Stat 260/CS 294-102. Learning in Sequential Decision Problems.

Peter Bartlett

1. Linear bandits.

- Full information: mirror descent.
- Bandit information: stochastic mirror descent.

Full information online prediction games

- Repeated game:

> Strategy plays $a_{t} \in \mathcal{A}$
> Adversary reveals $\ell_{t} \in \mathcal{L}$

- Aim to minimize regret:

$$
R_{n}=\sum_{t=1}^{n} \ell_{t}\left(a_{t}\right)-\min _{a \in \mathcal{A}} \sum_{t=1}^{n} \ell_{t}(a)
$$

Online Convex Optimization

- Choosing a_{t} to minimize past losses can fail.
- The strategy must avoid overfitting.
- First approach: gradient steps.

Stay close to previous decisions, but move in a direction of improvement.

Online Convex Optimization

1. Gradient algorithm.
2. Regularized minimization

- Bregman divergence
- Regularized minimization \Leftrightarrow minimizing latest loss and divergence from previous decision
- Constrained minimization equivalent to unconstrained plus Bregman projection
- Linearization
- Mirror descent

3. Regret bound

Online Convex Optimization: Gradient Method

$$
\begin{aligned}
a_{1} & \in \mathcal{A} \\
a_{t+1} & =\Pi_{\mathcal{A}}\left(a_{t}-\eta \nabla \ell_{t}\left(a_{t}\right)\right)
\end{aligned}
$$

where $\Pi_{\mathcal{A}}$ is the Euclidean projection on \mathcal{A},

$$
\Pi_{\mathcal{A}}(x)=\arg \min _{a \in \mathcal{A}}\|x-a\|
$$

Theorem: For $G=\max _{t}\left\|\nabla \ell_{t}\left(a_{t}\right)\right\|$ and $D=\operatorname{diam}(\mathcal{A})$, the gradient strategy with $\eta=D /(G \sqrt{n})$ has regret satisfying

$$
R_{n} \leq G D \sqrt{n} .
$$

Online Convex Optimization: Gradient Method

Example: (2-ball, 2-ball)
$\mathcal{A}=\left\{a \in \mathbb{R}^{d}:\|a\| \leq 1\right\}, \mathcal{L}=\{a \mapsto v \cdot a:\|v\| \leq 1\} . D=2, G \leq 1$. Regret is no more than $2 \sqrt{n}$.
(And $O(\sqrt{n})$ is optimal.)

> Example: (1-ball, ∞-ball)
> $\mathcal{A}=\Delta(k), \mathcal{L}=\left\{a \mapsto v \cdot a:\|v\|_{\infty} \leq 1\right\}$.
> $D=2, G \leq \sqrt{k}$.

Regret is no more than $2 \sqrt{k n}$.
Since competing with the whole simplex is equivalent to competing with the vertices (experts) for linear losses, this is worse than exponential weights $(\sqrt{k}$ versus $\log k)$.

Gradient Method: Proof

$$
\begin{array}{ll}
\text { Define } & \tilde{a}_{t+1}=a_{t}-\eta \nabla \ell_{t}\left(a_{t}\right) \\
& a_{t+1}=\Pi_{\mathcal{A}}\left(\tilde{a}_{t+1}\right)
\end{array}
$$

Fix $a \in \mathcal{A}$ and consider the measure of progress $\left\|a_{t}-a\right\|$.

$$
\begin{aligned}
\left\|a_{t+1}-a\right\|^{2} & \leq\left\|\tilde{a}_{t+1}-a\right\|^{2} \\
& =\left\|a_{t}-a\right\|^{2}+\eta^{2}\left\|\nabla \ell_{t}\left(a_{t}\right)\right\|^{2}-2 \eta \nabla_{t}\left(a_{t}\right) \cdot\left(a_{t}-a\right)
\end{aligned}
$$

By convexity,

$$
\begin{aligned}
\sum_{t=1}^{n}\left(\ell_{t}\left(a_{t}\right)-\ell_{t}(a)\right) & \leq \sum_{t=1}^{n} \nabla \ell_{t}\left(a_{t}\right) \cdot\left(a_{t}-a\right) \\
& \leq \frac{\left\|a_{1}-a\right\|^{2}-\left\|a_{n+1}-a\right\|^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{n}\left\|\nabla \ell_{t}\left(a_{t}\right)\right\|^{2}
\end{aligned}
$$

Online Convex Optimization: A Regularization Viewpoint

- Suppose ℓ_{t} is linear: $\ell_{t}(a)=g_{t} \cdot a$.
- Suppose $\mathcal{A}=\mathbb{R}^{d}$.
- Then minimizing the regularized criterion

$$
a_{t+1}=\arg \min _{a \in \mathcal{A}}\left(\eta \sum_{s=1}^{t} \ell_{s}(a)+\frac{1}{2}\|a\|^{2}\right)
$$

corresponds to the gradient step

$$
a_{t+1}=a_{t}-\eta \nabla \ell_{t}\left(a_{t}\right)
$$

Online Convex Optimization: Regularization

Regularized minimization
Consider the family of strategies of the form:

$$
a_{t+1}=\arg \min _{a \in \mathcal{A}}\left(\eta \sum_{s=1}^{t} \ell_{s}(a)+R(a)\right)
$$

The regularizer $R: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is strictly convex and differentiable.

- R keeps the sequence of $a_{t} \mathrm{~s}$ stable: it diminishes ℓ_{t} 's influence.
- We can view the choice of a_{t+1} as trading off two competing forces: making $\ell_{t}\left(a_{t+1}\right)$ small, and keeping a_{t+1} close to a_{t}.
- This is a perspective that motivated many algorithms in the literature.

Properties of Regularization Methods

In the unconstrained case $\left(\mathcal{A}=\mathbb{R}^{d}\right)$, regularized minimization is equivalent to minimizing the latest loss and the distance to the previous decision. The appropriate notion of distance is the Bregman divergence $D_{\Phi_{t-1}}$:
Define

$$
\begin{aligned}
& \Phi_{0}=R \\
& \Phi_{t}=\Phi_{t-1}+\eta \ell_{t}
\end{aligned}
$$

so that

$$
\begin{aligned}
a_{t+1} & =\arg \min _{a \in \mathcal{A}}\left(\eta \sum_{s=1}^{t} \ell_{s}(a)+R(a)\right) \\
& =\arg \min _{a \in \mathcal{A}} \Phi_{t}(a)
\end{aligned}
$$

Bregman Divergence

Definition: For a strictly convex, differentiable $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$, the Bregman divergence wrt Φ is defined, for $a, b \in \mathbb{R}^{d}$, as

$$
D_{\Phi}(a, b)=\Phi(a)-(\Phi(b)+\nabla \Phi(b) \cdot(a-b))
$$

$D_{\Phi}(a, b)$ is the difference between $\Phi(a)$ and the value at a of the linear approximation of Φ about b.

Bregman Divergence

Example: For $a \in \mathbb{R}^{d}$, the squared euclidean norm, $\Phi(a)=\frac{1}{2}\|a\|^{2}$, has

$$
\begin{aligned}
D_{\Phi}(a, b) & =\frac{1}{2}\|a\|^{2}-\left(\frac{1}{2}\|b\|^{2}+b \cdot(a-b)\right) \\
& =\frac{1}{2}\|a-b\|^{2}
\end{aligned}
$$

the squared euclidean norm.

Bregman Divergence

Example: For $a \in[0, \infty)^{d}$, the unnormalized negative entropy, $\Phi(a)=$ $\sum_{i=1}^{d} a_{i}\left(\ln a_{i}-1\right)$, has

$$
\begin{aligned}
D_{\Phi}(a, b) & =\sum_{i}\left(a_{i}\left(\ln a_{i}-1\right)-b_{i}\left(\ln b_{i}-1\right)-\ln b_{i}\left(a_{i}-b_{i}\right)\right) \\
& =\sum_{i}\left(a_{i} \ln \frac{a_{i}}{b_{i}}+b_{i}-a_{i}\right)
\end{aligned}
$$

the unnormalized KL divergence.
Thus, for $a \in \Delta^{d}, \Phi(a)=\sum_{i} a_{i} \ln a_{i}$ has

$$
D_{\Phi}(a, b)=\sum_{i} a_{i} \ln \frac{a_{i}}{b_{i}}
$$

Bregman Divergence

When the domain of Φ is $\mathcal{S} \subset \mathbb{R}^{d}$, in addition to differentiability and strict convexity, we make some more assumptions:

- \mathcal{S} is closed, and its interior is convex.
- For a sequence approaching the boundary of $\mathcal{S},\left\|\nabla \Phi\left(a_{n}\right)\right\| \rightarrow \infty$.

We say that such a Φ is a Legendre function.

Bregman Divergence Properties

1. $D_{\Phi} \geq 0, D_{\Phi}(a, a)=0$.
2. $D_{A+B}=D_{A}+D_{B}$.
3. For ℓ linear, $D_{\Phi+\ell}=D_{\Phi}$.
4. Bregman projection, $\Pi_{\mathcal{A}}^{\Phi}(b)=\arg \min _{a \in \mathcal{A}} D_{\Phi}(a, b)$ is uniquely defined for closed, convex $\mathcal{A} \subset \mathcal{S}$ (that intersects the interior of \mathcal{S}).
5. Generalized Pythagorus: for closed, convex $\mathcal{A}, a^{*}=\Pi_{\mathcal{A}}^{\Phi}(b), a \in \mathcal{A}$, $D_{\Phi}(a, b) \geq D_{\Phi}\left(a, a^{*}\right)+D_{\Phi}\left(a^{*}, b\right)$.
6. $\nabla_{a} D_{\Phi}(a, b)=\nabla \Phi(a)-\nabla \Phi(b)$.
7. For Φ^{*} the Legendre dual of Φ,

$$
\begin{aligned}
\nabla \Phi^{*} & =(\nabla \Phi)^{-1} \\
D_{\Phi}(a, b) & =D_{\Phi^{*}}(\nabla \Phi(b), \nabla \Phi(a))
\end{aligned}
$$

Legendre Dual

Here, for a Legendre function $\Phi: \mathcal{S} \rightarrow \mathbb{R}$, we define the Legendre dual as

$$
\Phi^{*}(u)=\sup _{v \in \mathcal{S}}(u \cdot v-\Phi(v))
$$

Legendre Dual

Properties:

- Φ^{*} is Legendre.
- $\operatorname{dom}\left(\Phi^{*}\right)=\nabla \Phi($ int dom $\Phi)$.
- $\nabla \Phi^{*}=(\nabla \Phi)^{-1}$.
- $D_{\Phi}(a, b)=D_{\Phi^{*}}(\nabla \Phi(b), \nabla \Phi(a))$.
- $\Phi^{* *}=\Phi$.

Properties of Regularization Methods

In the unconstrained case $\left(\mathcal{A}=\mathbb{R}^{d}\right)$, regularized minimization is equivalent to minimizing the latest loss and the distance (Bregman divergence) to the previous decision.

Theorem: Define \tilde{a}_{1} via $\nabla R\left(\tilde{a}_{1}\right)=0$, and set

$$
\tilde{a}_{t+1}=\arg \min _{a \in \mathbb{R}^{d}}\left(\eta \ell_{t}(a)+D_{\Phi_{t-1}}\left(a, \tilde{a}_{t}\right)\right)
$$

Then

$$
\tilde{a}_{t+1}=\arg \min _{a \in \mathbb{R}^{d}}\left(\eta \sum_{s=1}^{t} \ell_{s}(a)+R(a)\right)
$$

Properties of Regularization Methods

Proof. By the definition of Φ_{t},

$$
\eta \ell_{t}(a)+D_{\Phi_{t-1}}\left(a, \tilde{a}_{t}\right)=\Phi_{t}(a)-\Phi_{t-1}(a)+D_{\Phi_{t-1}}\left(a, \tilde{a}_{t}\right)
$$

The derivative wrt a is

$$
\begin{aligned}
& \nabla \Phi_{t}(a)-\nabla \Phi_{t-1}(a)+\nabla_{a} D_{\Phi_{t-1}}\left(a, \tilde{a}_{t}\right) \\
& =\nabla \Phi_{t}(a)-\nabla \Phi_{t-1}(a)+\nabla \Phi_{t-1}(a)-\nabla \Phi_{t-1}\left(\tilde{a}_{t}\right)
\end{aligned}
$$

Setting to zero shows that

$$
\nabla \Phi_{t}\left(\tilde{a}_{t+1}\right)=\nabla \Phi_{t-1}\left(\tilde{a}_{t}\right)=\cdots=\nabla \Phi_{0}\left(\tilde{a}_{1}\right)=\nabla R\left(\tilde{a}_{1}\right)=0
$$

So \tilde{a}_{t+1} minimizes Φ_{t}.

Properties of Regularization Methods

Constrained minimization is equivalent to unconstrained minimization, followed by Bregman projection:

Theorem: For

$$
\begin{aligned}
& a_{t+1}=\arg \min _{a \in \mathcal{A}} \Phi_{t}(a), \\
& \tilde{a}_{t+1}=\arg \min _{a \in \mathbb{R}^{d}} \Phi_{t}(a),
\end{aligned}
$$

we have

$$
a_{t+1}=\Pi_{\mathcal{A}}^{\Phi_{t}}\left(\tilde{a}_{t+1}\right)
$$

Properties of Regularization Methods

Proof. Let a_{t+1}^{\prime} denote $\Pi_{\mathcal{A}}^{\Phi_{t}}\left(\tilde{a}_{t+1}\right)$. First, by definition of a_{t+1},

$$
\Phi_{t}\left(a_{t+1}\right) \leq \Phi_{t}\left(a_{t+1}^{\prime}\right)
$$

Conversely,

$$
D_{\Phi_{t}}\left(a_{t+1}^{\prime}, \tilde{a}_{t+1}\right) \leq D_{\Phi_{t}}\left(a_{t+1}, \tilde{a}_{t+1}\right)
$$

But $\nabla \Phi_{t}\left(\tilde{a}_{t+1}\right)=0$, so

$$
D_{\Phi_{t}}\left(a, \tilde{a}_{t+1}\right)=\Phi_{t}(a)-\Phi_{t}\left(\tilde{a}_{t+1}\right)
$$

Thus, $\Phi_{t}\left(a_{t+1}^{\prime}\right) \leq \Phi_{t}\left(a_{t+1}\right)$.

Properties of Regularization Methods

Example: For linear ℓ_{t}, regularized minimization is equivalent to minimizing the last loss plus the Bregman divergence wrt R to the previous decision:

$$
\begin{aligned}
& \arg \min _{a \in \mathcal{A}}\left(\eta \sum_{s=1}^{t} \ell_{s}(a)+R(a)\right) \\
& =\Pi_{\mathcal{A}}^{R}\left(\arg \min _{a \in \mathbb{R}^{d}}\left(\eta \ell_{t}(a)+D_{R}\left(a, \tilde{a}_{t}\right)\right)\right),
\end{aligned}
$$

because adding a linear function to Φ does not change D_{Φ}.

Linear Loss

We can replace ℓ_{t} by $\nabla \ell_{t}\left(a_{t}\right)$, and this leads to an upper bound on regret.
Thus, for convex losses, we can work with linear ℓ_{t}.

Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as mirror descent-taking a gradient step in a dual space:

Theorem: The decisions

$$
\tilde{a}_{t+1}=\arg \min _{a \in \mathbb{R}^{d}}\left(\eta \sum_{s=1}^{t} g_{s} \cdot a+R(a)\right)
$$

can be written

$$
\tilde{a}_{t+1}=(\nabla R)^{-1}\left(\nabla R\left(\tilde{a}_{t}\right)-\eta g_{t}\right) .
$$

This corresponds to first mapping from \tilde{a}_{t} through ∇R, then taking a step in the direction $-g_{t}$, then mapping back through $(\nabla R)^{-1}=\nabla R^{*}$ to \tilde{a}_{t+1}.

Regularization Methods: Mirror Descent

Proof. For the unconstrained minimization, we have

$$
\begin{aligned}
\nabla R\left(\tilde{a}_{t+1}\right) & =-\eta \sum_{s=1}^{t} g_{s} \\
\nabla R\left(\tilde{a}_{t}\right) & =-\eta \sum_{s=1}^{t-1} g_{s}
\end{aligned}
$$

so $\nabla R\left(\tilde{a}_{t+1}\right)=\nabla R\left(\tilde{a}_{t}\right)-\eta g_{t}$, which can be written

$$
\tilde{a}_{t+1}=\nabla R^{-1}\left(\nabla R\left(\tilde{a}_{t}\right)-\eta g_{t}\right)
$$

Mirror Descent

Given:
compact, convex $\mathcal{A} \subseteq \mathbb{R}^{d}$, closed, convex $\mathcal{S} \supset \mathcal{A}, \eta>0, \mathcal{S} \supset \mathcal{A}$, Legendre $R: \mathcal{S} \rightarrow \mathbb{R}$. Set $a_{1} \in \arg \min _{a \in \mathcal{A}} R(a)$.
For round t :

1. Play a_{t}; observe $\ell_{t} \in \mathbb{R}^{d}$.
2. $w_{t+1}=\nabla R^{*}\left(\nabla R\left(a_{t}\right)-\eta \nabla \ell_{t}\left(a_{t}\right)\right)$.
3. $a_{t+1}=\arg \min _{a \in \mathcal{A}} D_{R}\left(a, w_{t+1}\right)$.

Exponential weights as mirror descent

For $\mathcal{A}=\Delta(k)$ and $R(a)=\sum_{i=1}^{k}\left(a_{i} \log a_{i}-a_{i}\right)$, this reduces to exponential weights:

$$
\begin{aligned}
\nabla R(u)_{i} & =\log a_{i} \\
R^{*}(u) & =\sum_{i} e^{u_{i}} \\
\nabla R^{*}(u)_{i} & =\exp \left(u_{i}\right) \\
\nabla R\left(w_{t+1}\right)_{i} & =\log \left(w_{t+1, i}\right)=\log a_{t, i}-\eta \nabla \ell_{t}\left(a_{t}\right)_{i} \\
w_{t+1, i} & =a_{t, i} \exp \left(-\eta \nabla \ell_{t}\left(a_{t}\right)_{i}\right) \\
D_{R}(a, b) & =\sum_{i}\left(a_{i} \log \frac{a_{i}}{b_{i}}+b_{i}-a_{i}\right) \\
a_{t+1, i} & \propto w_{t+1, i}
\end{aligned}
$$

Mirror descent regret

Theorem: Suppose that, for all $a \in \mathcal{A} \cap \operatorname{int}(\mathcal{S}), \ell \in \mathcal{L}$,
$\nabla R(a)-\eta \nabla \ell(a) \in \nabla R(\operatorname{int}(\mathcal{S}))$. For any $a \in \mathcal{A}$,
$\sum_{t=1}^{n}\left(\ell_{t}\left(a_{t}\right)-\ell_{t}(a)\right)$
$\leq \frac{1}{\eta}\left(R(a)-R\left(a_{1}\right)+\sum_{t=1}^{n} D_{R^{*}}\left(\nabla R\left(a_{t}\right)-\eta \nabla \ell_{t}\left(a_{t}\right), \nabla R\left(a_{t}\right)\right)\right)$.

Proof: Fix $a \in \mathcal{A}$. Since the ℓ_{t} are convex,

$$
\sum_{t=1}^{n}\left(\ell_{t}\left(a_{t}\right)-\ell_{t}(a)\right) \leq \sum_{t=1}^{n} \nabla \ell_{t}\left(a_{t}\right)^{T}\left(a_{t}-a\right) .
$$

Mirror descent regret: proof

The choice of w_{t+1} and the fact that $\nabla R^{-1}=\nabla R^{*}$ show that

$$
\nabla R\left(w_{t+1}\right)=\nabla R\left(a_{t}\right)-\eta \nabla \ell_{t}\left(a_{t}\right)
$$

Hence,

$$
\begin{aligned}
\eta \nabla \ell_{t}\left(a_{t}\right)^{T}\left(a_{t}-a\right) & =\left(a-a_{t}\right)^{T}\left(\nabla R\left(w_{t+1}\right)-\nabla R\left(a_{t}\right)\right) \\
& =D_{R}\left(a, a_{t}\right)+D_{R}\left(a_{t}, w_{t+1}\right)-D_{R}\left(a, w_{t+1}\right)
\end{aligned}
$$

Generalized Pythagorus' inequality shows that the projection a_{t+1} satisfies

$$
D_{R}\left(a, w_{t+1}\right) \geq D_{R}\left(a, a_{t+1}\right)+D_{R}\left(a_{t+1}, w_{t+1}\right)
$$

Mirror descent regret: proof

$$
\begin{aligned}
& \eta \sum_{t=1}^{n} \nabla \ell_{t}\left(a_{t}\right)^{T}\left(a_{t}-a\right) \\
& \leq \sum_{t=1}^{n}\left(D_{R}\left(a, a_{t}\right)+D_{R}\left(a_{t}, w_{t+1}\right)-D_{R}\left(a, w_{t+1}\right)\right. \\
& \left.\quad \quad-D_{R}\left(a, a_{t+1}\right)-D_{R}\left(a_{t+1}, w_{t+1}\right)\right) \\
& =D_{R}\left(a, a_{1}\right)-D_{R}\left(a, a_{n+1}\right)+\sum_{t=1}^{n}\left(D_{R}\left(a_{t}, w_{t+1}\right)-D_{R}\left(a_{t+1}, w_{t+1}\right)\right) \\
& \leq D_{R}\left(a, a_{1}\right)+\sum_{t=1}^{n} D_{R}\left(a_{t}, w_{t+1}\right)
\end{aligned}
$$

Mirror descent regret: proof

$$
\begin{aligned}
& =D_{R}\left(a, a_{1}\right)+\sum_{t=1}^{n} D_{R^{*}}\left(\nabla R\left(w_{t+1}\right), \nabla R\left(a_{t}\right)\right) \\
& =D_{R}\left(a, a_{1}\right)+\sum_{t=1}^{n} D_{R^{*}}\left(\nabla R\left(a_{t}\right)-\eta \nabla \ell_{t}\left(a_{t}\right), \nabla R\left(a_{t}\right)\right) \\
& =R(a)-R\left(a_{1}\right)+\sum_{t=1}^{n} D_{R^{*}}\left(\nabla R\left(a_{t}\right)-\eta \nabla \ell_{t}\left(a_{t}\right), \nabla R\left(a_{t}\right)\right) .
\end{aligned}
$$

Linear bandit setting

- See only $\ell_{t}\left(a_{t}\right) ; \nabla \ell_{t}\left(a_{t}\right)$ is unseen.
- Instead of a_{t}, strategy plays a noisy version, x_{t}.
- Strategy uses $\ell_{t}\left(x_{t}\right)$ to give an unbiased estimate of $\nabla \ell_{t}\left(a_{t}\right)$.

Stochastic mirror descent

Given:
compact, convex $\mathcal{A} \subseteq \mathbb{R}^{d}, \eta>0, \mathcal{S} \supset \mathcal{A}$, Legendre $R: \mathcal{S} \rightarrow \mathbb{R}$. Set $a_{1} \in \arg \min _{a \in \mathcal{A}} R(a)$.
For round t :

1. Play noisy version x_{t} of a_{t}; observe $\ell_{t}\left(x_{t}\right)$.
2. Compute estimate \tilde{g}_{t} of $\nabla \ell_{t}\left(a_{t}\right)$.
3. $w_{t+1}=\nabla R^{*}\left(\nabla R\left(a_{t}\right)-\eta \tilde{g}_{t}\right)$.
4. $a_{t+1}=\arg \min _{a \in \mathcal{A}} D_{R}\left(a, w_{t+1}\right)$.

Regret of stochastic mirror descent

Theorem: Suppose that, for all $a \in \mathcal{A} \cap \operatorname{int}(\mathcal{S})$ and linear $\ell \in \mathcal{L}$, $\mathbb{E}\left[\tilde{g}_{t} \mid a_{t}\right]=\nabla \ell_{t}\left(a_{t}\right)$ and $\nabla R(a)-\eta \tilde{g}_{t}(a) \in \nabla R(\operatorname{int}(\mathcal{S}))$.
For any $a \in \mathcal{A}$,
$\sum_{t=1}^{n}\left(\ell_{t}\left(a_{t}\right)-\ell_{t}(a)\right)$
$\leq \frac{1}{\eta}\left(R(a)-R\left(a_{1}\right)+\sum_{t=1}^{n} \mathbb{E} D_{R^{*}}\left(\nabla R\left(a_{t}\right)-\eta \tilde{g}_{t}, \nabla R\left(a_{t}\right)\right)\right)$

$$
+\sum_{t=1}^{n} \mathbb{E}\left[\left\|\mid a_{t}-\mathbb{E}\left[x_{t} \mid a_{t}\right]\right\|\left\|\tilde{g}_{t}\right\|_{*}\right]
$$

Regret: proof

$$
\begin{aligned}
& \mathbb{E} \sum_{t=1}^{n}\left(\ell_{t}\left(x_{t}\right)-\ell_{t}(a)\right) \\
& =\mathbb{E} \sum_{t=1}^{n}\left(\ell_{t}\left(x_{t}\right)-\ell_{t}\left(a_{t}\right)+\ell_{t}\left(a_{t}\right)-\ell_{t}(a)\right) \\
& =\mathbb{E} \sum_{t=1}^{n}\left(\mathbb{E}\left[\ell_{t}^{T}\left(x_{t}-a_{t}\right) \mid a_{t}\right]+\ell_{t}\left(a_{t}\right)-\ell_{t}(a)\right) \\
& \leq \mathbb{E} \sum_{t=1}^{n}\left\|a_{t}-\mathbb{E}\left[x_{t} \mid a_{t}\right]\right\|\left\|\tilde{g}_{t}\right\|_{*}+\mathbb{E} \sum_{t=1}^{n} \nabla \ell_{t}\left(a_{t}\right)^{T}\left(a_{t}-a\right) \\
& =\mathbb{E} \sum_{t=1}^{n}\left\|a_{t}-\mathbb{E}\left[x_{t} \mid a_{t}\right]\right\|\left\|\tilde{g}_{t}\right\|_{*}+\mathbb{E} \sum_{t=1}^{n} \tilde{g}_{t}^{T}\left(a_{t}-a\right) .
\end{aligned}
$$

Regret: proof

Applying the regret bound for the (random) linear losses $a \mapsto \tilde{g}_{t}^{T} a$ gives

$$
\begin{aligned}
\leq \mathbb{E} \sum_{t=1}^{n} & \left\|a_{t}-\mathbb{E}\left[x_{t} \mid a_{t}\right]\right\|\left\|\tilde{g}_{t}\right\|_{*} \\
& +\frac{1}{\eta}\left(R(a)-R\left(a_{1}\right)+\sum_{t=1}^{n} \mathbb{E} D_{R^{*}}\left(\nabla R\left(a_{t}\right)-\eta \tilde{g}_{t}, \nabla R\left(a_{t}\right)\right)\right) .
\end{aligned}
$$

Regret: Euclidean ball

Consider $B=\left\{a \in \mathbb{R}^{d}:\|a\| \leq 1\right\}$ (with the Euclidean norm). Ingredients:

1. Distribution of x_{t}, given a_{t} :

$$
x_{t}=\xi_{t} \frac{a_{t}}{\left\|a_{t}\right\|}+\left(1-\xi_{t}\right) \epsilon_{t} e_{I_{t}}
$$

where ξ_{t} is $\operatorname{Bernoulli}\left(\left\|a_{t}\right\|\right), \epsilon_{t}$ is uniform ± 1, and I_{t} is uniform on $\{1, \ldots, d\}$, so $\mathbb{E}\left[x_{t} \mid a_{t}\right]=a_{t}$.
2. Estimate $\tilde{\ell}_{t}$ of loss ℓ_{t} :

$$
\tilde{\ell}_{t}=d \frac{1-\xi_{t}}{1-\left\|a_{t}\right\|} x_{t}^{T} \ell_{t} x_{t}
$$

so $\mathbb{E}\left[\tilde{\ell}_{t} \mid a_{t}\right]=\ell_{t}$.

Regret: Euclidean ball

Theorem: Consider stochastic mirror descent on $\mathcal{A}=(1-\gamma) B$, with these choices and $R(a)=-\log (1-\|a\|)-\|a\|$. Then for $\eta d \leq 1 / 2$,

$$
\bar{R}_{n} \leq \gamma n+\frac{\log (1 / \gamma)}{\eta}+\eta \sum_{t=1}^{n} \mathbb{E}\left[\left(1-\left\|a_{t}\right\|\right)\left\|\tilde{\ell}_{t}\right\|^{2}\right] .
$$

For $\gamma=1 / \sqrt{n}$ and $\eta=\sqrt{\log n /(2 n d)}$,

$$
\bar{R}_{n} \leq 3 \sqrt{d n \log n}
$$

