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1. Thompson sampling

Bernoulli strategy

Regret bounds

Extensions—the flexibility of Bayesian strategies




‘ Bayesian bandit strategies'

Thompson sampling:

Simple strategy: only requires ability to sample a paranfeden the
posterior and maximize the expected reward under the sample
parameter.

Applicable for more complex problems (dependent priorsiex
actions, dependent rewards)

Performs well in practice.
Strong (frequentist) regret bounds.

Gittins index has shortcomings:
only applicable to infinite horizon and independent armngtio
complex to compute.



Bayesian Bernoulli bandits.

Attime ¢, armyj gives X, ~Bernoulli(x,) reward.

Suppose we have fixed, unknown parametgrsand we wish to choose a
sequence of armg, I, ..., SO as to minimize regret

n

R, = Z (g« — pr,) -

t=1




Thompson’sidea'

Freguentist setting, Bayesian strategy:
o Uniform prior onp;.

e Pick action; with probability that increases with the probability
(under posterior distributions) thats optimal.

Typically, ‘Thompson sampling’ refers farobability matching. That is,
the probability of choosing is set to the probability thatis optimal:

Pr(I; = j) = Pr(p; is the may.




‘Thompson sampling'

Given priorm; g = mo:
Fort=1.,2,...,

1. Drawp; ¢, ..., p+ from posteriorsr; ;_;.
2. Play the arny with maximump; ;.

3. Observe reward; ;.

4. Update posterior:

)1_Xj,t

mje(p) o< p (1 —p

likelihood prior

o \

"

Note thatPr(l; = j) = Pr(p; . is max.




‘Thompson sampling'

For Beta(1,1) prior:
Fort=1.,2,...,

1. Drawp; . ~ BetaS;: +1,F;; +1)forj=1,... k.

. PlayI; = j for 57 with maximump; ;.

2
3. Observe reward(y, ;.
4

. Update posterior:
SetSy, 1+1 = S, + X1,
SetF]t7t+1 — FIt,t —|— 1 - Xlt,t-




‘ Regret of Thompson sampling'

Theorem: [Agrawal and Goyall]
For everyuq, ..., u, there is a constart such that for alk > 0,

_ N Ck
Ro<(l4+e Y 2204 22

whered(u;, ©*) is the KL-divergence between Bernoulli distril
tions.




Regret of Thompson sampling: Proof I

As always,R,, = Z?_l ET;(n)A;, whereT;(n) = >, | 1[I = j].

For UCB strategies, we were able to bound regret by showiaitiie

upper bounds are (whp) valid, and that, after enough mistakey are
sufficiently tight that subsequent mistakes are unlikelgrdslwe don’t

have bounds, we're just sampling from distributions thatgere
concentrated as we sample more.




Regret of Thompson sampling: Proof I

Fix a suboptimal arm # j*. Split according tq:,; (¢ — 1) andp; ;:

ET;(n) = > Pr(I, = j)

=) [Pr(L =4, p(t — 1) < x5, pje < y5)
t=1

+Pr(l; =4, i (t = 1) < x5, pje > yj)
+Pr(ly = j, fi;(t — 1) > z;)],

where we choosg; < z; < y; < p* as follows:




Regret of Thompson sampling: Proof I

d(pg, ")
1+ ¢
d($j7:u*)

pi < i < p t d(zj, p*) =

:Uj<yj<u* L. d(a:j,yj): 1+€

(s, p)

(1+€)*
This ensures that the relevant divergences are only a curiatdor
different fromd(p;, 1*).




Regret of Thompson sampling: Proof I

Consider those three probabillities:

1. Pr(ly =j, p1;(t = 1) <y, pje < yj)
counts the times when both the empirical mgag — 1) and the
sampledp, ; are not too far above their expectations. For this to be
small, we need to be sure thatis pulled a lot.

- Pr(ly =g, f1;(t = 1) < x5, pje > yj)
counts the times whepm, ; is far above its expectation. AS; grows,
the distribution ofp; ; gets more concentrated, so this sumis

O(logn/d(xj,y;)).

. Pr(I; =j, i1;(t — 1) > x;) counts the times when the empirical
meanji;(t — 1) is far above its expectation. Its sumOg1).




Regret of Thompson sampling: Proof I

For the 3rd probability: ifr; 5 Is thekth time whenl; = j, then

n—1

ZPI‘ (Lt =J, (¢ —1) > z;) <1 +EZ L{f(75) > ;]
t=1

k=1




Regret of Thompson sampling: Proof I

For the 2nd probability:

mn
> Pr(ly=j, i;(t — 1) < x5, pje > yj)
t=1

mn
< ZPT(It =7, Pjt > ?Jj\ﬂj(t_ 1) < %’)
t=1

mn
<m+E Z Pr(I; = j, pje >yl ;(t — 1) < x5, Fro1),
t=7; m+1

for any choice ofn. (Recall thatr; ;, Is thekth time whenl; = 5 and
Fi_1 IS everything up ta — 1.)




Regret of Thompson sampling: Proof I

> Pr(ly=j, i;(t —1) <y, pjs > y;)

<m+E Y exp(=T5(t — L)d(xz;,y;))
t:Tj m+1

logn e Z

d(ajj’ yj t=7;, m—i—l

logn
~ d(zj,y;)
where we chooser = logn/d(x;,y;) so that

+ 1,

exp (—Tj (t —




Regret of Thompson sampling: Proof I

For the 1st probability, define, ; = Pr (p;« + > y;|F:—1). Then

> Pr(ly=j, fi;(t—1) <y, pja < yj)

- 1 — o e
() < ZE[ [T = 4, gt —1) < 2, py Syj]]

Qjt

1 Tj* k+1

DD

Qg 7
jT k+1 t:Tj*7k}+].

Sl
jT*k—l—l

(Recallrj*,k IS thekth time whenl; = j5*.)




Regret of Thompson sampling: Proof I

(*) Crucial fact: For a bad arm, when its sample average angpksd
parameter aren’t too large, the probability it's chosenasrmed linearly
by the probability that the best arm is chosen.

Lemma: For suboptimal,

Pr(l, =7, ij(t—1) <z, pj+ < yj| Fie1)

1 — o e
<— LLPr (1 = 5%, i (t — 1) < 2, pja < ys] Fer)
it

wherea; ; = Pr(pj- ¢+ > y;|Fi_1).




Regret of Thompson sampling: Proof I

First, notice that, conditioned af;_, /1;(t — 1) is determined. So
assumgi;(t — 1) < x;.

Define the eventV; (t) = {Vj' # 5%, pj+ > pj+} (j is the “suboptimal
winner”). Then

Pr (I =j"pj+ <yj, Fi-1)

Iy =37%, W;i(®)|pjt <yj, Ft—1)
Pit < Yj, ]:t—l)Pr(It :j*|W'(t) Pit < Yj, ]:t—1)
Pt < Yjs Feo1) Pr(pje e >y | W;(t), pje < vy, Fr-1)
Pt < Yj, Fio1) Pr(pj: > y;| Fio1)
Pt < Yj, Fi1) Q.




Regret of Thompson sampling: Proof I

On the other side:

Pr(I; = jlpje <5, Fi-1)

< PI‘(Wj(t), Djt < yj|pj,t < Yj, JT"t—l)
= Pr(W;(0)|pjt < yj, Fr—1) Pr(pj=+ < yj| Fr-1)
= Pr (W](t)|pg,t < Yjs ft—l) (1 o ajat)'




Thompson sampling for bounded rewards'

For X, € |0, 1], can use an identical approach. But the only analysis
applies to Bernoulli-sampled rewards (which introducdtielextra

variance):

Fort=1,2,...,

1. Drawp; . ~ BetaS;; +1,F;;+1)forj=1,... k.

. Playl; = j for j with maximump; ;.
. Observe reward7y, ;.
. SampleR; ~Bernoulli( X7, ;).

. Update posterior:
SetSy, i1+1 = Sr,.¢ + Ry
SetF[tﬂH_l — Fft,t -+ 1 — Rt.




‘Thompson sampling'

One of the advantages of a Bayesian strategy (even in a fnague
setting, where the parameters are fixed but unknown) isttleaéasy to
generalize it to settings with rewards and (other) outconvégre the
distributions depend on parametérs

This allows:

e Complex actions (e.g., choose four advertisements on a ag®; p
multi-commodity flow with random capacities).

e Limited observations (e.g., only see rewards for complétoas, not
for simple ones).

e Dependent rewards.




‘Thompson sampling'

Given parameter spacée, action spaced, outcome spac@’, prior my on
O, likelihood ¢(y; a, 8), and reward distribution:
Fort=1.,2,...,

1. Drawd, from posteriorr;_.
2. Play actionu; that maximizesty, R, .
3. Observe outcomeg,.

4. Update posterior:

e (0) o< £(Yy; ar, 0)me_1(0).




