Stat 260/CS 294-102. Learning in Sequential Decision
Problems.
Peter Bartlett

1. Linear bandits.

Lower bounds.




Recall: Linear bandits'

At roundt,
Strategy chooses, € A C R,
Adversary choosdsnear loss/; € £ C [—1,1]4.

Strategy sees logs(ay).




‘Recall: Regret bound for exponential weights'

Use:p; = (1 — v)q: + v wherep is an exploration distribution ang is
the exponential weights distribution based on loss esamat

gt = t &t&t gt;

Et — ]EaNpt aa/T .

Theorem: Forl C [—1,1]4, if

_ c
sup a’ X, 1b < -4
a,bec A Y

R, < 2v/n(d+ cq)log|Al.




Recall: Barycentric spanner I

For 1 uniform on abarycentric spanner:

arg max det <b1 by - bd>

bi,....ba

we have
d2
sup aTEt_lb < —
a,bec A Y

(that is,c, < d?). Hence,

R, < 2d+\/2nlog|A.




Recall: John’sdistribution I

For any convex setl C RY, there is a set of, contact pointsiy, .. ., un,
betweenA and the ellipsoid of minimal volume containing it, and a
distributionp on this set such that any< R? can be written

m
L = dzpz’@, ui>ui7
i=1

where(-, -) is the inner product for which the minimal ellipsoid is thatun
ball. Setting the exploration distributignto be the distributiom over the
set of contact points, we see that

d
sup a’ ¥, 'h < =
a,be A Y

(that is,cy < d). Hence,

R, < 2v/2ndlog|A.




L ower bounds'

Again, lower bounds from the stochastic setting suffice.

Theorem: Considerd = {£1}¢, £ D {%e; : 1 < i < d}. There
IS a constant such that, for any strategy and any there is ar
I.l.d. adversary for which

R,, > cd/n.

(Here,/ndlog |A| = O(dy/n).)




‘ L ower bounds: proof I

Probabilistic method: Fix € (0,1/2) and, for eacth € {+1}¢, defineP,
onL as
1 — bse
2d
1 + bz‘é
2d

Py(e;) =

Py(—e;) =

(so that the optimad* = b). We’'ll chooseb uniformly, and show that the
expected regret under this choice is large.




‘ L ower bounds: proof I

2d




‘ L ower bounds: proof I

The regret of sub-garmeﬁfl(bi), IS at least the regret that would be
Incurred if the strategy knew that the adversary was usimgabithe P,
distributions, and also kneg; : j # ¢}. In that case, it would know

0:=FE Z lt,jat,j,

J71

and so at each round, it would seedal | Bernoulli random variablé! a;,
with mean

€

7

Notice that thel /d here is crucial: because information about itie
component only arrives once evefyounds on average, the range of
values of the unknown Bernoulli mean has shrunk. If the efgasaw the
components of; (even in the semi-bandit setting, with= {0, 1} and
feedback(¢; 1a; 1, ..., ¢ qa:.q4)), it would not suffer this disadvantage.

0 — bz'aft,z'




‘ L ower bounds: proof I

Using the same argument as we saw for the stochastic moleéabandit
case (with a little extra work to show théts unlikely to be too close t6
or 1, so that the variance of the Bernoulli is not too small), we that

—d \2 d

ER (b;) > 2" (1 . ce\/ﬁ) .

Choosinge = d/(4cv/n) givesER. (b;) = Q(+/n), and so
ER,(Py) = Q(dy/n).




