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1. Linear bandits.

• Lower bounds.
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Recall: Linear bandits

At roundt,

• Strategy choosesat ∈ A ⊂ R
d.

• Adversary chooseslinear lossℓt ∈ L ⊆ [−1, 1]A.

• Strategy sees lossℓt(at).
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Recall: Regret bound for exponential weights

Use:pt = (1− γ)qt + γµ whereµ is an exploration distribution andqt is

the exponential weights distribution based on loss estimates

ℓ̃t = Σ−1
t ata

T
t ℓt,

Σt = Ea∼pt
aaT .

Theorem: ForL ⊂ [−1, 1]A, if

sup
a,b∈A

aTΣ−1
t b ≤ cd

γ
,

Rn ≤ 2
√

n(d+ cd) log |A|.
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Recall: Barycentric spanner

Forµ uniform on abarycentric spanner:

arg max
b1,...,bd

det
(

b1 b2 · · · bd

)

we have

sup
a,b∈A

aTΣ−1
t b ≤ d2

γ

(that is,cd ≤ d2). Hence,

Rn ≤ 2d
√

2n log |A|.
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Recall: John’s distribution

For any convex setA ⊂ R
d, there is a set ofm contact pointsu1, . . . , um

betweenA and the ellipsoid of minimal volume containing it, and a
distributionp on this set such that anyx ∈ R

d can be written

x = d
m∑

i=1

pi〈x, ui〉ui,

where〈·, ·〉 is the inner product for which the minimal ellipsoid is the unit
ball. Setting the exploration distributionµ to be the distributionp over the
set of contact points, we see that

sup
a,b∈A

aTΣ−1
t b ≤ d

γ

(that is,cd ≤ d). Hence,

Rn ≤ 2
√

2nd log |A|.
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Lower bounds

Again, lower bounds from the stochastic setting suffice.

Theorem: ConsiderA = {±1}d, L ⊇ {±ei : 1 ≤ i ≤ d}. There

is a constantc such that, for any strategy and anyn, there is an

i.i.d. adversary for which

Rn ≥ cd
√
n.

(Here,
√

nd log |A| = O(d
√
n).)
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Lower bounds: proof

Probabilistic method: Fixǫ ∈ (0, 1/2) and, for eachb ∈ {±1}d, definePb

onL as

Pb(ei) =
1− biǫ

2d
,

Pb(−ei) =
1 + biǫ

2d
.

(so that the optimala∗ = b). We’ll chooseb uniformly, and show that the

expected regret under this choice is large.
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Lower bounds: proof

Rn(Pb) =
n∑

t=1

d∑

i=1

E [ℓt,i (at,i − bi)]

=
n∑

t=1

d∑

i=1

(at,i − bi)

(
1− 2biǫ

2d
− 1 + 2biǫ

2d

)

=
n∑

t=1

d∑

i=1

(bi − at,i)
biǫ

d

=

d∑

i=1

2ǫ

d

n∑

t=1

1[at,i 6= bi]

︸ ︷︷ ︸

R
i

n
(bi)

.
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Lower bounds: proof

The regret of sub-gamei, R
i

n(bi), is at least the regret that would be
incurred if the strategy knew that the adversary was using one of thePb

distributions, and also knew{bj : j 6= i}. In that case, it would know

θ := E

∑

j 6=i

lt,jat,j ,

and so at each round, it would see a (±1) Bernoulli random variableℓTt at,
with mean

θ − biat,i
ǫ

d
.

Notice that the1/d here is crucial: because information about theith
component only arrives once everyd rounds on average, the range of
values of the unknown Bernoulli mean has shrunk. If the strategy saw the
components ofℓi (even in the semi-bandit setting, withA = {0, 1}d and
feedback(ℓt,1at,1, . . . , ℓt,dat,d)), it would not suffer this disadvantage.
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Lower bounds: proof

Using the same argument as we saw for the stochastic multi-armed bandit

case (with a little extra work to show thatθ is unlikely to be too close to0

or 1, so that the variance of the Bernoulli is not too small), we see that

ER
i

n(bi) ≥
2ǫn

d

(
1

2
− c

ǫ
√
n

d

)

.

Choosingǫ = d/(4c
√
n) givesER

i

n(bi) = Ω(
√
n), and so

ERn(Pb) = Ω(d
√
n).
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