Stat 260/CS 294-102. Learning in Sequential Decision Problems.

Peter Bartlett

- 1. Recall: MDPs.
- 2. Value iteration.
- 3. Policy iteration.
- 4. Linear programming formulation.
- 5. Q: state-action utility function.

Recall: Markov Decision Processes

Definition: A Markov Decision Process (MDP) consists of

- 1. A state space \mathcal{X} ,
- 2. An action space \mathcal{A} ,

3. A set of Markov chains, $\mathcal{M} = (\mathcal{X}, P_a)$, one for each $a \in \mathcal{A}$,

4. A reward distribution $R : \mathcal{X} \times \mathcal{A} \to \Delta(\mathbb{R})$.

A policy is a sequence of functions $\pi_t : \mathcal{X} \to \Delta(\mathcal{A})$, one for each time t. (A stationary policy is constant with t.)

Recall: Value iteration

Definition: Define the operator $T : \mathbb{R}^{\mathcal{X}} \to \mathbb{R}^{\mathcal{X}}$ by

$$(TJ)(x) = \max_{a \in \mathcal{A}} \mathbb{E} [r_0 + \alpha J(x_1) | x_0 = x, a_0 = a].$$

Theorem: For any $\alpha < 1$, there is a vector $J^* \in \mathbb{R}^{\mathcal{X}}$ such that

1. For all
$$J \in \mathbb{R}^{\mathcal{X}}$$
, $J^* = \lim_{k \to \infty} T^k J$.

- 2. J^* is the unique solution to J = TJ.
- 3. $J^* = \max_{\pi} J^{\pi}$, where the max is over stationary (or nonstationary) policies π .

4.
$$J^* = J^{\pi^*}$$
, where

$$\pi^*(x) = \arg \max_{a \in \mathcal{A}} \mathbb{E} \left[r_0 + \alpha J^*(x_1) | x_0 = x, a_0 = a \right].$$

Greedy policy

Notice that π^* is the greedy choice with respect to the value function J^* .

Definition: For a value function estimate $\hat{J} \in \mathbb{R}^{\mathcal{X}}$, the corresponding greedy policy is $\pi = G\hat{J}$, where we define the greedy operator $G : \mathbb{R}^{\mathcal{X}} \to \mathcal{A}^{\mathcal{X}}$:

$$(G\hat{J})(x) := \arg\max_{a \in \mathcal{A}} \mathbb{E}\left[\left. r_0 + \alpha \hat{J}(x_1) \right| x_0 = x, a_0 = a \right]$$

It's easy to show:

Lemma: For a value function estimate $\hat{J} \in \mathbb{R}^{\mathcal{X}}$, if $\pi = G\hat{J}$, $\|J^* - J^{\pi}\|_{\infty} \leq \frac{2\alpha}{1-\alpha} \|J^* - \hat{J}\|_{\infty}$.

Value iteration and (generalized) policy iteration

Value iteration:

$$\hat{J}_{k+1} := T\hat{J}_k, \qquad \pi_{k+1} := G\hat{J}_{k+1}.$$

Policy iteration:

$$\pi_{k+1} := GJ^{\pi_k}.$$

Generalized policy iteration:

$$J_{k+1} := T_{\pi_k}^l J_k, \qquad \pi_{k+1} := G J_{k+1}.$$

(Generalized) policy iteration

Theorem:

Policy iteration generates a sequence of policies with distinct, increasing values, terminating after a finite number of iterations with an optimal policy, that is, for some k,

$$J^{\pi_0} \leq J^{\pi_1} \leq \cdots \leq J^{\pi_k} = J^*.$$

Generalized policy iteration generates a sequence of policies with $J_k \to J^*$.

Linear program

Bellman equations:

$$J = TJ.$$

Linear programming formulation: Fix a probability distribution p with support \mathcal{X} .

$$\min_{J} \qquad p^{T}J \\
\text{s.t.} \qquad J \ge TJ.$$

Linear program

Proof. Uses monotonicity: $J \ge J'$ implies $TJ \ge TJ'$. So $J \ge TJ$ implies $J \ge T^k J \to J^*$. Minimizing $\mu^T J$ sets $J = J^*$.

Dual linear program

$$\max_{\mu} \qquad \sum_{x \in \mathcal{X}} \sum_{a \in \mathcal{A}} \mu(x, a) \mathbb{E} \left[r_0 | x_0 = x, a_0 = a \right]$$

s.t. $\forall x' \in \mathcal{X}, \sum_{a \in \mathcal{A}} \mu(x', a) = p(x)$
 $+ \alpha \sum_{x \in \mathcal{X}} \sum_{a \in \mathcal{A}} \mu(x, a) P[x_1 = x' | x_0 = x, a_0 = a].$

View λ as discounted expected number of state-action visits, starting from the distribution p. So criterion is expected discounted reward.

Primal-dual are related via optimal policy: $\pi^*(x) = \arg \max_{a \in \mathcal{A}} \lambda(x, a)$.

Q values

Analogous to J^* :

$$Q^*(x,a) := \mathbb{E}\left[\left.r_0 + \alpha \max_{a' \in \mathcal{A}} Q^*(x',a')\right| x_0 = x, a_0 = a\right],$$
$$\pi^*(x) := \arg \max_{a \in \mathcal{A}} Q^*(x,a).$$

Q iteration:

$$\hat{Q}_{k+1}(x,a) := \mathbb{E}\left[\left.r_0 + \alpha \max_{a' \in \mathcal{A}} \hat{Q}_k(x',a')\right| x_0 = x, a_0 = a\right],$$
$$\pi_{k+1}(x) := \arg \max_{a \in \mathcal{A}} \hat{Q}_{k+1}(x,a).$$