
Large margin methods for structured classification:
Exponentiated gradient algorithms and PAC-Bayesian

generalization bounds

Peter L. Bartlett1, Michael Collins2, David McAllester3, and Ben Taskar4

1 Division of Computer Science and Department of Statistics, U.C.Berkeley
367 Evans Hall #3860, Berkeley, CA 94720-3860

bartlett@stat.berkeley.edu
2 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139

mcollins@ai.mit.edu
3 Toyota Technological Institute at Chicago

University Press Building 1427 East 60th Street, Second Floor Chicago, Illinois 60637
mcallester@tti-c.org

4 Computer Science Department, Stanford University
Gates Building 1A, Stanford, CA 94305

btaskar@cs.stanford.edu

Abstract. We consider the problem ofstructured classification, where the task
is to predict a labely from an inputx, andy has meaningful internal structure.
Our framework includes supervised training of both Markov random fields and
weighted context-free grammars as special cases. We describe an algorithm that
solves the large-margin optimization problem defined in [12], using an exponential-
family (Gibbs distribution) representation of structured objects. The algorithm is
efficient – even in cases where the number of labelsy is exponential in size –
provided that certain expectations under Gibbs distributions can be calculated ef-
ficiently. The optimization method we use for structured labels relies on a more
general result, specifically the application of exponentiated gradient (EG) updates
[4, 5] to quadratic programs (QPs). We describe a new method for solving QPs
based on these techniques, and give bounds on its rate of convergence. In ad-
dition to their application to the structured-labels task, the EG updates lead to
simple algorithms for optimizing “conventional” binary or multiclass SVM prob-
lems. Finally, we give a new generalization bound for structured classification,
using PAC-Bayesian methods for the analysis of large margin classifiers.

1 Introduction
Structured classification is the problem of predictingy from x in the case wherey has
meaningful internal structure. For examplex might be a word string andy a sequence
of part of speech labels, orx might be a Markov random field andy a labeling ofx, or
x might be a word string andy a parse ofx. In these examples the number of possible
labelsy is exponential in the size ofx. This paper presents a training algorithm and a
generalization bound for a general definition of structured classification covering both
Markov random fields and parsing.

We restrict our attention to linear discriminative classification. We assume that pairs
〈x, y〉 can be embedded in a linear feature spaceΦ(x, y), and that a predictive rule is de-
termined by a direction (weight vector)w in that feature space. In linear discriminative

prediction we select they that has the greatest value for the inner product〈Φ(x, y),w〉.
Linear discrimination has been widely studied in the binary and multiclass setting [3,
2]. However, the case of structured labels has only recently been considered [12, 1]. The
structured-label case takes into account the internal structure ofy in the assignment of
feature vectors, the computation of loss, and the definition and use of margins.

We focus on a formulation where each labely is represented as a set of “parts”, or
equivalently, as a bit-vector. Moreover, we assume that the feature vector fory and the
loss fory are both linear in the individual bits ofy. This formulation has the advantage
that it naturally covers both simple labeling problems, such as part-of-speech tagging,
as well as more complex problems such as parsing.

This paper contains two results. The first concerns the large-margin optimization
problem defined in [12] for selecting the classification directionw given a training
sample. The starting-point for these methods is a primal problem that has one con-
straint for each possible labelingy; or equivalently a dual problem where eachy has
an associated dual variable. A method is given in [12] for dealing with an exponential
number of labelings, in the case where the label set has a Markov random field struc-
ture. We give a new approach to the problem that relies on an exponential-family (Gibbs
distribution) representation of structured objects. Generally speaking, the algorithm is
efficient – even in cases where the number of labelsy is exponential in size – pro-
vided that certain expectations under Gibbs distributions can be calculated efficiently.
The computation of these expectations appears to be a natural computational problem
for structured problems, and has specific polynomial-time dynamic programming al-
gorithms for some important examples: specifically, the clique-tree belief propagation
algorithm can be used in Markov random fields, and the inside-outside algorithm can
be used in the case of weighted context-free grammars.

The optimization method we use for structured labels relies on a more general result,
specifically the application of exponentiated gradient (EG) updates [4, 5] to quadratic
programs (QPs). We describe a new method for solving QPs based on these techniques,
and give bounds on its rate of convergence. The method leads to an optimization method
which uses multiplicative updates on dual parameters in the problem.5 In addition to
their application to the structured-labels task, the EG updates lead to simple algorithms
for optimizing “conventional” binary or multiclass SVM problems.

Our second result is a PAC-Bayesian margin bound for generalization loss in struc-
tured classification. This PAC-Bayesian bound improves on the bound in [12] in a va-
riety of ways. Like PAC-Bayesian margin bounds for binary linear classification [7, 8],
our bound for the collective case has a simple proof and is particularly tight in the case
of low but nonzero empirical error. More interestingly, the new bound has a different
formal structure. LetH(y, y′) be the Hamming distance between a labelingy and a
labelingy′. Consider a training pair〈xi, yi〉 and two other possible valuesy andy′. The
new bound improvesH(y, yi) + H(yi, y

′) to H(y, y′). It is not yet clear how difficult
it is to establish this triangle inequality improvement with other proof methods.

5 Note that our updates are different from the multiplicative updates for support vector machines
described in [10]. In particular, the updates in [10] do not factor in a way that allows algorithms
for MRFs and WCFGs based on Gibbs-distribution representations, as described in this paper.

An open problem involves the significance of the new generalization bound. The
new generalization bound, although strictly tighter than the bound in [12], is even fur-
ther removed from the max-margin optimization problem formulated here or in [12].
It remains an open problem as to whether a direct optimization of this new bound, or
some simplification of it, is feasible and whether such direct optimization would im-
prove generalization performance.

2 The General Setting

We consider the problem of learning a functionf : X → Y, whereX is some countable
or uncountable set, andY is a countable set. We assume a loss functionL : X×Y×Y →
R+. The functionL(x, y, ŷ) measures the loss wheny is the true label forx, andŷ is
another label, typically the label proposed forx by some function. In general we will
assume thatL(x, y, ŷ) = 0 for y = ŷ. Given some distributionD(x, y) over examples
in X × Y, our aim is to find a function with low expected loss, or risk:

E(x,y)∼DL(x, y, f(x)).

We consider functionsf which take a linear form. First, we assume a fixed functionG
which maps an inputx to a set of candidatesG(x). For allx, we assume thatG(x) ⊆ Y,
and thatG(x) is finite. A second component to the model is a feature-vector represen-
tationΦ : X × Y → Rd of dimensiond. Given these definitions, the functions that we
consider take the following form,6 for somew ∈ Rd,

fw(x) = arg max
y∈G(x)

〈Φ(x, y),w〉

Given training examples(xi, yi) for i = 1 . . . n, we will formalize a large-margin opti-
mization problem that is a generalization of support vector machine methods for binary
classifiers, and is essentially the same as the formulation in [12]. The optimal parame-
ters are taken to minimize the following regularized empirical risk function:

1
2
‖w‖2 + C

∑
i

(
max

y
(L(xi, yi, y)−mi,y(w))

)
+

wheremi,y(w) = 〈w, φ(xi, yi)〉 − 〈w, φ(xi, y)〉 is the “margin” on exampley, and
(x)+ = max{x, 0}. Note that this optimization problem aims to separate eachy ∈
G(xi) from the target labelyi by a margin that is proportional to the lossL(xi, yi, y).

This optimization can be expressed as the primal problem in Figure 1. Following
[12], the dual of this problem is also shown in Figure 1. The dual involves variables
αi,y for all i = 1 . . . n, y ∈ G(xi). The dual objective is a quadratic program in
these variables. Note that the dual variables for each example are constrained to form a
probability distribution.

2.1 Models for structured classification

The problems we are interested in concern structured labels, which have a natural de-
composition into “parts”. Examples of methods which lead to structured labels are

6 Note that in the case that two membersy1 andy2 have the same tied value for〈Φ(x, y),w〉,
we assume that there is some fixed, deterministic way for breaking ties. For example, one
approach would be to assume some default ordering on the members ofY.

Primal problem: Dual problem:

minw,ε̄

(
1
2
‖w‖2 + C

∑
i εi

)
maxᾱ

(
C

∑
i,y αi,yLi,y−

1
2
C2 ∑

i,y

∑
j,z αi,yαj,z〈Φi,y, Φj,z〉

)
Subject to the constraints:

∀i,∀y ∈ G(xi), 〈w, Φi,y〉 ≥ Li,y − εi

∀i, εi ≥ 0

Subject to the constraints:

∀i,
∑

y

αi,y = 1

∀i, y, αi,y ≥ 0

Relationship between optimal values for primal and dual problems:w∗ = C
∑

i,y α∗
i,yΦi,y

wherew∗ is thearg min of the primal problem, and̄α∗ is thearg max of the dual problem.

Fig. 1. The primal and dual problems. We use the definitionsLi,y = L(xi, yi, y), andΦi,y =
Φ(xi, yi) − Φ(xi, y). Note that we also assume that for alli, Li,y = 0 for y = yi. The constant
C dictates the relative penalty for values of the slack variablesεi which are greater than 0.

Markov random fields (MRFs), and weighted context-free grammars (WCFGs) (we
elaborate more on these examples later in this section). Formally, we assume some
countable set of parts,R. We also assume a functionR which maps each object(x, y) ∈
X × Y to a finite subset ofR. ThusR(x, y) is the set of parts belonging to a partic-
ular object. In addition we assume a feature-vector representationφ of parts: this is a
functionφ : X ×R → Rd. The feature vector for an object(x, y) is then a sum of the
feature vectors for its parts:

Φ(x, y) =
∑

r∈R(x,y)

φ(x, r)

In addition, we assume that the loss functionL(x, y, ŷ) decomposes into a sum over
parts, as follows:

L(x, y, ŷ) =
∑

r∈R(x,ŷ)

l(x, y, r)

Finally, for convenience we will also define indicator variablesI(x, y, r) which are
1 if r ∈ R(x, y), 0 otherwise. We also define setsR(xi) = ∪y∈G(xi)R(xi, y) for the
training examplesi = 1 . . . n. ThusR(xi) is the set of parts that is seen in at least one
of the objects{(xi, y) : y ∈ G(xi)}.

Example 1: Markov Random Fields. In this example we assume that the space of
labelsG(x), and their underlying structure, can be represented by a graph. The graph
G = (V,E) is a collection of verticesV = {v1, v2, . . . vl} and edgesE. Each vertex
vi ∈ V has a set of possible labels,Yi. The setG(x) is then defined asY1×Y2 . . .×Yl.
Each possible labelingy for the entire graph can be written asy = {y1, y2, . . . yl}.

We give a definition of the decomposition of eachy into a set of parts through
the cliques in the graph. Each clique in the graph has a set of possibleconfigurations:
for example, if a particular clique contains vertices{v3, v5, v6}, the set of possible
configurations of this clique isY3 × Y5 × Y6. We defineC to be the set of cliques in

the graph, and for anyc ∈ C we defineY(c) to be the set of possible configurations
for that clique. Finally, we defineR = {(c, a) | c ∈ C, a ∈ Y(c)}. Thus the number
of possible parts in this decomposition is|R| =

∑
c∈C |Y(c)|. In this case we define

R(x, y) = {(c, a) ∈ R : (c, a) is consistent with y}. ThusR(x, y) essentially tracks
the assignment of values to each clique in the graph overy. Note that for anyy, we have
|R(x, y)| = |C|, as only one configuration of each clique inC can be consistent withy.

All that remains is to define a feature vector representation and a loss function. The
feature vector representationφ(x, c, a) for each part can essentially track any charac-
teristics of the assignmenta for cliquec, together with any features of the entire input
x. Recall that the overall loss for a labelŷ when compared to a true labely is defined as∑

(c,a)∈R(x,ŷ) l(x, y, (c, a)), wherel(x, y, (c, a)) is the loss for one clique assignment.
As one example of a loss that can be expressed in this way, consider the Hamming
loss used in [12], defined as follows: ify = {y1, . . . yl}, andŷ = {ŷ1, . . . , ŷl}, then
L(x, y, ŷ) =

∑
i=1...l Iyi 6=ŷi

. To achieve this: First, assign each vertexvi to a single
one of the cliques in which it appears. Second, definel(x, y, (c, a)) to be the number of
labels in the assignment(c, a) which are both incorrect, and also correspond to vertices
which have been assigned to the cliquec. This definition leads to Hamming loss: note
that assigning each vertex to a single clique avoids “double counting” of label errors.

Example 2: Weighted Context-Free Grammars (WCFGs). Our second example
considers the case wherex is an input string, andy is a “parse tree” for that string.
More formally, we takey to be a left-most derivation forx under some context-free
grammar. The setG(x) is the set of all left-most derivations forx under the grammar.
In general, ambiguity will lead to a givenx having many different possible derivations;
our task is to learn a strategy for choosing between the members ofG(x).

For convenience, we restrict the grammar to be in Chomsky-normal form, where all
rules in the grammar are of the form〈A → B C〉 or 〈A → a〉, whereA,B,C are non-
terminal symbols, anda is some terminal symbol. We take a part to be a CF-rule-tuple
〈A → B C, s,m, e, x〉. The tuple specifies a particular ruleA → B C, and its position
within the sentencex. Under this representationA spans wordss . . . e inclusive inx;
B spans wordss . . . m inclusive; andC spans words(m + 1) . . . e inclusive. The setR
is the set of all possible tuples of this form. The functionR(x, y) maps a derivationy
to the set of parts which it includes. Note that because all rules are in binary-branching
form, |R(x, y)| is constant across different derivationsy for the same input sentencex.

In WCFGs the functionφ(x, r) can be any function mapping a rule production
and its position in the sentencex, to some feature vector representation. For example,
φ could include features which identify the rule used in the production, or features
which track the rule identity together with features of the words at positionss,m, e and
neighboring positions in the stringx. Now consider the loss function. One approach
would be to definel(x, y, r) to be0 if r is in the derivationy and1 otherwise. This
definition would lead toL(x, y, ŷ) being the number of CF-rule-tuples in̂y which are
not seen iny. Another, less strict, definition would be to definel(x, y, r) to be1 only
if the non-terminalA is not seen spanning wordss . . . e in the derivationy. This would
lead toL(x, y, ŷ) tracking the number of “constituent errors” in̂y, where a constituent
is a(non-terminal, start-point, end-point) tuple such as(A, s, e).

2.2 A new dual in terms of marginals

We now begin to consider how to solve the optimization problem in Figure 1 when
applied to the problem of labels with parts. As shown in [12], the dual in Figure 1 can
be reframed in terms of “marginal” terms. We will also find it useful to consider this
alternative formulation of the dual. We define the marginalsµi,r(ᾱ) for all i, r, given
dual variables̄α, as follows:

µi,r(ᾱ) =
∑

y

αi,yI(xi, y, r). (1)

Now consider the dual objective in Figure 1, for convenience repeated here:

Q(ᾱ) = C
∑
i,y

αi,yLi,y −
1
2
C2
∑
i,y

∑
j,z

αi,yαj,z〈Φi,y, Φj,z〉 (2)

It can be shown thatQ(ᾱ) is equal toQm(µ̄(ᾱ)), whereµ̄(ᾱ) is the vector with com-
ponentsµi,r(ᾱ), andQm(µ̄) is defined as follows:

Qm(µ̄) = C
∑

i

∑
r∈R(xi)

µi,rli,r

−1
2
C2
∑
i,j

∑
r∈R(xi),s∈R(xj)

[I(xi, yi, r)− µi,r] [I(xj , yj , s)− µj,s] 〈φi,r, φj,s〉 , (3)

whereli,r = l(xi, yi, r), φi,r = φ(xi, r) andφj,s = φ(xj , s).
To see this, it is sufficient to use the definition in Eq. 1, and also to make use of

the following equalities, which can be substituted into the definition forQ(ᾱ): first,
Φi,y = Φ(xi, yi)−Φ(xi, y) =

∑
r∈R(xi,yi)

φi,r−
∑

r∈R(xi,y) φi,r; and second,Li,y =
L(xi, yi, y) =

∑
r∈R(xi,y) l(xi, yi, r).

Now let ∆m be the space of marginal vectors which are feasible:∆m = {µ̄ :
∃ᾱ ∈ ∆ such that µ̄ = µ̄(ᾱ)}. Our original optimization problem can be reframed as
maxµ̄∈∆m Qm(µ̄). Note thatQm(µ̄) is again a quadratic loss function. In some cases,
such as MRFs with reasonable tree width, or WCFGs, it turns out thatµ̄ is of polynomial
size, and that the domain∆m can be formulated with a polynomial number of linear
constraints. See [12] for discussion of the MRF case, for example.

3 Exponentiated gradient (EG) updates for large margin problems
3.1 General form of the updates

We now turn to a general algorithm for optimizing quadratic programs (QPs), which
relies on Exponentiated Gradient (EG) updates. We assume a positive semi-definite
matrix A of dimensionm, and a vectorb ∈ Rm, specifying a loss functionQ(ᾱ) =
b′ᾱ+ 1

2 ᾱ′Aᾱ. Hereᾱ is anm-dimensional vector of reals. We assume thatᾱ is formed
by the concatenation ofn vectorsᾱi ∈ Rmi for i = 1 . . . n, where

∑
i mi = m.

Moreover, we assume that eachᾱi is within a simplex of dimensionmi, so that the
feasible set is

∆ = {ᾱ : ᾱ ∈ Rm; for i = 1 . . . n,

mi∑
j=1

αi,j = 1; for all i, j, αi,j ≥ 0} (4)

Our aim is to findarg minᾱ∈∆ Q(ᾱ). Figure 2 gives an algorithm for finding the solu-
tion to this minimization problem.

Inputs:

– An (m×m) positive semi-definite matrixA, and anm-dimensional vectorb, specifying a
loss functionQ(ᾱ) = b · ᾱ + 1

2
ᾱ′Aᾱ

– Each vector̄α is anm-dimensional vector of reals in∆, where∆ is defined in Eq. 4.

Algorithm:

– Initialize parameter values̄α1 to some point in the interior of∆
(for example,α1

i,j = 1/mi for all i, j).
– Choose a learning rateη > 0
– For t = 1 . . . T

• Calculatēst = ∇Q(ᾱt) = b + Aᾱt.
• Calculateᾱt+1 from ᾱt using the following updates:

∀i, j, αt+1
i,j =

αt
i,j exp{−ηst

i,j}∑
k αt

i,k exp{−ηst
i,k}

Output: ReturnᾱT+1.

Fig. 2.The Exponentiated Gradient (EG) algorithm for quadratic programs.

3.2 Convergence of the exponentiated gradient QP algorithm

The following theorem shows how the optimization algorithm converges to an optimal
solution. The theorem compares the value of the objective function for the algorithm’s
vectorᾱt to the value for a comparison vectoru ∈ ∆. (For example, consideru as the
solution of the QP.) The convergence result is in terms of several properties of the algo-
rithm and the comparison vectoru. The distance betweenu andᾱ1 is measured using
the Kullback-Liebler divergence (KL-divergence). Recall that the KL-divergence be-
tween two probability vectors̄u, v̄ is defined asD(ū, v̄) =

∑
i ui log ui

vi
. For sequences

of probability vectors,̄u ∈ ∆ with ū = (ū1, . . . , ūn) and ūi = (ui,1, . . . , ui,mi),
we can define a divergence as the sum of KL-divergences: forū, v̄ ∈ ∆, D̄(ū, v̄) =∑n

i=1 D(ūi, v̄i). Two other key parameters areλ, the largest eigenvalue of the positive
semidefinite symmetric matrixA, and

B = max
ᾱ∈∆

(
max

i
(∇Q(ᾱ))i −min

i
(∇Q(ᾱ))i

)
≤ 2

(
n max

ij
|Aij |+ max

i
|bi|
)

.

Theorem 1. For all ū ∈ ∆,

1
T

T∑
t=1

Q(ᾱt) ≤ Q(ū) +
D̄(ū, ᾱ1)

ηT
+

eηB − 1− ηB

η2B2 (1− η(B + λ)eηB)
Q(ᾱ1)−Q(ᾱT+1)

T
.

Choosingη = 0.4/(B + λ) ensures that

Q
(
ᾱT+1

)
≤ 1

T

T∑
t=1

Q(ᾱt) ≤ Q(ū) + 2.5(B + λ)
D̄(ū, ᾱ1)

T
+ 1.5

Q(ᾱ1)−Q(ᾱT+1)
T

.

The first lemma we require is due to Kivinen and Warmuth [5].

Lemma 1. For anyū ∈ ∆,

ηQ(ᾱt)− ηQ(ū) ≤ D̄(ū, ᾱt)− D̄(ū, ᾱt+1) + D̄(ᾱt, ᾱt+1).

We focus on the third term. Define∇(i)Q(ᾱ) as the segment of the gradient vector
corresponding to the componentᾱi of ᾱ, and define the random variableXi,t, satisfying

Pr
(
Xi,t = −

(
∇(i)Q(ᾱt)

)
j

)
= αi,j .

Lemma 2.

D̄(ᾱt, ᾱt+1) =
n∑

i=1

log E
[
eη(Xi,t−EXi,t)

]
≤
(

eηB − 1− ηB

B2

) n∑
i=1

var(Xi,t).

Proof.
D̄(ᾱt, ᾱt+1) =

n∑
i=1

∑
j

αt
ij log

αt
ij

αt+1
ij

=
n∑

i=1

∑
j

αt
ij

(
log

(∑
k

αt
ik exp(−η∇i,k)

)
+ η∇i,j

)

=
n∑

i=1

log

(∑
k

αt
ik exp

(
−η∇i,k + ηᾱt

i · ∇i

))

=
n∑

i=1

log
(
E
[
eη(Xi,t−EXi,t)

])
≤ eηB − 1− ηB

B2

n∑
i=1

var(Xi,t).

This last inequality is at the heart of the proof of Bernstein’s inequality; e.g., see [9].

The second part of the proof of the theorem involves bounding this variance in terms
of the loss. The following lemma relies on the fact that this variance is, to first order, the
decrease in the quadratic loss, and that the second order term in the Taylor series expan-
sion of the loss is small compared to the variance, provided the steps are not too large.
The lemma and its proof require several definitions. For anyd, let σ : Rd → (0, 1)d be
the softmax function,σ(θ̄)i = exp(θi)/

∑d
j=1 exp(θj), for θ̄ ∈ Rd. We shall work in

the exponential parameter space: letθ̄t be the exponential parameters at stept, so that
the updates arēθt+1 = θ̄t−η∇Q(ᾱt), and the QP variables satisfȳαt

i = σ(θ̄t
i). Define

the random variablesXi,t,θ̄, satisfyingPr
(
Xi,t,θ̄ = −

(
∇(i)Q(ᾱt)

)
j

)
=
(
σ(θ̄i)

)
j
.

This takes the same values asXi,t, but its distribution is given by a different exponen-
tial parameter (̄θi instead of̄θt

i). Define
[
θ̄t, θ̄t+1

]
=
{
aθ̄t + (1− a)θ̄t+1 : a ∈ [0, 1]

}
.

Lemma 3. For someθ̄ ∈ [θ̄t, θ̄t+1],

η
n∑

i=1

var(Xi,t)− η2(B + λ)
n∑

i=1

var(Xi,t,θ̄) ≤ Q(ᾱt)−Q(ᾱt+1),

but for all θ̄ ∈ [θ̄t, θ̄t+1], var(Xi,t,θ̄) ≤ eηB var(Xi,t). Hence,

n∑
i=1

var(Xi,t) ≤
1

η (1− η(B + λ)eηB)
(
Q(ᾱt)−Q(ᾱt+1)

)
.

Thus, forη < 0.567/(B + λ), Q(ᾱt) is non-increasing int.

The proof is in Appendix A. Theorem 1 follows from an easy calculation.

4 EG updates for structured objects
We now consider applying the algorithm in Figure 2 to findᾱ∗ = arg maxᾱ∈∆ Q(ᾱ),
whereQ(ᾱ) is the dual form of the maximum margin problem, as defined in Eq. 2
or Figure 1. In particular, we are interested in the optimal values of the primal form
parameters, which are related toᾱ∗ by w∗ = C

∑
i,y α∗i,yΦi,y. A key problem is that in

many of our examples, the number of dual variablesαi,y precludes dealing with these
variables directly. For example, in the MRF case or the WCFG cases, the setG(x) is
exponential in size, and the number of dual variablesαi,y is therefore also exponential.

This section shows how the algorithm in Figure 2 can be implemented in a more
efficient form, for certain examples of structured objects such as MRFs or WCFGs.
Instead of representing theαi,y variables explicitly, we will instead manipulate a vector
θ̄ of variablesθi,r for i = 1 . . . n, r ∈ R(xi). Thus we have one of these “mini-dual”
variables for each part seen in the training data. Each of the variablesθi,r can take any
value in the reals. We now define the dual variablesαi,y as a function of the vector̄θ,
which takes the form of a Gibbs distribution:

αi,y(θ̄) =
exp(

∑
r∈R(xi,y) θi,r)∑

y exp(
∑

r∈R(xi,y) θi,r)
.

We shall see that the EG algorithm in Figure 2 can be implemented efficiently, inde-
pendently of the dimensionality of̄α, provided that there is an efficient algorithm for
computing

µi,r(θ̄) =
∑
i,y

αi,y(θ̄)I(xi, y, r) (5)

for all i = 1 . . . n, r ∈ R(xi), for any value of̄θ in R|θ̄|.
Note that the values ofµi,r as defined in Eq. 5 can be calculated for MRFs and

WCFGs in many cases, using standard algorithms, even in cases where theᾱ vectors
are exponential in size. For example, in the WCFG case, the inside-outside algorithm
can be used to calculateµi,r, provided that each partr is a context-free rule produc-
tion, as described in Example 2 of Section 2.1. In the MRF case, theµi,r values can
be calculated efficiently providing that the tree-width of the underlying graph remains
manageable.7

Figure 3 gives an algorithm for solving the dual form of the maximum margin prob-
lem, which makes use of the Gibbs form̄α(θ̄). The algorithm defines a sequence of
values for thēθ values,θ̄1, θ̄2, . . . , θ̄T+1. These values implicitly define a sequence of
dual variable values,̄α1, ᾱ2, . . . ᾱT+1, whereᾱt = ᾱ(θ̄t). It can be verified that the
updates to thēθ variables take the form

7 The calculation of marginals as defined in Eq. 5 is also directly related to optimization of Con-
ditional Random Fields (CRFs) [6], in that for these models the gradient of the log-likelihood
of the training data can be calculated providing that expectations of this form can be calculated.

Inputs: A learning rateη. A quadratic lossQm(µ̄(ᾱ)) with the structure in Eq. 3.
Data structures: A vector θ̄ of parts variables,θi,r for i = 1 . . . n, r ∈ R(xi).
Assumptions: We define αi,y(θ̄) for i = 1 . . . n, y ∈ G(xi) to be αi,y(θ̄) =
exp(

∑
r∈R(xi,y) θi,r)/Zi whereZi =

∑
y exp(

∑
r∈R(xi,y) θi,r). We assume we have an ef-

ficient procedure for computingµi,r =
∑

y αi,y(θ̄)I(xi, y, r) for any value of θ̄, for all
i = 1 . . . n, r ∈ R(xi).

Algorithm:
– Choose initial values̄θ1 for theθi,r variables, thus implicitly defining an initial set of dual

variablesαi,y(θ̄1).
– For t = 1 . . . T

• For eachi = 1 . . . n, r ∈ R(xi), calculateµi,r =
∑

y αi,y(θ̄t)I(xi, y, r).
• For eachi = 1 . . . n, r ∈ R(xi), calculate new values for theθi,r variables as

θt+1
i,r = θt

i,r + ηC

li,r + C
∑

j,s∈R(xj)

[I(xj , yj , s)− µj,s] 〈φi,r, φj,s〉

Output: Dual variables̄θT+1, or primal parametersw∗ defined as

w∗ =
∑
i,y

αi,y(θ̄T+1)Φi,y = C

 ∑
i,r∈R(xi,yi)

φi,r −
∑

i,r∈R(xi)

µi,rφi,r

whereµi,r =

∑
y αi,y(θ̄T+1)I(xi, y, r).

Fig. 3.The Exponentiated Gradient (EG) algorithm for structured classification problems.

θt+1
i,r = θt

i,r + η
∂Qm(µ̄(ᾱ(θ̄t)))

∂µi,r

because∂Qm(µ̄)/∂µi,r = C
(
li,r + C

∑
j,s∈R(xj)

[I(xj , yj , s)− µj,s] 〈φi,r, φj,s〉
)

.

The following theorem justifies this approach. (Note that there is a sign change in theθ̄
updates, because we wish tomaximizethe negative semidefinite quadratic formsQ(ᾱ)
andQm(ᾱ), and the algorithm in Figure 2 is a minimization problem. Thus we implic-
itly redefine our problem to be minimization of−Q(ᾱ) and−Qm(ᾱ).)

Theorem 2. Take a QPQ(ᾱ) where ᾱ ∈ ∆, for ∆ defined in Eq. 4. Assume that
there is some functionI(i, j, k), and a functionQm(µ̄), such that if we defineµk(ᾱ) =∑

i,j αi,jI(i, j, k), thenQ(ᾱ) = Qm(µ̄(ᾱ)) for all ᾱ ∈ ∆. Assume we apply the algo-

rithm in Figure 2 with initial values̄α1, generating a sequence of valuesᾱ1, . . . , ᾱT .
Defineαi,j(θ̄) = exp(

∑
k θkI(i, j, k))/Zi, whereZi =

∑
j exp(

∑
k θkI(i, j, k)).

Then the updates
θt+1

k = θt
k − η

∂Qm(µ̄(ᾱ(θ̄t)))
∂µk

for t = 1 . . . (T − 1) giveᾱ(θ̄t) = ᾱt for t = 1 . . . T .

Proof. See Appendix B.

The main storage requirements of the algorithm in Figure 3 concern the vectorθ̄.
This is a vector which has as many components as there are parts in the training set.
This number can become extremely large. Appendix C gives a “primal form” algorithm
which in some cases can be much more efficient in terms of space requirements. The
new algorithm requiresO(d + p) space, whered is the dimensionality of the primal
form parameter vector, andp is the number of parts on a single training example. This
algorithm is more efficient in cases whered is much less than the total number of parts
in the training set, in particular in cases where kernels are not used.

5 Generalization Bound
In this section we use a bit vector formulation of structured classification. More specif-
ically, assume a distributionD over pairs〈x, y〉 with x ∈ X andy ∈ {0, 1}`(x). We
also assume a known “feasible set”Y(x) ⊆ {0, 1}`(x) such that with probability 1 we
havey ∈ Y(x). We also assume a given sample〈x1, y1〉, . . . , 〈yn, xn〉 drawn inde-
pendently fromD. We will usey to range over the training labelsyi andŷ to range over
elements of sets of the formY(x) (which includesyi). We writeyk for thekth bit in
y. As in the part formulation we assume a feature vector functionΦ with Φ(x, ŷ) ∈ Rd

and a loss functionL(x, y, ŷ) ∈ [0, 1] satisfying the following linearity conditions.

Φ(x, ŷ) =
`(x)∑
k=1

ŷkΦ(x, k) L(x, y, ŷ) =
`(x)∑
k=1

ŷkl(x, y, k)

It is sometimes useful to distinguish feature bits from loss bits. A bit positionk will
be called a feature bit forx if Φ(x, k) is nonzero. A bit positionk will be called a loss
bit for x andy if l(x, y, k) is nonzero. The generalization bound given here depends
only on the number of feature bits — any number of loss bits can be used. Also, the
generalization bound does not require a linear loss function, the bound applies to any
loss functionL with L(x, y, ŷ) ∈ [0, 1]. The generalization bound will involve the
following distance measure between two bit vectorsŷ andŷ′.

E(x, ŷ, ŷ′) =
∑

k: ŷk 6=ŷ′k

‖Φ(x, k)‖

This is a weighted Hamming distance on bit strings and satisfies the triangle inequality.
For any weight vectorw ∈ Rd we define the classifierFw(x) in the obvious way as
the bit vector̂y ∈ Y(x) maximizingw · Φ(x, ŷ). Rather than bound the loss ofFw we
will bound the loss of a Gibbs classifier. LetQ be a function taking a weight vectorw
and a marginγ ≥ 0 and returning a distributionQ(w, γ) on a second weight vector
w′. We define the loss ofQ(w, γ), denotedL(Q(w, γ), D) to be the expectation
of L(x, y, Fw′(x)) whenw′ is drawn fromQ(w, γ) and〈x, y〉 is drawn fromD. For
q, p ∈ [0, 1] we defineKL(q‖p) to beq(ln q/ ln p) + (1− q)(ln(1− q)/ln(1− p). For
q ∈ [0, 1] andε ≥ 0 we defineKL−1(q, ε) to be the supremum of the set of valuesp
satisfyingKL(q‖p) ≤ ε. The functionKL−1 satisfies the following.

KL−1(q, ε) ≤ q +
√

2qε + 2ε (6)

Let `max be maximum overi from 1 to n of the number of feature bits forxi. Note that
`max is a random variable that depends on the sample. Our main generalization result

is that there exists a functionQ such that with probability at least1− δ over the choice
of the sample we have the following simultaneously for allw andγ with ‖w‖ = 1 and
γ ∈ (0, 1].

L(Q(w, γ), D)

≤ KL−1

(
L(w, γ, S) +

1
nγ2

,
1

n− 1

(
ln
(
2`maxnγ2

)
γ2

+ ln
(n

δ

)))
(7)

L(w, γ, S) =
1
n

n∑
i=1

max
ŷ∈C(xi, w, γ)

L(x, yi, ŷ)

C(x, w, γ) =
{

ŷ ∈ Y(x) : w · Φ(x, ŷ) ≥ max
ŷ′∈Y(x)

(w · Φ(x, ŷ′)− γE(x, ŷ, ŷ′))
}

.

Taskar et al. prove a generalization bound for Markov random fields. The goal in that
setting is to assign labels to the nodes of a Markov random field. We letz range over
assignments of labels to nodes. A bit vector representations is discussed below. Recall
that H(z, z′) is the Hamming distance between two assignments, i.e., the number of
nodes on which they differ. LetN be the number of nodes,V the number of values per
node, andq be the maximum over all nodes of the degree of that node (the number of
edges incident on that node). LetRmax be the maximum of the norm of any feature
vector associated with any edge. Under similar conditions to (7), Taskar et al. proved
the following for the Hamming lossL(xi, zi, z) = H(zi, z)/`.

L(Fw, D) ≤ L′(w, γ, S) + O

(√
1
n

(
ln(V Nnγ)

γ2
+ ln

1
δ

))
. (8)

L′(w, γ, S) =
1
n

n∑
i=1

max
z∈C′(i, w, γ)

L(x, zi, z)

C′(i, w, γ) =
{

z : w · Φ(xi, z) ≥

max
z′

(w · Φ(xi, z
′)− 2γqRmax(H(z, zi) + H(z′, zi)))

}
.

To compare this with the bound in [12] we use a bit vectory(z) to represent node
assignmentz where there is a loss bit to represent each assignment of a value to a node
and a feature bit to represent each possible pair of assignments to the two nodes con-
nected by any edge of the Markov random field. Under this representation we haveNV
loss bits and at mostN2V 2 feature bits. The new bound (7) improves on (8) in a variety
of ways, some more significant than others. First, (7) explicitly states the constants. Sec-
ond, (6) implies thatKL−1(q, ε) can be arbitrarily smaller thanq+

√
ε. Third, and prob-

ably most significantly, the setC(i, w, γ) improves on the setC′(i, w, γ). This improve-
ment comes from the fact thatE(y(z), y(z′)) can be no larger than2qRmaxH(z, z′)
andH(z, z′) can be no larger thanH(z, zi) + H(zi, z

′).

Proof of (7).We give a PAC-Bayesian proof. In applying the PAC-Bayesian theorem we
take the “prior” distribution to be a unit-variance isotropic Gaussian on weight vectors
defined asp(w) = e−‖w‖2/2/Z. For a given weight vectorw and marginγ we define
the “posterior”Q(w, γ) with density

q(w′ | w, γ) =
1
Z

e−(1/2)‖w′−µ‖2
with µ =

(√
2 ln (2`max nγ2)

γ

)
w.

The PAC-Bayesian theorem now implies that with probability at least1 − δ over the
choice of the sample we have that the following holds simultaneously for allw andγ.

L(Q(w, γ), D) ≤ KL−1

(
L(Q(w, γ), S),

KL(Q(w, γ)‖P) + ln n
δ

n− 1

)
(9)

ForQ andP unit variance Gaussians we have the following.

KL (Q(w, γ) ‖ P) =
‖µ‖2

2
=

ln
(
2`maxnγ2

)
γ2

To derive (7) from (9) it now suffices to show the following.

L(Q(w, γ), S) ≤ L(w, γ) +
1

nγ2
(10)

To prove (10) we first note the following for any vectorΨ ∈ Rd with ‖Ψ‖ = 1.

Pw′∼Q(w, γ) [|(w′ − µ) · Ψ | ≥ ε] ≤ 2e
−ε2
2 (11)

If we replaceΨ by Φ(x, k)/‖Φ(x, k)‖ andε by ‖µ‖γ in (11) we get the following.

Pw′∼Q(w, γ)

[∣∣∣∣ w′

‖µ‖
· Φ(x, k)− w · Φ(x, k)

∣∣∣∣ ≥ ‖Φ(x, k)‖γ
]
≤ 1

`maxnγ2

By taking a union bound over the feature bits we get the following.

Lemma 4. For any fixed value ofx we have that with probability at least1− 1/(nγ2)
over the selection ofw′ fromQ(w, γ) the following holds simultaneously for allk in 1
to `(x). ∣∣∣∣ w′

‖µ‖
· Φ(x, k)− w · Φ(x, k)

∣∣∣∣ ≤ ‖Φ(x, k)‖γ (12)

In the case where (12) holds we have the following for anyŷ, ŷ′ ∈ Y(x).

w′

‖µ‖
· Φ(x, ŷ)− w′

‖µ‖
· Φ(x, ŷ′)

=
∑

k: ŷk 6=ŷ′k

ŷk

(
w′

‖µ‖
· Φ(x, k)

)
− (1− ŷk)

(
w′

‖µ‖
· Φ(x, k)

)
≤

∑
k: ŷk 6=ŷ′k

ŷk (w · Φ(x, k))− (1− ŷk) (w · Φ(x, k)) + γ‖Φ(x, k)‖

= w · Φ(x, ŷ)− w · Φ(x, ŷ′) + γE(x, ŷ, ŷ′)

(a) (b)

Fig. 4.Graph of number of iterations over training set vs. dual objective on a named entity tagging
task, for the SMO and EG optimization methods. (a) Comparison of SMO and EG with different
η parameter; (b) Comparison of SMO and EG withη = 1 and different initialθ parameters.

This implies that ifFw′(x) = ŷ then we have the following.

w · Φ(x, ŷ) ≥ max
ŷ′∈Y(x)

(w · Φ(x, ŷ′)− γE(x, ŷ, ŷ′)) (13)

But (13) now yields the following for any fixedx.

Lemma 5. With probability at least1−1/(nγ2) over the selection ofw′ fromQ(w, γ)
we haveFw′(x) ∈ C(x, w, γ).

Formula (10) now follows by applying Lemma 5 to eachxi in the sample.

6 Experiments

We compared the Exponentiated Gradient algorithm with the factored Sequential Min-
imal Optimization (SMO) algorithm in [12] on a sequence segmentation task. We se-
lected the first 1000 sentences (12K words) from the CoNLL-2003 named entity recog-
nition challenge data set for our experiment. The goal is to extract (multi-word) entity
names of people, organizations, locations and miscellaneous entities. Each word is la-
belled by 9 possible tags (beginning of one of the four entity types, continuation of
one of the types, or not-an-entity). We trained a first-order Markov chain over the tags,
where our cliques are just the nodes for the tag of each word and edges between tags
of consecutive words. The feature vector for each node assignment consists of the word
itself, its capitalization and morphological features, etc., as well as the previous and
consecutive words and their features. Likewise, the feature vector for each edge assign-
ment consists of the two words and their features as well as surrounding words.

Figure 4 shows the growth of the dual objective function for each pass through the
data for SMO and EG, for several settings of the learning rate parameterη and the
initial setting of theθ parameters. Note that SMO starts up very quickly but converges
to a suboptimal plateau, while EG lags at the start, but overtakes SMO and achieves a
larger than 10% increase in the value of the objective. These preliminary results suggest
that a hybrid algorithm could get the benefits of both, by starting out with several SMO
updates and then switching to EG. The key issue is to switch from the marginalµ

representation SMO maintains to the Gibbsθ representation that EG uses. We can find
θ that producesµ by first computing conditional “probabilities” that correspond to our
marginals (e.g. dividing edge marginals by node marginals in this case) and then letting
θ’s be the logs of the conditional probabilities.

References

1. M. Collins. Parameter estimation for statistical parsing models: Theory and practice of
distribution-free methods. To appear.

2. K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based
vector machines.Journal of Machine Learning Research, 2(5):265–292, 2001.

3. N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge University Press, 2000.

4. J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear pre-
dictors. Information and Computation, 132(1):1–63, 1997.

5. J. Kivinen and M. Warmuth. Relative loss bounds for multidimensional regression problems.
Journal of Machine Learning Research, 45(3):301–329, 2001.

6. J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. InICML, 2001.

7. J. Langford and J. Shawe-Taylor. Pac-Bayes and margins. InNIPS, 2002.
8. D. McAllester. Simplified PAC-Bayesian margin bounds. InCOLT, 2003.
9. D. Pollard.Convergence of Stochastic Processes. Springer-Verlag, 1984.

10. F. Sha, L. Saul, and D. Lee. Multiplicative updates for non-negative quadratic programming
in support vector machines. Technical report, University of Pennsylvania, 2002.

11. J. Szarski.Differential Inequalities. Monografie Matematyczne, 1965.
12. B. Taskar, C. Guestrin, and D. Koller. Max margin Markov networks. InNIPS, 2003.

A Proof of Lemma 3

Consider the mapping from̄θ parameters to the valueQ(ᾱ): θ̄ 7→ Q(σ̄(θ̄)), whereσ̄ is
defined byᾱ = σ̄(θ̄) iff ᾱi = σ(θ̄i). Now consider the Taylor expansion of the lossQ
aboutθ̄t. Taylor’s theorem implies there is āθ ∈ [θ̄t, θ̄t+1] for which

Q(σ̄(θ̄t+1)) = Q(σ̄(θ̄t))+∇θ̄Q(σ̄(θ̄t))′(θ̄t+1−θ̄t)+(θ̄t+1−θ̄t)′∇2
θ̄Q(σ̄(θ̄))(θ̄t+1−θ̄t).

It is easy to verify that for̄α = σ̄(θ̄) we have∇σ̄(θ̄) = diag(ᾱ)−diag(ᾱ1ᾱ
′
1, . . . , ᾱnᾱ′n),

which is a block diagonal matrix, and theith block is the variance operator for the prob-
ability distributionᾱi. Applying the chain rule, we see that the first order term in the
Taylor series is

∇θ̄Q(σ̄(θ̄t))′(θ̄t+1 − θ̄t) = −η
∑

i

(
∇(i)Q(ᾱt)

)′ (diag(ᾱi)− ᾱiᾱ
′
i)
(
∇(i)Q(ᾱt)

)
= −η

∑
i

var(Xi,t).

We next consider second derivatives. Notice that fori 6= j, ∇θ̄i
∇′

θ̄j
Q = 0. Thus, the

Hessian is block diagonal. We have

∂

∂θij∂θik
Q(σ̄(θ̄)) =

∂

∂θij

∂σ(θ̄i)′

∂θik
∇(i)Q(ᾱ)

=
∂

∂θij

(
αik(ek − ᾱi)′∇(i)Q(ᾱ)

)
= (αijδjk(ej − αi)− αijαik(ej + ek − 2αi))

′∇(i)Q(ᾱ)

+ αik(ek − ᾱi)′∇2
(i)Q(ᾱ)αij(ej − ᾱi),

whereej = (δj1, . . . , δjmi) and δjk is the indicator function forj = k. Defining
ᾱ = σ̄(θ), we have

∇θ̄Q(σ̄(θ̄)) = diag(ᾱ) diag (∇Q(ᾱ)− 1̄ᾱ′∇Q(ᾱ))

−∇σ̄(θ̄)∇Q(ᾱ)ᾱ′ − ᾱ∇Q(ᾱ)′∇σ̄(θ̄) +∇σ̄(θ̄)∇2Q(ᾱ)∇σ̄(θ̄),

where1̄ is the all ones vector. If the random variableYi hasPr
(
Yi =

(
∇(i)Q(ᾱ)

)
j

)
=

αij , we see that

(θ̄t+1 − θ̄t)′∇2
θ̄Q(σ̄(θ̄))(θ̄t+1 − θ̄t)

= η2∇Q(ᾱt)′∇2
θ̄Q(σ̄(θ̄))∇Q(ᾱt)

= η2
∑

i

E
[
X2

i,t,θ̄(Yi −EYi)− 2(Xi,t,θ̄Yi −EXi,t,θ̄EYi)EXi,t,θ̄

]
+ η2∇Q(ᾱt)′∇σ̄(θ̄)∇2Q(ᾱ)∇σ̄(θ̄)∇Q(ᾱt)

= η2
∑

i

E
[
(Xi,t,θ̄ −EXi,t,θ̄)

2(Yi −EYi)
]
+ η2

∥∥∥diag(
√

λ)U∇σ̄(θ̄)∇Q(ᾱt)
∥∥∥2

≤ η2B2
∑

i

var(Xi,t,θ̄) + η2λ
∥∥∇σ̄(θ̄)∇Q(ᾱt)

∥∥2

≤ η2(B2 + λ)
∑

i

var(Xi,t,θ̄),

where we represent the positive semidefinite symmetric Hessian matrix as∇2Q(ᾱ) =
A = U ′ diag(λ)U for an orthonormal eigenvector matrixU and vector of eigenvalues
λ. Combining with the first order term gives the first inequality of the lemma. For the
second, definex = ∇(i)Q(ᾱt) and notice that we can write

∂

∂θ̄ik
var(Xi,t,θ̄) =

∂

∂θ̄ik
x′(diag(ᾱi)− ᾱiᾱ

′
i)x

= σk

(
(xk −EXi,t,θ̄)

2 − var(Xi,t,θ̄)
)
,

Thus, forv = (θ̄i − θ̄t
i) for someθ̄ ∈ [θt, θt+1], we have

v′∇θ̄i
var(Xi,t,θ) = (v − 1̄ min

k
vk)′∇θ̄i

var(Xi,t,θ) ≤ ηB var(Xi,t,θ).

Viewing this as a differential inequality in one variable, we see that if
∑

i var(Xi,t) >
0 then

∑
i var(Xi,t,θ) ≤ eηB

∑
i var(Xit). (See, for example, Lemma 6.1 in [11].)

Lemma 2 shows that if
∑

i var(Xit) = 0 thenᾱt = ᾱt+1, and in that case the lemma
is trivially true. So we may assume that

∑
i var(Xit) > 0. The lemma follows.

B Proof of theorem 2

We now give a proof of theorem 2, re-stated here:

Theorem 3. Take a QPQ(ᾱ) whereᾱ ∈ ∆ and∆ is as defined in Eq. 4. Assume that
there is some functionI(i, j, k), and a functionQm(µ̄), such that if we defineµk(ᾱ) =∑

i,j αi,jI(i, j, k), thenQ(ᾱ) = Qm(µ̄(ᾱ)) for all ᾱ ∈ ∆. Assume we apply the algo-

rithm in Figure 2 with initial values̄α1, generating a sequence of valuesᾱ1, . . . , ᾱT .
Defineαi,j(θ̄) = exp(

∑
k θkI(i, j, k))/Zi, whereZi =

∑
j exp(

∑
k θkI(i, j, k)).

Then the updates
θt+1

k = θt
k − η

∂Qm(µ̄(ᾱ(θ̄t)))
∂µk

for t = 1 . . . (T − 1) giveᾱ(θ̄t) = ᾱt for t = 1 . . . T .
Proof. The algorithm in Figure 1 starts with some initial dual valuesᾱ1. For t =
1 . . . T , the updated parametersᾱt+1 are defined as

∀i, j, αt+1
i,j =

αt
i,j exp{−η∇i,j}∑

j αt
i,j exp{−η∇i,j}

where∇i,j = ∂Q(ᾱ)
∂αi,j

. Given thatQ(ᾱ) = Qm(µ̄(ᾱ)), and thatµk(ᾱ) =
∑

i,j αi,jI(i, j, k),
by the chain rule we have

∇i,j =
∂Q(ᾱ)
∂αi,j

=
∂Qm(µ̄(ᾱ))

∂αi,j
=
∑

k

∂Qm(µ̄(ᾱ))
dµk

∂µk

dαi,j
=
∑

k

δkI(i, j, k)

whereδk = ∂Qm(µ̄(ᾱ))
dµk

.

We now prove that̄αt = ᾱ(θ̄t) for t = 1 . . . T + 1 by induction overt. The base
case, fort = 1, holds by assumption. To prove the inductive case, assumeᾱ(θ̄t) = ᾱt,
and note that by the definition of the updates,θt+1

k = θt
k − ηδk. Then for alli, j,

αi,j(θ̄t+1) =
exp(

∑
k I(i, j, k)θt+1

k)∑
j exp(

∑
k I(i, j, k)θt+1

k)
=

exp(
∑

k I(i, j, k)(θt
k − ηδk)∑

j exp(
∑

k I(i, j, k)(θt
k − ηδk)

=
αi,j(θ̄t) exp(−η

∑
k I(i, j, k)δk)∑

j αi,j(θ̄t) exp(−η
∑

k I(i, j, k)δk)
=

αi,j(θ̄t) exp(−η∇i,j)∑
j αi,j(θ̄t) exp(−η∇i,j)

=
αi,j

t exp(−η∇i,j)∑
j αi,j

t exp(−η∇i,j)
= αt+1

i,j

Thus we have improved the inductive case, thatαi,j(θ̄t+1) = αt+1
i,j .

Input: See algorithm in Figure 3.
Assumptions:See algorithm in Figure 3.
Data structures: A vector z ∈ Rd, whered is the dimensionality of the feature vectorsφ(r)
over parts.

Algorithm:
– Choose initial valuesz1.
– For t = 1 . . . T

• Initialize zt+1 = zt.
• For i = 1 . . . n

∗ Forr ∈ R(xi), calculateµi,r =
∑

y αi,y(θ̄t)I(xi, y, r) where

θt
i,r = ηC(t− 1)li,r + ηC2〈zt, φi,r〉

∗ Setzt+1 = zt +
∑

r∈R(xi)
[I(xi, yi, r)− µi,r] φi,r

Output: Dual variables̄θT+1, or primal parametersw∗ defined as

w∗ =
∑
i,y

αi,y(θ̄T+1)Φi,y = C

 ∑
i,r∈R(xi,yi)

φi,r −
∑

i,r∈R(xi)

µi,rφi,r

whereµi,r =

∑
y αi,y(θ̄T+1)I(xi, y, r).

Fig. 5.A “primal form” algorithm which is equivalent to the algorithm in Figure 3

C A primal form algorithm

The main storage requirements of the algorithm in Figure 3 concern the vectorθ̄. This
has as many components as there are parts in the training set, which can be extremely
large. For example, in the WCFG case, if we have sentences of lengthl, a grammar
with g rules, andn examples, then there areO(ngl3) parts. For example, the Wall
Street Journal treebank has roughlyn = 40, 000, g = 12, 000, andl = 25 (on average),
which leads to approximately7.5× 1012 distinct parts.

In Figure 5 we give a modified algorithm withO(d+G) space requirements, where
G is the space required to compute theµi,r variables of a single examplei andd is the
dimensionality of the feature vector representation. For example,G = O(gl3) in the
WCFG case, so the overall space requirements areO(d + gl3), a significant saving on
O(ngl3) for the algorithm in Figure 3.

The algorithm maintains a vectorz at each iteration whose dimension is the same
as that of the primal space. In cases whered + G < |θ̄| this can lead to a considerable
saving in terms of storage: it is clear than in cases where kernels are not used (i.e., where
d is relatively small), it is likely that this algorithm will be considerably more efficient
in terms of space requirements. Note that the algorithms are equivalent because the
equivalenceθt

i,r = ηC(t− 1)li,r + ηC2〈zt, φi,r〉 holds fort = 1 . . . (T + 1). This can
again be proved by induction. The base case is to assume that the equivalence holds
for t = 1. The inductive case is then relatively straightforward, following from the
definitions ofθt

i,r in terms ofzt, andzt+1 in terms ofzt.

