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1. Thompson sampling

• Bernoulli strategy

• Regret bounds

• Extensions—the flexibility of Bayesian strategies
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Bayesian bandit strategies

Thompson sampling:

• Simple strategy: only requires ability to sample a parameter from the

posterior and maximize the expected reward under the sampled

parameter.

• Applicable for more complex problems (dependent priors, complex

actions, dependent rewards)

• Performs well in practice.

• Strong (frequentist) regret bounds.

• Gittins index has shortcomings:

only applicable to infinite horizon and independent arm priors;

complex to compute.
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Bayesian Bernoulli bandits

At time t, armj givesXj,t ∼Bernoulli(µj) reward.

Suppose we have fixed, unknown parametersµj , and we wish to choose a

sequence of armsI1, I2, . . . , so as to minimize regret

Rn =

n∑

t=1

(µj∗ − µIt) .
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Thompson’s idea

Frequentist setting, Bayesian strategy:

• Uniform prior onpj .

• Pick actionj with probability that increases with the probability

(under posterior distributions) thatj is optimal.

Typically, ‘Thompson sampling’ refers toprobability matching. That is,

the probability of choosingj is set to the probability thatj is optimal:

Pr(It = j) = Pr (pj is the max) .
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Thompson sampling

Given priorπj,0 = π0:

For t = 1, 2, . . . ,

1. Drawp1,t, . . . , pk,t from posteriorsπj,t−1.

2. Play the armj with maximumpj,t.

3. Observe rewardXj,t.

4. Update posterior:

πj,t(p) ∝ pXj,t(1− p)1−Xj,t

︸ ︷︷ ︸

likelihood

πj,t−1(p)
︸ ︷︷ ︸

prior

.

Note thatPr(It = j) = Pr(pj,t is max).
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Thompson sampling

For Beta(1,1) prior:

For t = 1, 2, . . . ,

1. Drawpj,t ∼ Beta(Sj,t + 1, Fj,t + 1) for j = 1, . . . , k.

2. PlayIt = j for j with maximumpj,t.

3. Observe rewardXIt,t.

4. Update posterior:

SetSIt,t+1 = SIt,t +XIt,t.

SetFIt,t+1 = FIt,t + 1−XIt,t.
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Regret of Thompson sampling

Theorem: [Agrawal and Goyal]

For everyµ1, . . . , µk, there is a constantC such that for allǫ > 0,

Rn ≤ (1 + ǫ)
∑

j:∆j>0

∆j logn

d(µj , µ∗)
+

Ck

ǫ2
,

whered(µj , µ
∗) is the KL-divergence between Bernoulli distribu-

tions.
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Regret of Thompson sampling: Proof

As always,Rn =
∑k

j=1
ETj(n)∆j , whereTj(n) =

∑n

t=1
1[It = j].

For UCB strategies, we were able to bound regret by showing that the

upper bounds are (whp) valid, and that, after enough mistakes, they are

sufficiently tight that subsequent mistakes are unlikely. Here, we don’t

have bounds, we’re just sampling from distributions that get more

concentrated as we sample more.
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Regret of Thompson sampling: Proof

Fix a suboptimal armj 6= j∗. Split according tôµj(t− 1) andpj,t:

ETj(n) =
n∑

t=1

Pr(It = j)

=
n∑

t=1

[Pr (It = j, µ̂j(t− 1) ≤ xj , pj,t ≤ yj)

+ Pr (It = j, µ̂j(t− 1) ≤ xj , pj,t > yj)

+ Pr (It = j, µ̂j(t− 1) > xj)] ,

where we chooseµj < xj < yj < µ∗ as follows:
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Regret of Thompson sampling: Proof

µj < xj < µ∗ s.t. d(xj , µ
∗) =

d(µj , µ
∗)

1 + ǫ

xj < yj < µ∗ s.t. d(xj , yj) =
d(xj , µ

∗)

1 + ǫ

=
d(µj , µ

∗)

(1 + ǫ)2
.

This ensures that the relevant divergences are only a constant factor

different fromd(µj , µ
∗).

10



Regret of Thompson sampling: Proof

Consider those three probabilities:

1. Pr (It = j, µ̂j(t− 1) ≤ xj , pj,t ≤ yj)

counts the times when both the empirical meanµ̂j(t− 1) and the

sampledpj,t are not too far above their expectations. For this to be

small, we need to be sure thatj∗ is pulled a lot.

2. Pr (It = j, µ̂j(t− 1) ≤ xj , pj,t > yj)

counts the times whenpj,t is far above its expectation. AsTj grows,

the distribution ofpj,t gets more concentrated, so this sum is

O(logn/d(xj , yj)).

3. Pr (It = j, µ̂j(t− 1) > xj) counts the times when the empirical

meanµ̂j(t− 1) is far above its expectation. Its sum isO(1).
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Regret of Thompson sampling: Proof

For the 3rd probability: ifτj,k is thekth time whenIt = j, then

n∑

t=1

Pr (It = j, µ̂j(t− 1) > xj) ≤ 1 + E

n−1∑

k=1

1 [µ̂j(τj,k) > xj ]

≤ 1 +
n−1∑

k=1

exp (−kd(xj , µj))

≤ 1 +
1

d(xj , µj)
= O(1).
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Regret of Thompson sampling: Proof

For the 2nd probability:

n∑

t=1

Pr (It = j, µ̂j(t− 1) ≤ xj , pj,t > yj)

≤
n∑

t=1

Pr (It = j, pj,t > yj | µ̂j(t− 1) ≤ xj)

≤ m+ E

n∑

t=τj,m+1

Pr (It = j, pj,t > yj | µ̂j(t− 1) ≤ xj , Ft−1) ,

for any choice ofm. (Recall thatτj,k is thekth time whenIt = j and

Ft−1 is everything up tot− 1.)
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Regret of Thompson sampling: Proof

n∑

t=1

Pr (It = j, µ̂j(t− 1) ≤ xj , pj,t > yj)

≤ m+ E

n∑

t=τj,m+1

exp (−Tj(t− 1)d(xj , yj))

≤
logn

d(xj , yj)
+ E

n∑

t=τj,m+1

1

n

≤
logn

d(xj , yj)
+ 1,

where we choosem = log n/d(xj , yj) so that

exp (−Tj(t− 1)d(xj , yj)) ≤
1

n
.
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Regret of Thompson sampling: Proof

For the 1st probability, defineαj,t = Pr (pj∗,t > yj |Ft−1). Then

n∑

t=1

Pr (It = j, µ̂j(t− 1) ≤ xj , pj,t ≤ yj)

(*) ≤
n∑

t=1

E

[
1− αj,t

αj,t

1 [It = j∗, µ̂j(t− 1) ≤ xj , pj,t ≤ yj ]

]

≤
n−1∑

k=0

E




1− αj,τj∗,k+1

αj,τj∗,k+1

τj∗,k+1∑

t=τj∗,k+1

1 [It = j∗]





≤

n−1∑

k=0

E

[
1

αj,τj∗,k+1

− 1

]

= · · · = O(1).

(Recallτj∗,k is thekth time whenIt = j∗.)
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Regret of Thompson sampling: Proof

(*) Crucial fact: For a bad arm, when its sample average and sampled

parameter aren’t too large, the probability it’s chosen is bounded linearly

by the probability that the best arm is chosen.

Lemma: For suboptimalj,

Pr (It = j, µ̂j(t− 1) ≤ xj , pj,t ≤ yj | Ft−1)

≤
1− αj,t

αj,t

Pr (It = j∗, µ̂j(t− 1) ≤ xj , pj,t ≤ yj | Ft−1) ,

whereαj,t = Pr (pj∗,t > yj |Ft−1).
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Regret of Thompson sampling: Proof

First, notice that, conditioned onFt−1, µ̂j(t− 1) is determined. So

assumêµj(t− 1) ≤ xj .

Define the eventWj(t) = {∀j′ 6= j∗, pj,t ≥ pj′,t} (j is the “suboptimal

winner”). Then

Pr (It = j∗| pj,t ≤ yj , Ft−1)

≥ Pr (It = j∗, Wj(t)| pj,t ≤ yj , Ft−1)

= Pr (Wj(t)| pj,t ≤ yj , Ft−1) Pr (It = j∗|Wj(t), pj,t ≤ yj , Ft−1)

≥ Pr (Wj(t)| pj,t ≤ yj , Ft−1) Pr (pj∗,t > yj |Wj(t), pj,t ≤ yj , Ft−1)

≥ Pr (Wj(t)| pj,t ≤ yj , Ft−1) Pr (pj∗,t > yj | Ft−1)

= Pr (Wj(t)| pj,t ≤ yj , Ft−1)αj,t.
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Regret of Thompson sampling: Proof

On the other side:

Pr (It = j| pj,t ≤ yj , Ft−1)

≤ Pr (Wj(t), pj∗,t ≤ yj | pj,t ≤ yj , Ft−1)

= Pr (Wj(t)| pj,t ≤ yj , Ft−1) Pr (pj∗,t ≤ yj | Ft−1)

= Pr (Wj(t)| pj,t ≤ yj , Ft−1) (1− αj,t).
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Thompson sampling for bounded rewards

ForXj,t ∈ [0, 1], can use an identical approach. But the only analysis
applies to Bernoulli-sampled rewards (which introduce a little extra
variance):

For t = 1, 2, . . . ,

1. Drawpj,t ∼ Beta(Sj,t + 1, Fj,t + 1) for j = 1, . . . , k.

2. PlayIt = j for j with maximumpj,t.

3. Observe rewardXIt,t.

4. SampleRt ∼Bernoulli(XIt,t).

5. Update posterior:

SetSIt,t+1 = SIt,t +Rt.

SetFIt,t+1 = FIt,t + 1−Rt.
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Thompson sampling

One of the advantages of a Bayesian strategy (even in a frequentist

setting, where the parameters are fixed but unknown) is that it is easy to

generalize it to settings with rewards and (other) outcomes, where the

distributions depend on parametersθ.

This allows:

• Complex actions (e.g., choose four advertisements on a web page;

multi-commodity flow with random capacities).

• Limited observations (e.g., only see rewards for complex actions, not

for simple ones).

• Dependent rewards.
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Thompson sampling

Given parameter spaceΘ, action spaceA, outcome spaceY, prior π0 on

Θ, likelihoodℓ(y; a, θ), and reward distribution:

For t = 1, 2, . . . ,

1. Drawθt from posteriorπt−1.

2. Play actionat that maximizesEθtRa.

3. Observe outcomeYt.

4. Update posterior:

πt(θ) ∝ ℓ(Yt; at, θ)πt−1(θ).
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