. 33 and 34 gives for all t

ηQ(αt+1)− ηQ(u) ≤ D[u‖αt]−D[u‖αt+1]

Summing this over t = 1, . . . , T gives (the sum on the RHS telescopes)

η

T∑
t=1

Q(αt+1)− ηTQ(u) ≤ D[u‖α1]−D[u‖αT+1]

Because Q(αt) is monotone decreasing (by Eq. 34), we have TQ(αT+1) ≤
∑T

t=1Q(αt+1)
and simple algebra gives

Q(αT+1) ≤ Q(u) +
D[u‖α1]−D[u‖αT+1]

ηT

Dropping the term D[u‖αT+1] (because −D[u‖αT+1] ≤ 0) we obtain

Q(αT+1) ≤ Q(u) +
D[u‖α1]
ηT

as required.

Appendix B. O(log 1
ε
) Rate for Batch Algorithms - Proof of Lemma 6

By the assumptions of Lemma 6, Q(α) is τ -upper-bounded, and 0 ≤ η ≤ 1
τ , hence by

Lemma 3 we have for all t

Q(αt)−Q(αt+1) ≥ 1
η
D[αt‖αt+1] (35)

Combining this result with Lemma 10 gives

ηQ(αt+1)− ηQ(u) ≤ D[u‖αt]−D[u‖αt+1]− ηBQ[u‖αt]

We can now make use of the assumption thatQ(α) is (µ, τ)-bounded, and hence ηBQ[u‖αt] ≥
µηD[u‖αt], to obtain

ηQ(αt+1)− ηQ(u) ≤ D[u‖αt]−D[u‖αt+1]− ηµD[u‖αt]
= (1− ηµ)D[u‖αt]−D[u‖αt+1]
≤ (1− ηµ)D[u‖αt] (36)

If for any t, Q(αt+1) − Q(u) ≤ 0 then because Q(αt) decreases monotonically with t we
have Q(αT+1) ≤ Q(αt+1) ≤ Q(u) and the Lemma holds. Otherwise, if Q(αt+1)−Q(u) ≥ 0
for all t then for all t

D[u‖αt+1] ≤ (1− ηµ)D[u‖αt] . (37)

Using this inequality recursively for t = 1, . . . , T we get

D[u‖αT+1] ≤ (1− ηµ)T D[u‖α1] (38)

Substituting back into Eq. 36 we obtain

Q(αt+1)−Q(u) ≤ (1− ηµ)T

η
D[u‖α1] ≤ e−ηµT

η
D[u‖α1] (39)

where we have used log(1− x) ≤ −x.
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Appendix C. Proof of Lemma 7

For the regularized log-likelihood dual,

Qα,i(β) =
∑
y

βy log βy+
1
2
βTA(i, i)β+

∑
j 6=i

∑
y

αj,y logαj,y+
1
2

∑
j 6=i

∑
k 6=i

αTj A(j, k)αk+
∑
j 6=i
αTj A(j, i)β

where A(j, k) is the |Y| × |Y| sub-matrix of A defined as Ay,z(j, k) = A(j,y),(k,z). It follows
that

BQα,i [p‖q] = D[p‖q] +MA(i,i)[p‖q]

By a similar argument to the proof of Lemma 3, it follows thatBQα,i [p‖q] ≤ (1+|A(i, i)|∞)D[p‖q].
Because A(i, i) is a sub-matrix of A we have |A(i, i)|∞ ≤ |A|∞, and the first part of the
Lemma follows. For the max-margin dual, a similar argument shows that

BQα,i [p‖q] = MA(i,i)[p‖q]

so we have BQα,i [p‖q] ≤ |A(i, i)|∞D[p‖q] ≤ |A|∞D[p‖q].

Appendix D. Proof of Lemma 8

(Note: this proof builds on notation and techniques given in the proof of Lemma 9, see
Appendix E.)

We begin with the following identity

BQ[u||α] = Q(u)−Q(α)−∇Q(α) · (u−α)

Rearranging yields for any u,α ∈ ∆n,

Q(α)−Q(u) = ∇Q(α) · (α− u)−BQ[u||α]

=
1
η

n∑
i=1

[
D[ui‖αi]−D[ui‖γi(α, i)] +D[αi‖γi(α, i)]

]
−BQ[u||α]

where the second line follows by a similar argument to the proof of Lemma 10.
By applying the same argument as in the proof in Appendix E, we get for any u,α ∈ ∆n,

Q(α)−Q(u) ≤ 1
η

n∑
i=1

[
D[u‖α]−D[u‖γ(α, i)]

]
+

n∑
i=1

[
Q(α)−Q(γ(α, i))

]
−BQ[u||α]

=
n

η
D[u‖α]− n

η

n∑
i=1

1
n
D[u‖γ(α, i)] +

n∑
i=1

[
Q(α)−Q(γ(α, i))

]
−BQ[u||α]

≤
(
n

η
− µ

)
D[u‖α]− n

η

n∑
i=1

1
n
D[u‖γ(α, i)] +

n∑
i=1

[
Q(α)−Q(γ(α, i))

]
where in the third line, we have used the assumption from the Lemma that Q(α) is (µ, τ)-
online-bounded, and hence BQ[u||α] ≥ µD[u‖α]. The inequality above holds for all α,u ∈
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∆n, so we can take α = α(kt−1
1 ) for any sequence kt−1

1 . Taking expectations of both sides,
and using similar arguments to those in Appendix E, we get

ET

[
Q(α(kt−1

1 ))
]
−Q(u) ≤

(
n

η
− µ

)
ET

[
D[u‖α(kt−1

1 )]
]
− n

η
ET

[
D[u‖α(kt1)]

]
+ nET

[
Q(α(kt−1

1 ))
]
− nET

[
Q(α(kt1))

]
(40)

where ET is again an expectation with respect to the sequence kT1 being drawn from the
uniform distribution over [1 . . . n]T . For convenience, define

Q̃t ≡ ET

[
Q(α(kt1))

]
−Q(u) and D̃t ≡ 1

η
ET

[
D[u||α(kt1)]

]
Then, Eq. 40 can be rearranged to give

Q̃t−1 ≤ (n− ηµ)D̃t−1 − nD̃t + nQ̃t−1 − nQ̃t

nQ̃t + nD̃t ≤ (n− 1)Q̃t−1 + (n− ηµ)D̃t−1 ≤ (n− ηµ)
(
Q̃t−1 + D̃t−1

)
(41)

Q̃t + D̃t ≤
(

1− ηµ

n

)(
Q̃t−1 + D̃t−1

)
where Eq. 41 uses the observation that n− ηµ ≥ n− 1 because ηµ ≤ 1 (this follows because
η ≤ 1/τ and µ < τ for some τ > 0). By iterating this result, it follows that

Q̃T + D̃T ≤
(

1− ηµ

n

)T (
Q̃0 + D̃0

)
ET

[
Q(α(kT1 ))

]
≤ Q(u) +

(
1− ηµ

n

)T (
Q(α1)−Q(u) +

1
η
D[u||α1]

)
≤ Q(u) + e−ηµT/n

(
Q(α1)−Q(u) +

1
η
D[u||α1]

)
(42)

thus proving the Lemma.

Appendix E. Proof of Lemma 9

For the proof we will need some additional notation, which makes explicit the relation-
ship between the sequence of dual variables α1,α2, . . . ,αT+1 and the sequence of indices
k1, k2, . . . , kT used in the algorithm in Figure 2. We will use the following definitions:

• We use kt1 to denote a sequence of indices k1, k2, . . . , kt. We take k0
1 to be the empty

sequence.

• We write γ : ∆n × [1 . . . n] → ∆n to denote the function that corresponds to an EG
update on a single example. More specifically, if β = γ(α, k) then we have

βi = αi for i 6= k

βi,y ∝ αi,y exp{−η∇i,y} where ∇i,y = ∂Q(α)
∂αi,y

for i = k, for all y.
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• Finally, for any choice of index sequence kT1 we will define a sequence of dual variables
using the following iterative definition:

α(k0
1) = α1

α(kt1) = γ(α(kt−1
1 ), kt) for t ≥ 1.

Here α1 is the initial setting of the dual variables, as shown in the algorithm in figure 2.

From these definitions it follows that if kT1 is the sequence of indices chosen during a run
of the algorithm in figure 2, then the sequence of dual variables α1,α2, . . . ,αT+1 is such
that αt+1 = α(kt1) for t = 0 . . . T . We can now give the proof.

Proof of Lemma 9. First, we have for any α,u ∈ ∆n

Q(α) ≤ Q(u) + (α− u) · ∇Q(α)

= Q(u) +
1
η

n∑
i=1

D[ui‖αi]−D[ui‖γi(α, i)] +D[αi‖γi(α, i)] (43)

The second line again follows by similar arguments to those in the proof of Lemma 10.
Next consider the terms on the right-hand-side of the inequality. For any i, we have

D[ui‖αi]−D[ui‖γi(α, i)]
= D[ui‖αi]−D[ui‖γi(α, i)] +

∑
j=1...n,j 6=i

D[uj‖αj ]−
∑

j=1...n,j 6=i
D[uj‖αj ] (44)

= D[ui‖αi]−D[ui‖γi(α, i)] +
∑

j=1...n,j 6=i
D[uj‖αj ]−

∑
j=1...n,j 6=i

D[uj‖γj(α, i)] (45)

= D[u‖α]−D[u‖γ(α, i)] (46)

Here Eq. 45 follows from Eq. 44 because γj(α, i) = αj for j 6= i.
In addition, for any i we have

1
η
D[αi‖γi(α, i)] ≤ Q(α)−Q(γ(α, i)) (47)

This follows because by the assumption in the Lemma, Q(α) is τ -online-upper-bounded, so
we have BQα,i [γi(α, i)‖αi] ≤ τD[γi(α, i)‖αi]. By an application of Lemma 2 to the convex
function Qα,i, noting that by assumption η ≤ 1/τ , it follows that

1
η
D[αi‖γi(α, i)] ≤ Qα,i(αi)−Qα,i(γi(α, i))

Finally, note that Qα,i(αi) = Q(α), and Qα,i(γi(α, i)) = Q(γ(α, i)), giving the result in
Eq. 47.

Combining Equations 43, 46 and 47 gives for any α,

Q(α) ≤ Q(u) +
1
η

n∑
i=1

[D[u‖α]−D[u‖γ(α, i)]] +
n∑
i=1

[Q(α)−Q(γ(α, i))] (48)
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Because Eq. 48 holds for any value of α, we have for all t = 1 . . . T , for all kt−1
1 ∈ [1 . . . n]t−1,

Q(α(kt−1
1 )) ≤ Q(u) +

1
η

n∑
i=1

[
D[u‖α(kt−1

1 )]−D[u‖γ(α(kt−1
1 ), i)]

]
+

n∑
i=1

[
Q(α(kt−1

1 ))−Q(γ(α(kt−1
1 ), i))

]
(49)

We can now take an expectation of both sides of the inequality in Eq. 49. For any function
f(kt1), we use the notation Et[f(kt1)] to denote the expected value of f(kt1) when kt1 is drawn
uniformly at random from [1, 2, . . . , n]t; more precisely

Et[f(kt1)] =
1
nt

∑
kt1∈[1,2,...,n]t

f(kt1)

We apply the operator Et−1 to both sides of Eq. 49. We consider the different terms in
turn. First,

Et−1[Q(α(kt−1
1 ))] = ET [Q(α(kt−1

1 ))]

This follows because Q(α(kt−1
1 )) does not depend on the values for kt, . . . , kT . Clearly,

Et−1[Q(u)] = Q(u). Next,

Et−1

[
1
η

n∑
i=1

D[u‖α(kt−1
1 )]−D[u‖γ(α(kt−1

1 ), i)]

]

= Et−1

[
n

η
D[u‖α(kt−1

1 )]
]
−Et−1

[
n

η

n∑
i=1

1
n
D[u‖γ(α(kt−1

1 ), i)]

]

= Et−1

[
n

η
D[u‖α(kt−1

1 )]
]
−Et

[
n

η
D[u‖α(kt1)]

]
= ET

[
n

η
D[u‖α(kt−1

1 )]
]
−ET

[
n

η
D[u‖α(kt1)]

]
Finally, we consider the last term:

Et−1

[
n∑
i=1

Q(α(kt−1
1 ))−Q(γ(α(kt−1

1 ), i))

]

= Et−1

[
nQ(α(kt−1

1 ))− n
n∑
i=1

1
n
Q(γ(α(kt−1

1 ), i))

]
= Et−1

[
nQ(α(kt−1

1 ))
]
−Et

[
nQ(α(kt1))

]
= ET

[
nQ(α(kt−1

1 ))
]
−ET

[
nQ(α(kt1))

]
Combining these results with Eq. 49 gives

ET [Q(α(kt−1
1 ))] ≤ Q(u) + ET

[
n

η
D[u‖α(kt−1

1 )]
]
−ET

[
n

η
D[u‖α(kt1)]

]
+ET

[
nQ(α(kt−1

1 ))
]
−ET

[
nQ(α(kt1))

]
(50)
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Summing Eq. 50 over t = 1 . . . T gives

T∑
t=1

ET [Q(α(kt−1
1 ))] ≤ TQ(u) + ET

[
n

η
D[u‖α(k0

1)]
]
−ET

[
n

η
D[u‖α(kT1 )]

]
+ET

[
nQ(α(k0

1))
]
−ET

[
nQ(α(kT1 ))

]
≤ TQ(u) +

n

η
D[u‖α(k0

1)] + n
[
Q(α(k0

1))−Q(α∗)
]

= TQ(u) +
n

η
D[u‖α1] + n

[
Q(α1)−Q(α∗)

]
(51)

where α∗ = argminα∈∆n Q(α). Finally, note that for any value of kT1 we have Q(α(kt1)) ≤
Q(α(kt−1

1 )) for t = 1 . . . T . Thus

ET [Q(α(kt1))] ≤ ET [Q(α(kt−1
1 ))]

and

TET [Q(α(kT1 )] ≤
T∑
t=1

ET [Q(α(kt−1
1 ))]

Combining this with Eq. 51 gives

TET [Q(α(kT1 )] ≤ TQ(u) +
n

η
D[u‖α1] + n

[
Q(α1)−Q(α∗)

]
thus proving the lemma.
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