Stat 260/CS 294-102. Learning in Sequential Decision Problems.

Peter Bartlett

- 1. Linear bandits.
 - Full information: mirror descent.
 - Bandit information: stochastic mirror descent.

Online Convex Optimization

- Choosing a_t to minimize past losses can fail.
- The strategy must avoid overfitting.
- First approach: gradient steps.
 Stay close to previous decisions, but move in a direction of improvement.

Online Convex Optimization

- 1. Gradient algorithm.
- 2. Regularized minimization
 - Bregman divergence
 - Regularized minimization ⇔ minimizing latest loss and divergence from previous decision
 - Constrained minimization equivalent to unconstrained plus Bregman projection
 - Linearization
 - Mirror descent
- 3. Regret bound

Online Convex Optimization: Gradient Method

$$a_1 \in \mathcal{A},$$

$$a_{t+1} = \prod_{\mathcal{A}} \left(a_t - \eta \nabla \ell_t(a_t) \right),$$

where $\Pi_{\mathcal{A}}$ is the Euclidean projection on \mathcal{A} ,

$$\Pi_{\mathcal{A}}(x) = \arg\min_{a \in \mathcal{A}} \|x - a\|.$$

Theorem: For $G = \max_t \|\nabla \ell_t(a_t)\|$ and $D = \operatorname{diam}(\mathcal{A})$, the gradient strategy with $\eta = D/(G\sqrt{n})$ has regret satisfying

$$R_n \le GD\sqrt{n}.$$

Online Convex Optimization: Gradient Method

Example: (2-ball, 2-ball) $\mathcal{A} = \{a \in \mathbb{R}^d : ||a|| \le 1\}, \mathcal{L} = \{a \mapsto v \cdot a : ||v|| \le 1\}. D = 2, G \le 1.$ Regret is no more than $2\sqrt{n}$.

(And $O(\sqrt{n})$ is optimal.)

Example: (1-ball, ∞ -ball) $\mathcal{A} = \Delta(k), \mathcal{L} = \{a \mapsto v \cdot a : ||v||_{\infty} \leq 1\}.$ $D = 2, G \leq \sqrt{k}.$ Regret is no more than $2\sqrt{kn}.$

Since competing with the whole simplex is equivalent to competing with the vertices (experts) for linear losses, this is worse than exponential weights (\sqrt{k} versus log k).

Gradient Method: Proof

Define
$$\tilde{a}_{t+1} = a_t - \eta \nabla \ell_t(a_t),$$

 $a_{t+1} = \Pi_{\mathcal{A}}(\tilde{a}_{t+1}).$

Fix $a \in \mathcal{A}$ and consider the measure of progress $||a_t - a||$.

$$||a_{t+1} - a||^2 \le ||\tilde{a}_{t+1} - a||^2$$

= $||a_t - a||^2 + \eta^2 ||\nabla \ell_t(a_t)||^2 - 2\eta \nabla_t(a_t) \cdot (a_t - a).$

By convexity,

$$\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \le \sum_{t=1}^{n} \nabla \ell_t(a_t) \cdot (a_t - a)$$
$$\le \frac{\|a_1 - a\|^2 - \|a_{n+1} - a\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{n} \|\nabla \ell_t(a_t)\|^2$$

Online Convex Optimization: A Regularization Viewpoint

- Suppose ℓ_t is linear: $\ell_t(a) = g_t \cdot a$.
- Suppose $\mathcal{A} = \mathbb{R}^d$.
- Then minimizing the regularized criterion

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + \frac{1}{2} ||a||^2 \right)$$

corresponds to the gradient step

$$a_{t+1} = a_t - \eta \nabla \ell_t(a_t).$$

Online Convex Optimization: Regularization

Regularized minimization

Consider the family of strategies of the form:

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right).$$

The regularizer $R : \mathbb{R}^d \to \mathbb{R}$ is strictly convex and differentiable.

- R keeps the sequence of a_t s stable: it diminishes ℓ_t 's influence.
- We can view the choice of a_{t+1} as trading off two competing forces: making l_t(a_{t+1}) small, and keeping a_{t+1} close to a_t.
- This is a perspective that motivated many algorithms in the literature.

In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss and the distance to the previous decision. The appropriate notion of distance is the Bregman divergence $D_{\Phi_{t-1}}$:

Define

$$\Phi_0 = R,$$

$$\Phi_t = \Phi_{t-1} + \eta \ell_t,$$

so that

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right)$$
$$= \arg\min_{a \in \mathcal{A}} \Phi_t(a).$$

Definition: For a strictly convex, differentiable $\Phi : \mathbb{R}^d \to \mathbb{R}$, the Bregman divergence wrt Φ is defined, for $a, b \in \mathbb{R}^d$, as

$$D_{\Phi}(a,b) = \Phi(a) - \left(\Phi(b) + \nabla \Phi(b) \cdot (a-b)\right).$$

 $D_{\Phi}(a, b)$ is the difference between $\Phi(a)$ and the value at a of the linear approximation of Φ about b. (PICTURE)

Example: For $a \in \mathbb{R}^d$, the squared euclidean norm, $\Phi(a) = \frac{1}{2} ||a||^2$, has

$$D_{\Phi}(a,b) = \frac{1}{2} ||a||^2 - \left(\frac{1}{2} ||b||^2 + b \cdot (a-b)\right)$$
$$= \frac{1}{2} ||a-b||^2,$$

the squared euclidean norm.

Example: For $a \in [0, \infty)^d$, the unnormalized negative entropy, $\Phi(a) = \sum_{i=1}^d a_i (\ln a_i - 1)$, has

$$D_{\Phi}(a,b) = \sum_{i} \left(a_{i} (\ln a_{i} - 1) - b_{i} (\ln b_{i} - 1) - \ln b_{i} (a_{i} - b_{i}) \right)$$
$$= \sum_{i} \left(a_{i} \ln \frac{a_{i}}{b_{i}} + b_{i} - a_{i} \right),$$

the unnormalized KL divergence.

Thus, for $a \in \Delta^d$, $\Phi(a) = \sum_i a_i \ln a_i$ has

$$D_{\Phi}(a,b) = \sum_{i} a_{i} \ln \frac{a_{i}}{b_{i}}$$

When the domain of Φ is $S \subset \mathbb{R}^d$, in addition to differentiability and strict convexity, we make some more assumptions:

- S is closed, and its interior is convex.
- For a sequence approaching the boundary of S, $\|\nabla \Phi(a_n)\| \to \infty$.

We say that such a Φ is a *Legendre function*.

Bregman Divergence Properties

- 1. $D_{\Phi} \ge 0, D_{\Phi}(a, a) = 0.$
- 2. $D_{A+B} = D_A + D_B$.
- 3. For ℓ linear, $D_{\Phi+\ell} = D_{\Phi}$.
- 4. Bregman projection, $\Pi^{\Phi}_{\mathcal{A}}(b) = \arg \min_{a \in \mathcal{A}} D_{\Phi}(a, b)$ is uniquely defined for closed, convex $\mathcal{A} \subset \mathcal{S}$ (that intersects the interior of \mathcal{S}).
- 5. Generalized Pythagorus: for closed, convex $\mathcal{A}, a^* = \Pi^{\Phi}_{\mathcal{A}}(b), a \in \mathcal{A},$ $D_{\Phi}(a, b) \ge D_{\Phi}(a, a^*) + D_{\Phi}(a^*, b).$
- 6. $\nabla_a D_{\Phi}(a, b) = \nabla \Phi(a) \nabla \Phi(b).$
- 7. For Φ^* the Legendre dual of Φ ,

$$\nabla \Phi^* = (\nabla \Phi)^{-1},$$
$$D_{\Phi}(a, b) = D_{\Phi^*}(\nabla \Phi(b), \nabla \Phi(a)).$$

Legendre Dual

Here, for a Legendre function $\Phi : S \to \mathbb{R}$, we define the Legendre dual as

$$\Phi^*(u) = \sup_{v \in \mathcal{S}} \left(u \cdot v - \Phi(v) \right).$$

Legendre Dual

Properties:

- Φ^* is Legendre.
- $\operatorname{dom}(\Phi^*) = \nabla \Phi(\operatorname{int} \operatorname{dom} \Phi).$
- $\nabla \Phi^* = (\nabla \Phi)^{-1}$.
- $D_{\Phi}(a,b) = D_{\Phi^*}(\nabla \Phi(b), \nabla \Phi(a)).$

•
$$\Phi^{**} = \Phi$$
.

In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss and the distance (Bregman divergence) to the previous decision.

Theorem: Define \tilde{a}_1 via $\nabla R(\tilde{a}_1) = 0$, and set

$$\tilde{a}_{t+1} = \arg\min_{a \in \mathbb{R}^d} \left(\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) \right).$$

Then

$$\tilde{a}_{t+1} = \arg\min_{a \in \mathbb{R}^d} \left(\eta \sum_{s=1}^t \ell_s(a) + R(a) \right)$$

Proof. By the definition of Φ_t ,

$$\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) = \Phi_t(a) - \Phi_{t-1}(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t).$$

The derivative wrt a is

$$\nabla \Phi_t(a) - \nabla \Phi_{t-1}(a) + \nabla_a D_{\Phi_{t-1}}(a, \tilde{a}_t)$$

= $\nabla \Phi_t(a) - \nabla \Phi_{t-1}(a) + \nabla \Phi_{t-1}(a) - \nabla \Phi_{t-1}(\tilde{a}_t)$

Setting to zero shows that

$$\nabla \Phi_t(\tilde{a}_{t+1}) = \nabla \Phi_{t-1}(\tilde{a}_t) = \dots = \nabla \Phi_0(\tilde{a}_1) = \nabla R(\tilde{a}_1) = 0,$$

So \tilde{a}_{t+1} minimizes Φ_t .

Constrained minimization is equivalent to unconstrained minimization, followed by Bregman projection:

Theorem: For

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \Phi_t(a),$$
$$\tilde{a}_{t+1} = \arg\min_{a \in \mathbb{R}^d} \Phi_t(a),$$

we have

$$a_{t+1} = \Pi_{\mathcal{A}}^{\Phi_t}(\tilde{a}_{t+1}).$$

Proof. Let a'_{t+1} denote $\Pi_{\mathcal{A}}^{\Phi_t}(\tilde{a}_{t+1})$. First, by definition of a_{t+1} , $\Phi_t(a_{t+1}) \leq \Phi_t(a'_{t+1})$.

Conversely,

$$D_{\Phi_t}(a'_{t+1}, \tilde{a}_{t+1}) \le D_{\Phi_t}(a_{t+1}, \tilde{a}_{t+1}).$$

But $\nabla \Phi_t(\tilde{a}_{t+1}) = 0$, so

$$D_{\Phi_t}(a, \tilde{a}_{t+1}) = \Phi_t(a) - \Phi_t(\tilde{a}_{t+1}).$$

Thus, $\Phi_t(a'_{t+1}) \le \Phi_t(a_{t+1})$.

Example: For linear ℓ_t , regularized minimization is equivalent to minimizing the last loss plus the Bregman divergence wrt R to the previous decision:

$$\arg\min_{a\in\mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a)\right)$$
$$= \Pi_{\mathcal{A}}^R \left(\arg\min_{a\in\mathbb{R}^d} \left(\eta \ell_t(a) + D_R(a, \tilde{a}_t)\right)\right),$$

because adding a linear function to Φ does not change D_{Φ} .

Linear Loss

We can replace ℓ_t by $\nabla \ell_t(a_t)$, and this leads to an upper bound on regret. Thus, for convex losses, we can work with linear ℓ_t .

Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as mirror descent—taking a gradient step in a dual space:

Theorem: The decisions

$$\tilde{a}_{t+1} = \arg\min_{a\in\mathbb{R}^d} \left(\eta \sum_{s=1}^t g_s \cdot a + R(a)\right)$$

can be written

$$\tilde{a}_{t+1} = (\nabla R)^{-1} \left(\nabla R(\tilde{a}_t) - \eta g_t \right).$$

This corresponds to first mapping from \tilde{a}_t through ∇R , then taking a step in the direction $-g_t$, then mapping back through $(\nabla R)^{-1} = \nabla R^*$ to \tilde{a}_{t+1} .

Regularization Methods: Mirror Descent

Proof. For the unconstrained minimization, we have

$$\nabla R(\tilde{a}_{t+1}) = -\eta \sum_{s=1}^{t} g_s,$$
$$\nabla R(\tilde{a}_t) = -\eta \sum_{s=1}^{t-1} g_s,$$

so $\nabla R(\tilde{a}_{t+1}) = \nabla R(\tilde{a}_t) - \eta g_t$, which can be written

$$\tilde{a}_{t+1} = \nabla R^{-1} \left(\nabla R(\tilde{a}_t) - \eta g_t \right).$$

Mirror Descent

Given:

compact, convex $\mathcal{A} \subseteq \mathbb{R}^d$, closed, convex $\mathcal{S} \supset \mathcal{A}$, $\eta > 0$, $\mathcal{S} \supset \mathcal{A}$, Legendre $R : \mathcal{S} \to \mathbb{R}$. Set $a_1 \in \arg \min_{a \in \mathcal{A}} R(a)$. For round t:

1. Play
$$a_t$$
; observe $\ell_t \in \mathbb{R}^d$.

2.
$$w_{t+1} = \nabla R^* \left(\nabla R(a_t) - \eta \nabla \ell_t(a_t) \right).$$

3.
$$a_{t+1} = \arg \min_{a \in \mathcal{A}} D_R(a, w_{t+1}).$$

Exponential weights as mirror descent

kFor $\mathcal{A} = \Delta(k)$ and $R(a) = \sum_{i=1}^{\kappa} (a_i \log a_i - a_i)$, this reduces to i=1

exponential weights:

$$\nabla R(u)_i = \log a_i,$$

$$R^*(u) = \sum_i e^{u_i},$$

$$\nabla R^*(u)_i = \exp(u_i),$$

$$\nabla R(w_{t+1})_i = \log(w_{t+1,i}) = \log a_{t,i} - \eta \nabla \ell_t(a_t)_i,$$

$$w_{t+1,i} = a_{t,i} \exp\left(-\eta \nabla \ell_t(a_t)_i\right),$$

$$D_R(a,b) = \sum_i \left(a_i \log \frac{a_i}{b_i} + b_i - a_i\right),$$

$$a_{t+1,i} \propto w_{t+1,i}.$$

Mirror descent regret

Theorem: Suppose that, for all $a \in \mathcal{A} \cap \operatorname{int}(\mathcal{S}), \ell \in \mathcal{L}$, $\nabla R(a) - \eta \nabla \ell(a) \in \nabla R(\operatorname{int}(\mathcal{S}))$. For any $a \in \mathcal{A}$,

$$\sum_{t=1}^{n} \left(\ell_t(a_t) - \ell_t(a)\right)$$

$$\leq \frac{1}{\eta} \left(R(a) - R(a_1) + \sum_{t=1}^{n} D_{R^*} \left(\nabla R(a_t) - \eta \nabla \ell_t(a_t), \nabla R(a_t) \right) \right).$$

Proof: Fix $a \in \mathcal{A}$. Since the ℓ_t are convex,

$$\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \le \sum_{t=1}^{n} \nabla \ell_t(a_t)^T (a_t - a).$$

Mirror descent regret: proof

The choice of w_{t+1} and the fact that $\nabla R^{-1} = \nabla R^*$ show that

$$\nabla R(w_{t+1}) = \nabla R(a_t) - \eta \nabla \ell_t(a_t).$$

Hence,

$$\eta \nabla \ell_t(a_t)^T(a_t - a) = (a - a_t)^T \left(\nabla R(w_{t+1}) - \nabla R(a_t) \right)$$
$$= D_R(a, a_t) + D_R(a_t, w_{t+1}) - D_R(a, w_{t+1}).$$

Generalized Pythagorus' inequality shows that the projection a_{t+1} satisfies

$$D_R(a, w_{t+1}) \ge D_R(a, a_{t+1}) + D_R(a_{t+1}, w_{t+1}).$$

Mirror descent regret: proof

$$\begin{split} \eta \sum_{t=1}^{n} \nabla \ell_t(a_t)^T(a_t - a) \\ &\leq \sum_{t=1}^{n} \left(D_R(a, a_t) + D_R(a_t, w_{t+1}) - D_R(a, w_{t+1}) \right. \\ &\quad - D_R(a, a_{t+1}) - D_R(a_{t+1}, w_{t+1}) \right) \\ &= D_R(a, a_1) - D_R(a, a_{n+1}) + \sum_{t=1}^{n} \left(D_R(a_t, w_{t+1}) - D_R(a_{t+1}, w_{t+1}) \right) \\ &\leq D_R(a, a_1) + \sum_{t=1}^{n} D_R(a_t, w_{t+1}). \end{split}$$

Mirror descent regret: proof

$$= D_R(a, a_1) + \sum_{t=1}^n D_{R^*}(\nabla R(w_{t+1}), \nabla R(a_t))$$

= $D_R(a, a_1) + \sum_{t=1}^n D_{R^*}(\nabla R(a_t) - \eta \nabla \ell_t(a_t), \nabla R(a_t))$
= $R(a) - R(a_1) + \sum_{t=1}^n D_{R^*}(\nabla R(a_t) - \eta \nabla \ell_t(a_t), \nabla R(a_t))$

Linear bandit setting

- See only $\ell_t(a_t)$; $\nabla \ell_t(a_t)$ is unseen.
- Instead of a_t , strategy plays a noisy version, x_t .
- Strategy uses $\ell_t(x_t)$ to give an unbiased estimate of $\nabla \ell_t(a_t)$.

Stochastic mirror descent

Given:

compact, convex $\mathcal{A} \subseteq \mathbb{R}^d$, $\eta > 0$, $\mathcal{S} \supset \mathcal{A}$, Legendre $R : \mathcal{S} \rightarrow \mathbb{R}$. Set $a_1 \in \arg \min_{a \in \mathcal{A}} R(a)$. For round t:

- 1. Play noisy version x_t of a_t ; observe $\ell_t(x_t)$.
- 2. Compute estimate \tilde{g}_t of $\nabla \ell_t(a_t)$.
- 3. $w_{t+1} = \nabla R^* (\nabla R(a_t) \eta \tilde{g}_t).$
- 4. $a_{t+1} = \arg \min_{a \in \mathcal{A}} D_R(a, w_{t+1}).$

Regret of stochastic mirror descent

Theorem: Suppose that, for all $a \in \mathcal{A} \cap int(\mathcal{S})$ and linear $\ell \in \mathcal{L}$, $\mathbb{E}[\tilde{g}_t|a_t] = \nabla \ell_t(a_t) \text{ and } \nabla R(a) - \eta \tilde{g}_t(a) \in \nabla R(\operatorname{int}(\mathcal{S})).$ For any $a \in \mathcal{A}$, $\sum \left(\ell_t(a_t) - \ell_t(a)\right)$ t=1 $\leq \frac{1}{\eta} \left(R(a) - R(a_1) + \sum_{t=1}^{n} \mathbb{E}D_{R^*} \left(\nabla R(a_t) - \eta \tilde{g}_t, \nabla R(a_t) \right) \right)$ + $\sum_{t=1}^{n} \mathbb{E} [||a_t - \mathbb{E} [x_t | a_t]|| ||\tilde{g}_t||_*].$

Regret: proof

$$\mathbb{E}\sum_{t=1}^{n} (\ell_{t}(x_{t}) - \ell_{t}(a))$$

$$= \mathbb{E}\sum_{t=1}^{n} (\ell_{t}(x_{t}) - \ell_{t}(a_{t}) + \ell_{t}(a_{t}) - \ell_{t}(a))$$

$$= \mathbb{E}\sum_{t=1}^{n} (\mathbb{E}\left[\ell_{t}^{T}(x_{t} - a_{t}) \mid a_{t}\right] + \ell_{t}(a_{t}) - \ell_{t}(a))$$

$$\leq \mathbb{E}\sum_{t=1}^{n} \|a_{t} - \mathbb{E}[x_{t}|a_{t}]\| \|\tilde{g}_{t}\|_{*} + \mathbb{E}\sum_{t=1}^{n} \nabla \ell_{t}(a_{t})^{T}(a_{t} - a)$$

$$= \mathbb{E}\sum_{t=1}^{n} \|a_{t} - \mathbb{E}[x_{t}|a_{t}]\| \|\tilde{g}_{t}\|_{*} + \mathbb{E}\sum_{t=1}^{n} \tilde{g}_{t}^{T}(a_{t} - a).$$

Regret: proof

Applying the regret bound for the (random) linear losses $a \mapsto \tilde{g}_t^T a$ gives

$$\leq \mathbb{E} \sum_{t=1}^{n} \|a_t - \mathbb{E}[x_t|a_t]\| \|\tilde{g}_t\|_* + \frac{1}{\eta} \left(R(a) - R(a_1) + \sum_{t=1}^{n} \mathbb{E} D_{R^*} \left(\nabla R(a_t) - \eta \tilde{g}_t, \nabla R(a_t) \right) \right).$$

Regret: Euclidean ball

Consider $B = \{a \in \mathbb{R}^d : ||a|| \le 1\}$ (with the Euclidean norm).

Ingredients:

1. Distribution of x_t , given a_t :

$$x_t = \xi_t \frac{a_t}{\|a_t\|} + (1 - \xi_t)\epsilon_t e_{I_t},$$

where ξ_t is Bernoulli($||a_t||$), ϵ_t is uniform ± 1 , and I_t is uniform on $\{1, \ldots, d\}$, so $\mathbb{E}[x_t|a_t] = a_t$.

2. Estimate $\tilde{\ell}_t$ of loss ℓ_t :

$$\tilde{\ell}_t = d \frac{1 - \xi_t}{1 - \|a_t\|} x_t^T \ell_t x_t,$$

so $\mathbb{E}[\tilde{\ell}_t | a_t] = \ell_t$.

Regret: Euclidean ball

Theorem: Consider stochastic mirror descent on $\mathcal{A} = (1 - \gamma)B$, with these choices and $R(a) = -\log(1 - ||a||) - ||a||$. Then for $\eta d \leq 1/2$, $\overline{R}_n \leq \gamma n + \frac{\log(1/\gamma)}{\eta} + \eta \sum_{t=1}^n \mathbb{E}\left[(1 - ||a_t||) \|\tilde{\ell}_t\|^2\right].$ For $\gamma = 1/\sqrt{n}$ and $\eta = \sqrt{\log n/(2nd)}$,

 $\overline{R}_n \le 3\sqrt{dn\log n}.$