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Abstract

Relative to the large literature on upper bounds on complexity of convex optimization, lesser
attention has been paid to the fundamental hardness of these problems. Given the extensive
use of convex optimization in machine learning and statistics, gaining an understanding of these
complexity-theoretic issues is important. In this paper, we study the complexity of stochastic
convex optimization in an oracle model of computation. We improve upon known results and
obtain tight minimax complexity estimates for various function classes.

1 Introduction

Convex optimization forms the backbone of many algorithms for statistical learning and estima-
tion. Given that many statistical estimation problems are large-scale in nature—with the problem
dimension and/or sample size being large—it is essential to use bounded computational resources
as efficiently as possible. Understanding the computational complexity of convex optimization is
thus a key issue for large-scale learning. A large body of literature is devoted to obtaining rates of
convergence of specific procedures for various classes of convex optimization problems. A typical
outcome of such analysis is an upper bound on the error—for instance, gap to the optimal cost—as
a function of the number of iterations. Such analyses have been performed for many standard op-
timization algorithms, among them gradient descent, mirror descent, interior point programming,
and stochastic gradient descent, to name a few. We refer the reader to various standard texts on
optimization (e.g., [1, 2, 3]) for further details on such results.

On the other hand, there has been relatively little study of the inherent complexity of convex
optimization problems. To the best of our knowledge, the first formal study in this area was under-
taken in the seminal work of Nemirovski and Yudin [4], hereafter referred to as NY. One obstacle to
a classical complexity-theoretic analysis, as these authors observed, is that of casting convex opti-
mization problems in a Turing Machine model. They avoided this problem by instead considering a
natural oracle model of complexity, in which at every round the optimization procedure queries an
oracle for certain information on the function being optimized. Working within this framework, the
authors obtained a series of lower bounds on the computational complexity of convex optimization
problems. In addition to the original text NY [4], we refer the interested reader to the book by
Nesterov [3], and the lecture notes by Nemirovski [5] for further background.

In this paper, we consider the computational complexity of stochastic convex optimization
within the oracle model. Our results lead to a characterization of the inherent difficulty of learning
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and estimation problems when computational resources are constrained. In particular, we improve
upon the work of NY [4] in two ways. First, our lower bounds have an improved dependence
on the dimension of the space. In the context of statistical estimation, these bounds show how
the difficulty of the estimation problem increases with the number of parameters. Second, our
techniques naturally extend to give sharper results for optimization over simpler function classes.
We show that the complexity of optimization for strongly convex losses is larger than that for
convex, Lipschitz losses. Third, we show that for a fixed function class, if the set of optimizers is
assumed to have special structure such as sparsity, then the fundamental complexity of optimization
can be significantly smaller. All of our proofs exploit a new notion of the discrepancy between two
functions that appears to be natural for optimization problems. They involve a reduction from a
statistical parameter estimation problem to the stochastic optimization problem, and an application
of information-theoretic lower bounds for the estimation problem. We note that special cases of
the first two results in this paper appeared in the extended abstract [6], and that a similar study
was independently undertaken by Raginsky and Rakhlin [7].

The remainder of this paper is organized as follows. We begin in Section 2 with background on
oracle complexity, and a precise formulation of the problems addressed in this paper. Section 3 is
devoted to the statement of our main results, and discussion of their consequences. In Section 4,
we provide the proofs of our main results, which all exploit a common framework of four steps.
More technical aspects of these proofs are deferred to the appendices.

Notation: For the convenience of the reader, we collect here some notation used throughout the
paper. For p ∈ [1,∞], we use ‖x‖p to denote the ℓp-norm of a vector x ∈ Rp, and we let q denote
the conjugate exponent, satisfying 1

p + 1
q = 1. For two distributions P and Q, we use D(P ‖Q) to

denote the Kullback-Leibler divergence between the distributions. The notation I(A) refers to the
0-1 valued indicator random variable of the set A. For two vectors α, β ∈ {−1,+1}d, we define the
Hamming distance ∆H(α, β) :=

∑d
i=1 I[αi 6= βi].

2 Background and problem formulation

We begin by introducing background on the oracle model of convex optimization, and precisely
defining the problem to be studied.

2.1 Convex optimization in the oracle model

Convex optimization is the task of minimizing a convex function f over a convex set S ⊆ Rd.
Assuming that the minimum is achieved, it corresponds to computing an element x∗f that achieves
the minimum—that is, x∗f ∈ arg minx∈S f(x). An optimization method is any procedure that solves
this task, typically by repeatedly selecting values from S. Our primary focus in this paper is the
following question: given any class of convex functions F , what is the minimum computational
labor any such optimization method would expend for any function in F?

In order to address this question, we follow the approach of Nemirovski and Yudin [4], and
measure computational labor based on the oracle model of optimization. The main components
of this model are an oracle and an information set. An oracle is a (possibly random) function
φ : S 7→ I that answers any query x ∈ S by returning an element φ(x) in an information set I.
The information set varies depending on the oracle; for instance, for an exact oracle of mth order,
the answer to a query xt consists of f(xt) and the first m derivatives of f at xt. For the case
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of stochastic oracles studied in this paper, these values are corrupted with zero-mean noise with
bounded variance. We then measure the computational labor of any optimization method as the
number of queries it poses to the oracle.

In particular, given a positive integer T corresponding to the number of iterations, an optimiza-
tion method M designed to approximately minimize the convex function f over the convex set S

proceeds as follows. At any given iteration t = 1, . . . , T , the method M queries at xt ∈ S, and the
oracle reveals the information φ(xt, f). The method then uses this information to decide at which
point xt+1 the next query should be made. For a given oracle function φ, let MT denote the class
of all optimization methods M that make T queries according to the procedure outlined above.
For any method M ∈ MT , we define its error on function f after T steps as

ǫT (M, f,S, φ) := f(xT ) − min
x∈S

f(x) = f(xT ) − f(x∗f ), (1)

where xT is the method’s query at time T . Note that by definition of x∗f as a minimizing argument,
this error is a non-negative quantity.

When the oracle is stochastic, the method’s query xT at time T is itself random, since it depends
on the random answers provided by the oracle. In this case, the optimization error ǫT (M, f,S, φ)
is also a random variable. Accordingly, for the case of stochastic oracles, we measure the accuracy
in terms of the expected value Eφ[ǫT (M, f,S, φ)], where the expectation is taken over the oracle
randomness. Given a class of functions F defined over a convex set S and a class MT of all
optimization methods based on T oracle queries, we define the minimax error

ǫ∗T (F ,S;φ) := inf
M∈MT

sup
f∈F

Eφ[ǫT (M, f,S, φ)]. (2)

In the sequel, we provide results for particular classes of oracles. So as to ease the notation, when
the oracle φ is clear from the context, we simply write ǫ∗T (F ,S).

2.2 Stochastic first-order oracles

In this paper, we study stochastic oracles for which the information set I ⊂ R×Rd consists of pairs
of noisy function and subgradient evaluations. More precisely, we have:

Definition 1. For a given set S and function class F , the class of first-order stochastic oracles
consists of mappings φ : S ×F → I of the form φ(x, f) = (f̂(x), ẑ(x)) such that

E[f̂(x)] = f(x), E[ẑ(x)] ∈ ∂f(x), and E
[
‖ẑ(x)‖2

p

]
≤ σ2. (3)

We use Op,σ to denote the class of all stochastic first-order oracles with parameters (p, σ). Note that

the first two conditions imply that f̂(x) is an unbiased estimate of the function value f(x), and that
ẑ(x) is an unbiased estimate of a subgradient z ∈ ∂f(x). When f is actually differentiable, then
ẑ(x) is an unbiased estimate of the gradient ∇f(x). The third condition in equation (3) controls
the “noisiness” of the subgradient estimates in terms of the ℓp-norm.

Stochastic gradient methods are a widely used class of algorithms that can be understood as
operating based on information provided by a stochastic first-order oracle. As a particular example,
consider a function of the separable form f(x) = 1

n

∑n
i=1 hi(x), where each hi is differentiable.

Problems of this form arise very frequently in statistical problems, where each term i corresponds
to a different sample and the overall cost function is some type of statistical loss (e.g., maximum
likelihood, support vector machines, boosting etc.) The natural stochastic gradient method for this
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problem is to choose an index i ∈ {1, 2, . . . , n} uniformly at random, and then to return the pair
(hi(x),∇hi(x)). Taking averages over the randomly chosen index i yields 1

n

∑n
i=1 hi(x) = f(x), so

that hi(x) is an unbiased estimate of f(x), with an analogous unbiased property holding for the
gradient of hi(x).

2.3 Function classes of interest

We now turn to the classes F of convex functions for which we study oracle complexity. In all
cases, we consider real-valued convex functions defined over some convex set S. We assume without
loss of generality that S contains an open set around 0, and many of our lower bounds involve the
maximum radius r = r(S) > 0 such that

S ⊇ B∞(r) :=
{
x ∈ Rd | ‖x‖∞ ≤ r

}
. (4)

Our first class consists of convex Lipschitz functions:

Definition 2. For a given convex set S ⊆ Rd and parameter p ∈ [1,∞], the class Fcv(S, L, p)
consists of all convex functions f : S → R such that

∣∣f(x) − f(y)
∣∣ ≤ L ‖x− y‖q for all x, y ∈ S, (5)

where 1
q = 1 − 1

p .

We have defined the Lipschitz condition (5) in terms of the conjugate exponent q ∈ [1,∞],
defined by the relation 1

q = 1− 1
p . To be clear, our motivation in doing so is to maintain consistency

with our definition of the stochastic first-order oracle, in which we assumed that E
[
‖ẑ(x)‖2

p

]
≤ σ2.

We note that the Lipschitz condition (5) is equivalent to the condition

‖z‖p ≤ L ∀z ∈ ∂f(x), and for all x ∈ int(S).

If we consider the case of a differentiable function f , the unbiasedness condition in Definition 1
implies that

‖∇f(x)‖p = ‖E[ẑ(x)]‖p
(a)

≤ E‖ẑ(x)‖p
(b)

≤
√

E‖ẑ(x)‖2
p ≤ σ,

where inequality (a) follows the convexity of the ℓp-norm and Jensen’s inequality, and inequality
(b) is a result of Jensen’s inequality applied to the concave function

√
x. This bound implies that

f must be Lipschitz with constant at most σ with respect to the dual ℓq-norm. Therefore, we
necessarily must have L ≤ σ, in order for the function class from Definition 2 to be consistent with
the stochastic first-order oracle.

The second function class we consider is that of strongly convex functions.

Definition 3. For a given convex set S ⊆ Rd and parameter p ∈ [1,∞], the class Fscv(S, p;L, γ)
consists of all convex functions f : S → R such that the Lipschitz condition (5) holds, and such
that f satisfies the ℓ2-strong convexity condition

f (αx+ (1 − α)y) ≥ αf(x) + (1 − α)f(y) + α(1 − α)
γ2

2
‖x− y‖2 for all x, y ∈ S. (6)
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In this paper, we restrict our attention to the case of strong convexity with respect to the
ℓ2-norm. (Similar results on the oracle complexity for strong convexity with respect to different
norms can be obtained by straightforward modifications of the arguments given here). For future
reference, it should be noted that the Lipschitz constant L and strong convexity constant γ interact
with one another. In particular, whenever S ⊂ Rd contains the ℓ∞-ball of radius r, the Lipschitz L
and strong convexity γ constants must satisfy the inequality

L

γ2
≥ r

8
d1/p. (7)

In order to establish this inequality, we note that strong convexity condition with α = 1/2 implies
that

γ2

8
≤ f(x) + f(y) − 2f

(x+y
2

)

2‖x− y‖2
2

≤ L‖x− y‖q
‖x− y‖2

2

We now choose the pair x, y ∈ S such that ‖x − y‖∞ = r and ‖x − y‖2 = r
√
d. Such a choice is

possible whenever S contains the ℓ∞ ball of radius r. Since we have ‖x− y‖q ≤ d1/q‖x− y‖∞, this

choice yields γ2

8 ≤ Ld
1
q −1

r , which establishes the claim (7).

As a third example, we study the oracle complexity of optimization over the class of convex
functions that have sparse minimizers. This class of functions is well-motivated, since a large body
of statistical work has studied the estimation of vectors, matrices and functions under various types
of sparsity constraints. A common theme in this line of work is that the ambient dimension d enters
only logarithmically, and so has a mild effect. Consequently, it is natural to investigate whether
the complexity of optimization methods also enjoys such a mild dependence on ambient dimension
under sparsity assumptions.

For a vector x ∈ Rd, we use ‖x‖0 to denote the number of non-zero elements in x. Recalling
the set Fcv(S, L, p) from Definition 2, we now define a class of Lipschitz functions with sparse
minimizers.

Definition 4. For a convex set S ⊂ Rd and positive integer k ≤ ⌊d/2⌋, we define

Fsp(k; S, L) :=
{
f ∈ Fcv(S, L,∞) | ∃ x∗ ∈ arg min

x∈S

f(x) satisfying ‖x∗‖0 ≤ k.
}

(8)

We frequently use the shorthand notation Fsp(k) when the set S and parameter L are clear from
context. In words, the set Fsp(k) consists of all convex functions that are L-Lipschitz in the
ℓ∞-norm, and have at least one k-sparse optimizer.

3 Main results and their consequences

With the setup of stochastic convex optimization in place, we are now in a position to state the
main results of this paper, and to discuss some of their consequences. As previously mentioned, a
subset of our results assume that the set S contains an ℓ∞ ball of radius r = r(S). Our bounds
scale with r, thereby reflecting the natural dependence on the size of the set S. Also, we set the
oracle variance bound σ to be the same as the Lipschitz constant L in our results.
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3.1 Oracle complexity for convex Lipschitz functions

We begin by analyzing the minimax oracle complexity of optimization for the class of bounded and
convex Lipschitz functions Fcv from Definition 2.

Theorem 1. Let S ⊂ Rd be a convex set such that S ⊇ B∞(r) for some r > 0. Then for a
universal constant c > 0, the minimax oracle complexity over the class Fcv(S, L, p) satisfies the
following lower bounds:

(a) For 1 ≤ p ≤ 2,

sup
φ∈Op,L

ǫ∗T (Fcv,S;φ) ≥ min

{
cL r

√
d

T
,
Lr

144

}
. (9)

(b) For p > 2,

sup
φ∈Op,L

ǫ∗T (Fcv,S;φ) ≥
{
cL r

d1− 1

p

√
T
,
Ld1−1/pr

72

}
. (10)

Remarks: Nemirovski and Yudin [4] proved the lower bound Ω
(

1√
T

)
for the class Fcv, where the

set S is the unit ball of a norm, and the functions are Lipschitz in the dual norm. By appealing to
a matching upper bound for the method of mirror descent, they show minimax optimality of their
dimension-independent result in this primal-dual norm setting when p ≥ 2. In contrast, here we
impose an ℓ∞ constraint on the set since optimization under upper and lower bound constraints
on variables is quite common and not sufficiently addressed by prior work. In addition, by looking
at the relative geometry of an arbitrary set with respect to the ℓ∞ ball, we can leverage the results
to arbitrary sets as demonstrated by the theorem obtaining dimension-dependent lower bounds.
Obtaining this correct dependence highlights the role of the geometry of the set S in determining
the oracle complexity.

In general, our lower bounds cannot be improved, and hence specify the optimal minimax oracle
complexity. We consider here some examples to illustrate their sharpness. Throughout we assume
that T is large enough to ensure that the 1/

√
T term attains the lower bound and not the L/144

term, which is reasonable since we want to understand the rate of the optimization procedure and
not in the transient behavior over the first few iterations.

(a) Let us begin by considering the special case S = B∞(1). For this choice, we have r(S) = 1,
and hence Theorem 1 implies that for all p ∈ [1, 2], the minimax oracle complexity is lower
bounded as

sup
φ∈Op,L

ǫ∗T (Fcv,B∞(1);φ) = Ω

(
L

√
d

T

)
.

Up to constant factors, this lower bound is sharp for all p ∈ [1, 2]. Indeed, for any convex set
S, stochastic gradient descent achieves a matching upper bound (see Section 5.2.4, p. 196 of
NY [4], as well as Appendix C in this paper for further discussion).

(b) As another example, suppose that S = B2(1). Observe that this ℓ2-norm unit ball satisfies the
relation B2(1) ⊃ 1√

d
B∞(1), so that we have r(B2(1)) = 1/

√
d. Consequently, for this choice,
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the lower bound (9) takes the form

sup
φ∈Op,L

ǫ∗T (Fcv,B2(1);φ) = Ω
(
L

1√
T

)
,

which is a dimension-independent lower bound. This lower bound for B2(1) is indeed tight
for p ∈ [1, 2], and as before, this rate is achieved by stochastic gradient descent [4].

(c) Turning to the case of p > 2, the lower bound (10) is matched up to constants by the method
of mirror descent using the dual norm ‖ · ‖q; for further discussion, we again refer the reader
to Section 5.2.1, p. 190 of NY [4], as well as to Appendix C of this paper. Also, even though
this lower bound requires the oracle to have only bounded variance, our proof actually uses
a stochastic oracle based on Bernoulli random variables, for which all moments exist. Conse-
quently, at least in general, our results show that there is no hope of achieving faster rates by
restricting to oracles with bounds on higher-order moments. This is an interesting contrast
to the case of having less than two moments, in which the rates are slower. For instance, as
shown in Section 5.3.1 of NY [4], suppose that the gradient estimates in a stochastic oracle
satisfy the moment bound E‖ẑ(x)‖bp ≤ σ2 for some b ∈ [1, 2). In this setting, the oracle

complexity is lower bounded by Ω
(
T−(b−1)/b

)
. Since T

b−1

b ≪ T
1

2 for all b ∈ [1, 2), there is a
significant penalty in convergence rates for having less than two bounded moments.

(d) Even though the results have been stated in a first-order stochastic oracle model, they actually
hold in a stronger sense. Indeed, they apply to an infinite-order oracle that responds with a
random function f̂t such that

E[f̂t(x)] = E[f(x)], and E[∇if̂t(x)] ≤ ∇if(x) for all x ∈ S and i such that ∇if(x) exists,

along with appropriately bounded second moments of all the derivatives. Consequently,
higher-order gradient information cannot improve convergence rates in a worst-case setting.
The result is close in spirit to a statistical sample complexity lower bound, since the lower
bounds essentially allow the optimization algorithm to see the outcome of the random bits
generated by the oracle at any given round. As we will see, the proof techniques are also simi-
lar to those employed in statistics, particularly in the areas of non-parametric regression [8, 9]
as well as in learning theory [10, 11, 12]. However for purposes of optimization, the metric of
interest in which we would like to approximate the functions is very different from classical
statistics literature.

3.2 Oracle complexity for strongly convex Lipschitz functions

We now turn to the statement of lower bounds over the class of Lipschitz and strongly convex

functions Fscv from Definition 3. In all these statements, we assume that γ2 ≤ 8Ld−1/p

r , as is
required for the definition of Fscv to be sensible.

Theorem 2. Let S = B∞(r). Then there exist universal constants c1, c2 > 0 such that the minimax
oracle complexity over the class Fscv(S, p;L, γ) satisfies the following lower bounds:

(a) For p = 1, we have

sup
φ∈Op,L

ǫ∗(Fscv, φ) ≥ min

{
c1
L2

γ2T
, c2Lr

√
d

T
,

L2

288γ2d
,
Lr

144

}
. (11)
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(b) For p > 2, we have:

sup
φ∈Op,L

ǫ∗(Fscv, φ) ≥ min

(
c1
L2d1−2/p

γ2T
, c2

Lrd1−1/p

√
T

,
L2d1−2/p

288γ2
,
Lrd1−1/p

144

)
. (12)

The results demonstrate an interesting phase transition and have a strongly convex and a convex
regime. When the strong convexity parameter γ2 is large (and T is sufficiently large), the first term
(namely, Ω(1/T )) always dominates. However, for poorly conditioned objectives with γ ≈ 0, the
convex rate of Ω(1/

√
T ) is faster than the strongly convex rate. This is natural since it recovers the

convex result when γ = as a special case like we expect. As with Theorem 1, these lower bounds
are sharp. In particular, for S = B∞(1), stochastic gradient descent achieves the rate (11) up to
logarithmic factors [13], and a closely related algorithm proposed in very recent work [14] matches
the lower bound exactly. Again for the purposes of upper bounds, we observe the same phase
transition with the best of the strongly convex or the convex rates attainable once the conditioning
of the objective is accounted for.

The above theorem applies only to B∞(r) and not arbitrary sets S unlike the previous theorem.
The generalization of this result to arbitrary convex, compact sets is an interesting question for
open research.

3.3 Oracle complexity for convex Lipschitz functions with sparse optima

Finally, we turn to the oracle complexity of optimization over the class Fsp from Definition 4.

Theorem 3. Let Fsp be the class of all convex functions that are L-Lipschitz with respect to the
‖ · ‖∞ norm that have a k-sparse optimizer. Let S ⊂ Rd be a convex set with B∞(r) ⊆ S. Then
there exists a universal constant c > 0 such that for all k ≤ ⌊d2⌋, we have

sup
φ∈O∞,L

ǫ∗(Fsp, φ) ≥ min

(
cLr

√
k2 log d

k

T
,
Lkr

432

)
. (13)

Remark: If k = O(d1−δ) for some δ ∈ (0, 1) (so that log d
k = Θ(log d)), then this bound is sharp

up to constant factors. In particular, suppose that we use mirror descent based on the ‖·‖1+ε norm
with ε = 2 log d/(2 log d− 1). As we discuss in more detail in Appendix C, it can be shown that

this technique will achieve a solution accurate to O(
√

k2 log d
T ) within T iterations, which matches

our lower bound (13) up to constant factors whenever k = O(d1−δ) . To the best of our knowledge,
Theorem 3 provides the first tight lower bound on the oracle complexity of sparse optimization.

4 Proofs of results

We now turn to the proofs of our main results. We begin in Section 4.1 by outlining the framework
of basic results on which our proofs are based. Sections 4.2 through 4.4 are devoted to the proofs
of Theorems 1 through 3 respectively.

4.1 Basic results

We begin by establishing a basic set of results that are exploited in the proofs of the main results.
At a high-level, our main idea is to show that the problem of convex optimization is at least as
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hard as estimating the parameters of Bernoulli variables—that is, the biases of d independent coins.
In order to perform this embedding, for a given error tolerance ǫ, we start with an appropriately
chosen subset of the vertices of a d-dimensional hypercube, each of which corresponds to some
values of the d Bernoulli parameters. For a given function class, we then construct a “difficult”
subclass of functions that are indexed by these vertices of the hypercube. We then show that being
able to optimize any function in this subclass to ǫ-accuracy requires identifying the hypercube
vertex. This is a multiway hypothesis test based on the observations provided by T queries to the
stochastic oracle, and we apply the Fano inequality [15] to lower bound the probability of error. In
the remainder of this section, we provide more detail on each of steps involved in this embedding.

4.1.1 Constructing a difficult subclass of functions

Our first step is to construct a subclass of functions G ⊆ F that we use to derive lower bounds.
Any such subclass is parameterized by a subset V ⊆ {−1,+1}d of the hypercube, chosen as follows.
Recalling that ∆H denotes the Hamming metric, we let V = {α1, . . . , αM} be a subset of the
vertices of the hypercube such that

∆H(αj , αk) ≥ d

4
for all j 6= k, (14)

meaning that V is a d
4 -packing in the Hamming norm. It is a classical fact (e.g., [18]) that one can

construct such a set with cardinality |V| ≥ (2/
√
e)d/2.

Now let Gbase = {f+
i , f

−
i , i = 1, . . . , d} denote some base set of 2d functions defined on the

convex set S, to be chosen appropriately depending on the problem at hand. For a given tolerance
δ ∈ (0, 1

4 ], we define, for each vertex α ∈ V, the function

gα(x) :=
c

d

d∑

i=1

{
(1/2 + αiδ)f

+
i (x) + (1/2 − αiδ) f

−
i (x)

}
. (15)

Depending on the result to be proven, our choice of the base functions {f+
i , f

−
i } and the pre-factor

c will ensure that each gα satisfies the appropriate Lipschitz and/or strong convexity properties
over S. Moreover, we will ensure that that all minimizers xα of each gα are contained within the
set S.

Based on these functions and the packing set V, we define the function class

G(δ) :=
{
gα, α ∈ V

}
. (16)

Note that G(δ) contains a total of |V| functions by construction, and as mentioned previously, our
choices of the base functions etc. will ensure that G(δ) ⊆ F . We demonstrate specific choices of
the class G(δ) in the proofs of Theorems 1 and 2 to follow.

4.1.2 Optimizing well is equivalent to function identification

We now claim that if a method can optimize over the subclass G(δ) up to a certain tolerance, then
it must be capable of identifying which function gα ∈ G(δ) was chosen. We first require a measure
for the closeness of functions in terms of their behavior near each others’ minima. Recall that we
use x∗f ∈ Rd to denote a minimizing point of the function f . Given a convex set S ⊆ Rd and two
functions f, g, we define

ρ(f, g) := inf
x∈S

[
f(x) + g(x) − f(x∗f ) − g(x∗g)

]
. (17)
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x∗f x∗g

f(x∗f )

g(x∗g)

infx∈S
{
f(x) + g(x)}

Figure 1. Illustration of the discrepancy function ρ(f, g). The functions f and g achieve their
minimum values f(x∗f ) and g(x∗g) at the points x∗f and x∗g respectively.

The discrepancy measure is non-negative, symmetric in its arguments, and satisfies ρ(f, g) = 0 if
and only if x∗f = x∗g, so that we may refer to it as a premetric. (It does not satisfy the triangle
inequality and ρ(f, g) if and only if f = g required to be a metric.)

Given the subclass G(δ), we quantify how densely it is packed with respect to the premetric ρ
using the quantity

ψ(G(δ)) := min
α6=β∈V

ρ(gα, gβ). (18)

We denote this quantity by ψ(δ) when the class G is clear from the context. We now state a simple
result that demonstrates the utility of maintaining a separation under ρ among functions in G(δ).

Lemma 1. For any x̃ ∈ S, there can be at most one function gα ∈ G(δ) such that

gα(x̃) − inf
x∈S

gα(x) ≤ ψ(δ)

3
. (19)

Thus, if we have an element x̃ ∈ S that approximately minimizes one function in the set G(δ) up
to tolerance ψ(δ), then it cannot approximately minimize any other function in the set.

Proof. For a given x̃ ∈ S, suppose that there exists an α ∈ V such that gα(x̃) − gα(x∗α) ≤ ψ(δ)
3 .

From the definition of ψ(δ) in (18), for any β ∈ V, β 6= α, we have

ψ(δ) ≤ gα(x̃) − inf
x∈S

gα(x) + gβ(x̃) − inf
x∈S

gβ(x) ≤ ψ(δ)

3
+ gβ(x̃) − inf

x∈S

gβ(x).

Re-arranging yields the inequality gβ(x̃) − gβ(x
∗
β) ≥ 2

3 ψ(δ), from which the claim (19) follows.

Suppose that for some fixed but unknown function gα∗ ∈ G(δ), some method MT is allowed to
make T queries to an oracle with information function φ(· ; gα∗), thereby obtaining the information
sequence

φ(xT1 ; g∗α) := {φ(xt; g
∗
α), t = 1, 2, . . . , T}.

10



Our next lemma shows that if the method MT achieves a low minimax error over the class G(δ),
then one can use its output to construct a hypothesis test that returns the true parameter α∗

at least 2/3 of the time. (In this statement, we recall the definition (2) of the minimax error in
optimization.)

Lemma 2. Suppose that based on the data φ(xT1 ; g∗α), there exists a method MT that achieves a
minimax error satisfying

E
[
ǫT (MT ,G(δ),S, φ)

]
≤ ψ(δ)

9
. (20)

Based on such a method MT , one can construct a hypothesis test α̂ : φ(xT1 ; g∗α) → V such that
max
α∗∈V

Pφ[α̂ 6= α∗] ≤ 1
3 .

Proof. Given a method MT that satisfies the bound (20), we construct an estimator α̂(MT ) of the

true vertex α∗ as follows. If there exists some α ∈ V such that gα(xT ) − gα(xα) ≤ ψ(δ)
3 then we

set α̂(MT ) equal to α. If no such α exists, then we choose α̂(MT ) uniformly at random from V.
From Lemma 1, there can exist only one such α ∈ V that satisfies this inequality. Consequently,
using Markov’s inequality, we have Pφ[α̂(MT ) 6= α∗] ≤ Pφ

[
ǫT (MT , gα∗ ,S, φ) ≥ ψ(δ)/3

]
≤ 1

3 .
Maximizing over α∗ completes the proof.

We have thus shown that having a low minimax optimization error over G(δ) implies that the vertex
α∗ ∈ V can be identified most of the time.

4.1.3 Oracle answers and coin tosses

We now describe stochastic first order oracles φ for which the samples φ(xT1 ; gα) can be related to
coin tosses. In particular, we associate a coin with each dimension i ∈ {1, 2, . . . , d}, and consider
the set of coin bias vectors lying in the set

Θ(δ) =
{
(1/2 + α1δ, . . . , 1/2 + αdδ) | α ∈ V

}
, (21)

Given a particular function gα ∈ G(δ)—or equivalently, vertex α ∈ V—we consider two oracles φ
that present noisy value and gradient samples from gα, as summarized in the following.

Oracle A: 1-dimensional unbiased gradients

(a) Pick an index i ∈ {1, . . . , d} uniformly at random.

(b) Draw bi ∈ {0, 1} according to a Bernoulli distribution with parameter 1/2 + αiδ.

(c) For the given input x ∈ S, return the value ĝα,A(x) and a sub-gradient
ẑα,A(x) ∈ ∂ĝα,A(x) of the function

ĝα,A := c
[
bif

+
i + (1 − bi)f

−
i

]
.

By construction, the function value and gradients returned by Oracle A are unbiased estimates
of those of gα. In particular, since each co-ordinate i is chosen with probability 1/d, we have

E
[
ĝα,A(x)

]
=
c

d

d∑

i=1

[
bif

+
i (x) + (1 − bi)f

−
i (x)

]
= gα(x),

11



with a similar relation for the gradient. Furthermore, as long as the base functions f+
i and f−i have

gradients bounded by 1, we have E[‖ẑα,A(x)‖p] ≤ c for all p ∈ [1,∞].

Parts of proofs are based on an oracle which responds with function values and gradients that
are d-dimensional in nature.

Oracle B: d-dimensional unbiased gradients

(a) For i = 1, . . . , d, draw bi ∈ {0, 1} according to a Bernoulli distribution with
parameter 1/2 + αiδ.

(b) For the given input x ∈ S, return the value ĝα,B(x) and a sub-gradient
ẑα,B(x) ∈ ∂ĝα,B(x) of the function

ĝα,B :=
c

d

d∑

i=1

[
bif

+
i + (1 − bi)f

−
i

]
.

As with Oracle A, this oracle returns unbiased estimates of the function values and gradients.
We also note that we will be working with constructions where the functions f+

i , f
−
i only depend

on the ith coordinate x(i). In such cases, if we assume that |∂f
+

i
x(i) | ≤ 1 and similarly for f−i , we have

‖∇ĝα,B(x)‖2
p =

c2

d2

( d∑

i=1

∣∣∣∣bi
∂f+

i (x)

∂x(i)
+ (1 − bi)

∂f−i (x)

∂x(i)

∣∣∣∣
p)2/p ≤ c2d2/p−2. (22)

In our later uses of Oracles A and B, we will choose the pre-factor c appropriately so as to
produce the desired Lipschitz constants.

4.1.4 Lower bounds on coin-tossing

Finally, we use information-theoretic methods to lower bound the probability of correctly estimating
the true parameter α∗ ∈ V in our model. At each round of either Oracle A or Oracle B, we can
consider a set of d coin tosses, with an associated vector θ∗ = (1

2 +α∗
1δ, . . . ,

1
2 +α∗

dδ) of parameters.
At any round, the output of Oracle A can (at most) reveal the instantiation bi ∈ {0, 1} of a randomly
chosen index, whereas Oracle B can at most reveal the entire vector (b1, b2, . . . , bd). Our goal is to
lower bound the probability of estimating the true parameter α∗, based on a sequence of length
T . We note that this part of our proof closely resembles statistical sample complexity proofs as
observed after Theorem 1.

Lemma 3. Suppose that the Bernoulli parameter vector α∗ is chosen uniformly at random from
the packing set V, and suppose that the outcome of ℓ ≤ d coins chosen uniformly at random is
revealed at each round t = 1, . . . , T . Then for any δ ∈ (0, 1/4], any hypothesis test α̂ satisfies

P[α̂ 6= α∗] ≥ 1 − 16ℓTδ2 + log 2
d
2 log(2/

√
e)

, (23)

where the probability is taken over both randomness in the oracle and the choice of α∗.

12



Note that we will apply the lower bound (23) with ℓ = 1 in the case of Oracle A, and ℓ = d in the
case of Oracle B.

Proof. For each time t = 1, 2, . . . , T , let Ut denote the randomly chosen subset of size ℓ, Xt,i be the
outcome of oracle’s coin toss at time t for coordinate i and let Yt ∈ {−1, 0, 1}d be a random vector
with entries

Yt,i =

{
Xt,i if i ∈ Ut, and

−1 if i /∈ Ut.

By Fano’s inequality [15], we have the lower bound

P[α̂ 6= α∗] ≥ 1 − I({(Ut, Yt}Tt=1;α
∗) + log 2

log |V| ,

where I({(Ut, Yt}Tt=1;α
∗) denotes the mutual information between the sequence {(Ut, Yt)}Tt=1 and

the random parameter vector α∗. As discussed earlier, we are guaranteed that log |V| ≥ d
2 log(2/

√
e).

Consequently, in order to prove the lower bound (23), it suffices to establish the upper bound
I({Ut, Yt}Tt=1;α

∗) ≤ 16T ℓ δ2.
By the independent and identically distributed nature of the sampling model, we have

I(((U1, Y1), . . . , (UT , YT ));α∗) =

T∑

t=1

I((Ut, Yt);α
∗) = T I((U1, Y1);α

∗),

so that it suffices to upper bound the mutual information for a single round. To simplify notation,
from here onwards we write (Y,U) to mean the pair (Y1, U1); the remainder of our proof is devoted
to establishing that I(Y ;U) ≤ 16 ℓ δ2,

By chain rule for mutual information [15], we have

I((U, Y );α∗) = I(Y ;α∗ | U) + I(α∗;U). (24)

Since the subset U is chosen independently of α∗, we have I(α∗;U) = 0, and so it suffices to upper
bound the first term. By definition of conditional mutual information [15], we have

I(Y ;α∗ | U) = EU
[
D(PY |α∗,U ‖ PY |U )

]

Since α has a uniform distribution over V, we have PY |U = 1
|V|
∑

α∈V PY |α,U , so that by convexity
of the Kullback-Leibler divergence,

D(PY |α∗,U ‖ PY |U) ≤ 1

|V|
∑

α∈V
D(PY |α∗,U ‖ PY |α,U). (25)

Now for any pair α∗, α ∈ V, the KL divergence D(PY |α∗,U ‖ PY |α,U ) can be at most the KL

divergence between ℓ independent pairs of Bernoulli variates with parameters 1
2+δ and 1

2−δ. Letting
D(δ) denote the Kullback-Leibler divergence between a single Bernoulli pair, a little calculation
yields

D(δ) = (
1

2
+ δ) log

1
2 + δ
1
2 − δ

+ (
1

2
− δ) log

1
2 − δ
1
2 + δ

= 2δ log
(
1 +

4δ

1 − 2δ

)

≤ 8δ2

1 − 2δ
.

13



Consequently, as long as δ ≤ 1/4, we have D(δ) ≤ 16δ2. Returning to the bound (25), we conclude
thatD(PY |α∗,U ‖ PY |U) ≤ 16ℓδ2. Taking averages over U , we obtain the bound I(Y ;α∗ | U) ≤ 16 ℓ δ2,
and applying the decomposition (24) yields I((U, Y );α∗) ≤ 16ℓδ2, thereby completing the proof.

Equipped with these tools, we are now prepared to prove our main results.

4.2 Proof of Theorem 1

We begin with oracle complexity for bounded Lipschitz functions, as stated in Theorem 1. We first
prove the result for the set S = B∞(1

2).

Part (a)—Proof for p ∈ [1, 2]: Consider Oracle A that returns the quantities (ĝα,A(x), ẑα,A(x)).
By definition of the oracle, each round reveals only at most one coin flip, meaning that we can
apply Lemma 3 with ℓ = 1, thereby obtaining the lower bound

P[α̂(MT ) 6= α] ≥ 1 − 2
16Tδ2 + log 2

d log(2/
√
e)

. (26)

We now seek an upper bound P[α̂(MT ) 6= α] using Lemma 2. In order to do so, we need to
specify the base functions (f+

i , f
−
i ) involved. For i = 1, . . . , d, we define

f+
i (x) :=

∣∣x(i) +
1

2

∣∣, and f−i (x) :=
∣∣x(i) − 1

2

∣∣. (27)

Given that S = B∞(1
2 ), we see that the minimizers of gα are contained in S. Also, both the

functions are 1-Lipschitz in the ℓ1-norm. By the construction (15), we are guaranteed that for any
subgradient of gα, we have

‖zα(x)‖p ≤ 2c for all p ≥ 1.

Therefore, in order to ensure that gα is L-Lipschitz in the dual ℓq-norm, it suffices to set c = L/2.
Let us now lower bound the discrepancy function (17). We first observe that each function gα

is minimized over the set B∞
(

1
2

)
at the vector xα := −α/2, at which point it achieves its minimum

value
min

x∈B∞( 1

2
)
gα(x) =

c

2
− cδ.

Furthermore, we note that for any α 6= β, we have

gα(x) + gβ(x) =
c

d

d∑

i=1

[(1
2

+ αi +
1

2
+ βi

)
f+
i (x) +

(1
2
− αi +

1

2
− βi

)
f−i (x)

]

=
c

d

d∑

i=1

[(
1 + αi + βi

)
f+
i (x) +

(
1 − αi − βi

)
f−i (x)

]

=
c

d

d∑

i=1

[(
f+
i (x) + f−i (x)

)
I(αi 6= βi) +

(
(1 + 2αi)f

+
i (x) + (1 − 2αi)f

−
i (x)

)
I(αi = βi)

]
.

When αi = βi then xα(i) = xβ(i) = −αi/2, so that this co-ordinate does not make a contribution
to the discrepancy function ρ(gα, gβ). On the other hand, when αi 6= βi, we have

f+
i (x) + f−i (x) =

∣∣x(i) +
1

2

∣∣+
∣∣x(i) − 1

2

∣∣ ≥ 1 for all x ∈ R.
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Consequently, any such co-ordinate yields a contribution of 2cδ/d to the discrepancy. Recalling our
packing set (14) with d/4 separation in Hamming norm, we conclude that for any distinct α 6= β
within our packing set,

ρ(gα, gβ) =
2cδ

d
∆H(α, β) ≥ cδ

2
,

so that by definition of ψ, we have established the lower bound ψ(δ) ≥ cδ
2 .

Setting the target error ǫ := cδ
18 , we observe that this choice ensures that ǫ < ψ(δ)

9 . Recalling
the requirement δ < 1/4, we have ǫ < c/72. In this regime, we may apply Lemma 2 to obtain the
upper bound Pφ[α̂(MT ) 6= α] ≤ 1

3 . Combining this upper bound with the lower bound (26) yields
the inequality

1

3
≥ 1 − 2

16Tδ2 + log 2

d log(2/
√
e)

.

Recalling that c = L
2 , making the substitution δ = 18ǫ

c = 36ǫ
L , and performing some algebra yields

T = Ω
(L2d

ǫ2
)

for all d ≥ 11 and for all ǫ ≤ L

144
.

Combined with Theorem 5.3.1 of NY [4], we conclude that this lower bound holds for all dimensions d.

Part (b)—Proof for p > 2: The preceding proof based on Oracle A is also valid for p > 2, but
yields a relatively weak result. Here we show how the use of Oracle B yields the stronger claim
stated in Theorem 1(b). When using this oracle, all d coin tosses at each round are revealed, so
that Lemma 3 with ℓ = d yields the lower bound

P[α̂(MT ) 6= α] ≥ 1 − 2
16T d δ2 + log 2

d log(2/
√
e)

. (28)

We now seek an upper bound on P[α̂(MT ) 6= α]. As before, we use the set S = B∞(1
2),

and the previous definitions (27) of f+
i (x) and f−i (x). From our earlier analysis (in particular,

equation (22)), the the Lipschitz constant of gα(x) is at most cd1/p−1, so that setting c = Ld1−1/p

yields functions that are Lipschitz with parameter L.
As before, for any distinct pair α, β ∈ V, we have the lower bound

ρ(gα, gβ) =
2cδ

d
∆H(α, β) ≥ cδ

2
,

so that ψ(δ) ≥ cδ
2 . Consequently, if we set the target error ǫ := cδ

18 , then we are guaranteed that

ǫ < ψ(δ)
9 , as is required for applying Lemma 2. Application of this lemma yields the upper bound

Pφ[α̂(MT ) 6= α] ≤ 1
3 . Combined with the lower bound (28), we obtain the inequality

1

3
≥ 1 − 2

16 d T δ2 + log 2

d log(2/
√
e)

.

Substituting δ = 18ǫ/c yields the scaling ǫ = O( c√
T

) for all d ≥ 11 and ǫ ≤ c/72. Recalling that

c = Ld1−1/p, we obtain the bound (10). Combining this with Theorem 5.3.1 of NY [4] gives the
claim for all dimensions.

We have thus completed the proof of Theorem 1 in the special case S = B∞(1
2 ). In order to

prove the general claims, which scale with r when B∞(r) ⊆ S, we note that our preceding proof
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required only that S ⊇ B∞(1
2) so that the minimizing points xα = −α/2 ∈ S for all α. In the

general case, we define our base functions to be

f+
i (x) =

∣∣x(i) +
r

2

∣∣, and f−i (x) =
∣∣x(i) − r

2

∣∣.

With this choice, the functions gα(x) are minimized at xα = −rα/2, and infx∈S gα(x) = cd/2− crδ.
Mimicking the previous steps with r = 1/2, we obtain the lower bound

ρ(gα, β) ≥ crδ

2
∀α 6= β ∈ V.

The rest of the proof above did not depend on S, so that we again obtain the lower bound T = Ω
(
d
δ2

)
.

In this case, the difference in ρ computation means that ǫ = Lδr
36 ≤ Lr

144 , from which the general
claim follows.

4.3 Proof of Theorem 2

We now turn to the proof of lower bounds on the oracle complexity of the class of strongly convex
functions from Definition 3. In this case, we will work with the following base functions parametrized
by θ < 1:

f+
i (x) = rθ|x(i)+r|+(1−θ)

(
x(i)+

r

2

)2

, and f−i (x) = rθ|x(i)−r|+(1−θ)
(
x(i)− r

2

)2

. (29)

A main component of our proof will be understanding the ρ-separation of the induced gα
functions which we show in the following lemma.

Lemma 4. With the base functions defined in Equation (29),

ρ(gα, gβ) ≥
{

4cδ2r2

(1−θ)d∆H(α, β) if 1 − θ > 2δ
2cδr2

d ∆H(α, β) if 1 − θ ≤ 2δ

The proof of the lemma is deferred to Appendix A, we prove the theorem using the lemma here.

Part (a)—Proof for p = 1: We start by setting γ2 = Ld−1/p/r = L/d, where we have recalled
that p = 1. In this case, the base class of Equation 29 specializes to

f+
i (x) =

1

2

(
x(i) + r

)2
, and f−i (x) =

1

2

(
x(i) − r

)2
,

for i = 1, . . . , d. With this choice, the functions gα are strongly convex with respect to the Euclidean
norm with coefficient γ = c/d. Further, each f+

i , f
−
i is cr-Lipschitz, since it depends on only one

co-ordinate. Thus the functions gα are also cr-Lipschitz with respect to the ‖ · ‖1-norm as before.
We consider Oracle A that returns one-dimensional gradients, so that E‖ĝα(x)‖2 ≤ c2. Once again,
we need to lower bound the discrepancy ρ(gα, gβ) so as to complete the proof. Using Lemma 4
guarantees that ψ(δ) = cδ2r2/(1 − θ) for 1 − θ > 2δ and ψ(δ) = δr2/2 for 1 − θ < 2δ. Considering
the first regime, we set ǫ = cδ2r2/(18(1 − θ)) so that ǫ ≤ ψ(δ)/9. Recalling that δ ≤ 1/4, we have
for all ǫ ≤ cr2/(288(1 − θ)) and d ≥ 11,

T = Ω

(
cr2

(1 − θ)ǫ

)
.
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In the second regime, we set ǫ = cδr2/36 and simplify just like the proof of Theorem 1(a) obtaining

T = Ω

(
L2d

ǫ2

)
.

The case for d < 11 follows from by considering the special case of just two-way hypothesis testing
for d = 1, so that log |V| = 1. The statement of the theorem is obtained by substituting c = L/r
and γ2 = L/dr. To obtain the result for arbitrary values of γ2 ≤ 4L/dr, we use the general
construction from Equation 29 and observe that the resulting functions gα are cr-Lipschitz and
c(1 − θ)/d-strongly convex. Hence γ2 = L(1 − θ)/dr. Hence we can set θ ∈ [0, 1] to match the
desired value of strong convexity. We set c = L/r to match the Lipschitz constant, and substitute
θ = 1 − γ2dr/L. Using the bound from Lemma 4 and mimicking the rest of the proof above with
these quantities gives the statement of the theorem for general values of γ2.

Part (a)—Proof for p > 2: We start by setting γ2 = Ld−1/p/r. We use the same base class as
before, but now switch to Oracle B that returns d-dimensional gradients. As before, we have

E‖∇ĝα,A(x)‖2 ≤ c2d2/p−2r2.

We set c = Ld1−1/p/r so as to obtain functions that are L-Lipschitz. In this case, the strong
convexity modulus is

γ2 = c/d =
Ld−1/p

r

as desired. Also ρ(gα, gβ) is given by Lemma 4 as before. The remainder of the proof is identical to
Theorem 1(b), and we obtain the result by substituting c = Ld1−1/p/r and γ2 = Ld−1/p/r. Finally,
the result for arbitrary settings of γ2 is obtained via the same argument as the proof of part (a).

4.4 Proof of Theorem 3

We begin by constructing an appropriate subset of Fsp(k) over which the Fano method can be
applied. Let V(k) := {α1, . . . , αM} be a set of vectors, such that each αj ∈ {−1, 0,+1}d satisfies

‖αj‖0 = k for all j = 1, . . . ,M , and ∆H(αj , αℓ) ≥ k

2
for all j 6= ℓ.

It can be shown that there exists such a packing set with |V(k)| ≥ exp
(
k
2 log d−k

k/2

)
elements (e.g.,

see Lemma 5 in Raskutti et al. [19]).
For any α ∈ V(k), we define the function

gα(x) := c

[
d∑

i=1

{(1
2

+ αiδ
)∣∣x(i) + r

∣∣+
(1
2
− αiδ

)∣∣x(i) − r
∣∣}+ δ

d∑

i=1

|x(i)|
]
. (30)

In this definition, the quantity c > 0 is a pre-factor to be chosen later, and δ ∈ (0, 1
4 ] is a given

error tolerance. Observe that each function gα ∈ G(δ; k) is convex, and Lipschitz with parameter c
with respect to the ‖ · ‖∞ norm.

Central to the remainder of the proof is the function class G(δ; k) := {gα, α ∈ V(k)}. In
particular, we need to control the discrepancy ψ(δ; k) := ψ(G(δ; k)) for this class. The following
result, proven in Appendix B, provides a suitable lower bound:
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Lemma 5. We have

ψ(δ; k) = inf
α6=β∈V(k)

ρ(gα, gβ) ≥
ckδr

4
. (31)

Using Lemma 5, we may complete the proof of Theorem 3. Define the base functions

f+
i (x) := d

(∣∣x(i) + r
∣∣+ δ

2
|x(i)|

)
, and f−i (x) := d

(∣∣x(i) − r
∣∣+ δ

2
|x(i)|

)
.

Consider Oracle B, which returns d-dimensional gradients based on the function

ĝα,B(x) =
c

d

d∑

i=1

[
bif

+
i (x) + (1 − bi)f

−
i (x)

]
,

where {bi} are Bernoulli variables. By construction, the function ĝα,B is at most 3c-Lipschitz in
ℓ∞ norm, so that setting c = L

3 yields an L-Lipschitz function.
Our next step is to use Fano’s inequality [15] to lower bound the probability of error in the

multiway testing problem associated with this stochastic oracle, following an argument similar to
(but somewhat simpler than) the proof of Lemma 3. Fano’s inequality yields the lower bound

P[α̂ 6= α∗] ≥ 1 −
1

(|V|
2 )

∑
α6=β D(Pα ‖Pβ) + log 2

log |V| . (32)

(As in the proof of Lemma 3, we have used convexity of mutual information [15] to bound it by the
average of the pairwise KL divergences.) By construction, any two parameters α, β ∈ V differ in
at most 2k places, and the remaining entries are all zeroes in both vectors. The proof of Lemma 3
shows that for δ ∈ [0, 1

4 ], each of these 2k places makes a contribution of at most 16δ2. Recalling
that we have T samples, we conclude that D(Pα ‖Pβ) ≤ 32kTδ2. Substituting this upper bound
into the Fano lower bound (32) and recalling that the cardinality of V is at least exp

(
k
2 log d−k

k/2

)
,

we obtain

P[α̂(MT ) 6= α] ≥ 1 − 2

(
32kTδ2 + log 2

k
2 log d−k

k/2

)
(33)

By Lemma 5 and our choice c = L/3, we have

ψ(δ) ≥ ckδr

4
=

Lkδr

12
,

Therefore, if we aim for the target error ǫ = Lkδr
108 , then we are guaranteed that ǫ ≤ ψ(δ)

9 , as is
required for the application of Lemma 2. Recalling the requirement δ ≤ 1/4 gives ǫ ≤ Lkδr/432.
Now Lemma 2 implies that P[α̂(MT ) 6= α] ≤ 1/3, which when combined with the earlier bound (33)
yields

1

3
≥ 1 − 2

(
32kTδ2 + log 2

k
2 log d−k

k/2

)
.

Rearranging yields the lower bound

T = Ω

( log d−k
k/2

δ2

)
= Ω

(
L2r2 k2

log d−k
k/2

ǫ2

)
,

where the second step uses the relation δ = 108ǫ
Lkr . As long as k ≤ ⌊d/2⌋, we have log d−k

k/2 = Θ(log d
k ),

which completes the proof.
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5 Discussion

In this paper, we have studied the complexity of convex optimization within the stochastic first-order
oracle model. We derived lower bounds for various function classes, including convex functions,
strongly convex functions, and convex functions with sparse optima. As we discussed, our lower
bounds are sharp in general, since there are matching upper bounds achieved by known algorithms,
among them stochastic gradient descent and stochastic mirror descent. Our bounds also reveal
various dimension-dependent and geometric aspects of the stochastic oracle complexity of convex
optimization. An interesting aspect of our proof technique is the features in common statistical
minimax theory. In particular, our proofs are based on constructing packing sets, defined with
respect to a semi-metric that measures how the degree of separation between the optima of different
functions. We then leveraged information-theoretic techniques, in particular Fano’s inequality and
its variants, in order to establish lower bounds.

There are various directions for future research. It would be interesting to consider the effect
of memory constraints on the complexity of convex optimization, or to derive lower bounds for
problems of distributed optimization. We suspect that the proof techniques developed in this
paper may be useful for studying these related problems.
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A Proof of Lemma 4

Recalling the definition (17) of the discrepancy ρ, we need to compute the quantities infx∈S gα(x)
and infx∈S{gα(x)+gβ(x)}. Beginning with the former quantity, first observe that for any x ∈ B∞(r),
we have

|x(i) + r| = x(i) + r and |x(i) − r| = r − x(i).

Consequently, recalling the definitions of the base functions (29), we have

(
1

2
+ αiδ

)
f+
i (x) +

(
1

2
− αiδ

)
f−i (x) =

1 − θ

2
x(i)2 + 2αiδrxi+

r2(1 + θ)

2
.

This function is minimized at x(i) = −2αiδr/(1−θ) when 1−θ > 2δ and x(i) = −αir otherwise.
Combining over all coordinates, we get that

inf
x∈B∞(r)

gα =

{
−2δ2r2c

(1−θ) + r2(1+θ)
2 if 1 − θ > 2δ

r2 − 2cδr2 if 1 − θ < 2δ
.

Reasoning similarly, we can compute infx∈B∞(r)|{gα(x) + gβ(x)}. Combining the two just like
the proof of Theorem 1(a) gives the result.
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B Proof of Lemma 5

Recalling the definition (17) of the discrepancy ρ, we need to compute the quantities infx∈S gα(x)
and infx∈S{gα(x)+gβ(x)}. Beginning with the former quantity, first observe that for any x ∈ B∞(r),
we have

[
r + αiδ

] ∣∣x(i) +
1

2

∣∣+
[
r − αiδ

] ∣∣x(i) − 1

2

∣∣ = r + 2αiδx(i). (34)

We now consider one of the individual terms arising in the definition (15) of the function gα. Using
the relation (34), it can be written as
(

1

2
+ αiδ

)
f+
i (x) +

(
1

2
− αiδ

)
f−i (x) =

(
1

2
+ αiδ

)∣∣x(i) + r
∣∣+
(

1

2
− αiδ

)∣∣x(i) − r
∣∣+ δ|x(i)|

=

{
r + (2αi + 1)δx(i) if x(i) ≥ 0

r + (2αi − 1)δx(i) if x(i) ≤ 0

From this representation, we see that whenever αi 6= 0, then the ith term in the summation defining
gα minimized at x(i) = −rαi, at which point it takes on its minimum value r(1 − −δ). On the
other hand, for any term with αi = 0, the function is minimized at x(i) = 0 with associated
minimum value of r. Combining these two facts shows that the vector −αr is an element of the set
arg minx∈S gα(x), and moreover that

inf
x∈S

gα(x) = cr
(
d− kδ

)
. (35)

We now turn to the computation of infx∈S{gα(x) + gβ(x)}. From the relation (34) and the
definitions of gα and gβ , some algebra yields

inf
x∈S

{
gα(x) + gβ(x)

}
= c inf

x∈S

d∑

i=1

{
2r + 2δ

[
(αi + βi)x(i) + |x(i)|

]}
. (36)

Let us consider the minimizer of the ith term in this summation. First, suppose that αi 6= βi,
in which case there are two cases to consider.

• If αi 6= βi and neither αi nor βi is zero, then we must have αi + βi = 0, so that the minimum
value of 2r is achieved at x(i) = 0.

• Otherwise, suppose that αi 6= 0 and βi = 0. In this case, we see from Equation (36) that it
is equivalent to minimizing αix(i) + |x(i)|. Setting x(i) = −αi achieves the minimum value
of 2r.

In the remaining two cases, we have αi = βi.

• If αi = βi 6= 0, then the component is minimized at x(i) = −αir and the minimum value
along the component is 2r(1 − δ).

• If αi = βi = 0, then the minimum value is 2r, achieved at x(i) = 0.

Consequently, accumulating all of these individual cases into a single expression, we obtain

inf
x∈S

{
gα(x) + gβ(x)

}
= 2cr

(
d− δ

d∑

i=1

I[αi = βi 6= 0]
)
. (37)
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Finally, combining equations (35) and (37) in the definition of ρ, we find that

ρ(gα, gβ) = 2cr
[
d− δ

d∑

i=1

I[αi = βi 6= 0] − (d− kδ)
]

= 2cδr

[
k −

d∑

i=1

I[αi = βi 6= 0]

]

= crδ∆H(α, β),

where the second equality follows since α and β have exactly k non-zero elements each. Finally,
since V is an k/2-packing set in Hamming distance, we have ∆H(α, β) ≥ k/2, which completes the
proof.

C Upper bounds via mirror descent

This appendix is devoted to background on the family of mirror descent methods. We first describe
the basic form of the algorithm and some known convergence results, before showing that different
forms of mirror descent provide matching upper bounds for several of the lower bounds established
in this paper, as discussed in the main text.

C.1 Background on mirror descent

Mirror descent is a generalization of (projected) stochastic gradient descent, first introduced by Ne-
mirovski and Yudin [4]; here we follow a more recent presentation of it due to Beck and Teboulle [20].
For a given norm ‖ · ‖, let Φ : Rd → R∪{+∞} be a differentiable function that is 1-strongly convex
with respect to ‖ · ‖, meaning that

Φ(y) ≥ Φ(x) + 〈∇Φ(x), y − x〉 +
1

2
‖y − x‖2.

We assume that Φ is a function of Legendre type [21, 22], which implies that the conjugate dual

Φ∗ is differentiable on its domain with ∇Φ∗ =
(
∇Φ
)−1

. For a given proximal function, we let DΦ

be the Bregman divergence induced by Φ, given by

DΦ(x, y) := Φ(x) − Φ(y) − 〈∇Φ(y), x− y〉. (38)

With this set-up, we can now describe the mirror descent algorithm based on the proximal function
Φ for minimizing a convex function f over a convex set S contained within the domain of Φ. Starting
with an arbitrary initial x0 ∈ S, it generates a sequence {xt}∞t=0 contained within S via the updates

xt+1 = arg min
x∈S

{
ηt〈x, ∇f(xt)〉 +DΦ(x, xt)

}
, (39)

where ηt > 0 is a stepsize.
A special case of this algorithm is obtained by choosing the proximal function Φ(x) = 1

2‖x‖2
2,

which is 1-strongly convex with respect to the Euclidean norm. The associated Bregman divergence
DΦ(x, y) = 1

2‖x − y‖2
2 is simply the Euclidean norm, so that the updates (39) correspond to

a standard projected gradient descent method. If one receives only an unbiased estimate of the
gradient ∇f(xt), then this algorithm corresponds to a form of projected stochastic gradient descent.
Moreover, other choices of the proximal function lead to different stochastic algorithms, as discussed
below.
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In order to state convergence rates for this algorithm, convexity and Lipschitz assumptions
about the functions f are required. Following the set-up used in our lower bound analysis, we
assume that ‖∇ẑ(xt)‖∗ ≤ L for all x ∈ S, where ‖v‖∗ := sup‖x‖≤1〈x, v〉 is the dual norm defined
by ‖ · ‖. Given stochastic mirror descent based on unbiased estimates of the gradient, Beck and
Teboulle [20] showed that with the initialization x0 = arg minx∈S Φ(x) and stepsizes ηt = 1/

√
t, the

optimization error of the sequence {xt} is bounded as

1

T

T∑

t=1

E
[
f(xt) − f(x∗)

]
≤ L

√
DΦ(x∗, x1)

T
≤ L

√
Φ(x∗)
T

(40)

Note that this averaged convergence is a little different from the convergence of xT discussed in
our lower bounds. In order to relate the two quantities, observe that by Jensen’s inequality

E

[
f

(∑T
t=1 xt
T

)]
≤ 1

T
E
[
f(xt)

]
.

Consequently, based on mirror descent for T − 1 rounds, we may set xT = 1
T−1

∑T−1
t=1 xt so as to

obtain the same convergence bounds up to constant factors. In the following discussion, we assume
this choice of xT for comparing the mirror descent upper bounds to our lower bounds.

C.2 Matching upper bounds

Now consider the form of mirror descent obtained by choosing the proximal function

Φa(x) :=
1

(a− 1)
‖x‖2

a for 1 < a ≤ 2. (41)

Note that this proximal function is 1-strongly convex with respect to the ℓa-norm, meaning that

1

(a− 1)
‖x‖2

a ≥
1

(a− 1)
‖y‖2

a +

(
∇ 1

(a− 1)
‖x‖2

a

)T
(x− y) +

1

2
‖x− y‖2

a.

Upper bounds for Theorem 1: For this case, we use mirror descent based on the proximal
function Φa with a = q. Under the condition ‖x∗‖∞ ≤ 1, a condition which holds in our lower
bounds, we obtain

‖x∗‖q ≤ ‖x∗‖∞ d1/q = d1/q,

which implies that Φq(x
∗) = O(d2/q). Under the conditions of Theorem 1, we have ‖∇f(xt)‖p ≤ L

where p = 1 − 1/q defines the dual norm. Note that the condition 1 < q ≤ 2 implies that p ≥ 2.
Substituting this in the upper bound (40) yields

E
[
f(xT ) − f(x∗)

]
= O

(
L
√
d2/q/T

)
= O

(
Ld1−1/p

√
1

T

)
,

which matches the lower bound from Theorem 1(b). Moreover, setting q = p = 2 corresponds to
stochastic gradient descent, and yields an upper bound to match the lower bound of Theorem 1(a).
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Upper bounds for Theorem 3: In order to recover matching upper bounds in this case, we use
the function Φa from equation (41) with a = 2 log d

2 log d−1 . In this case, the resulting upper bound (40)
on the convergence rate takes the form

E

[
f(xT ) − f(x∗)

]
= O

(
L

√
‖x∗‖2

a

2(a− 1)T

)
= O

(
L

√
‖x∗‖2

a log d

T

)
, (42)

since 1
a−1 = 2 log d−1. Based on the conditions of Theorem 3, we are guaranteed that x∗ is k-sparse,

with every component bounded by 1 in absolute value, so that ‖x∗‖2
a ≤ k2/a ≤ k2, where the final

inequality follows since a > 1. Substituting this upper bound back into Equation (42) yields

E
[
f(xT ) − f(x∗)

]
= O

(
L

√
k2 log d

T

)
.

Note that whenever k = O(d1−δ) for some δ > 0, then we have log d = Θ(log d
k ), in which case this

upper bound matches the lower bound from Theorem 3 up to constant factors, as claimed.
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