Stat 260/CS 294-102. Learning in Sequential Decision Problems.

Peter Bartlett

1. Linear bandits.

- Lower bounds.

Recall: Linear bandits

At round t,

- Strategy chooses $a_{t} \in \mathcal{A} \subset \mathbb{R}^{d}$.
- Adversary chooses linear $\operatorname{loss} \ell_{t} \in \mathcal{L} \subseteq[-1,1]^{\mathcal{A}}$.
- Strategy sees loss $\ell_{t}\left(a_{t}\right)$.

Recall: Regret bound for exponential weights

Use: $p_{t}=(1-\gamma) q_{t}+\gamma \mu$ where μ is an exploration distribution and q_{t} is the exponential weights distribution based on loss estimates

$$
\begin{aligned}
\tilde{\ell}_{t} & =\Sigma_{t}^{-1} a_{t} a_{t}^{T} \ell_{t} \\
\Sigma_{t} & =\mathbb{E}_{a \sim p_{t}} a a^{T}
\end{aligned}
$$

Theorem: For $\mathcal{L} \subset[-1,1]^{\mathcal{A}}$, if

$$
\begin{aligned}
\sup _{a, b \in \mathcal{A}} a^{T} \Sigma_{t}^{-1} b & \leq \frac{c_{d}}{\gamma} \\
\bar{R}_{n} & \leq 2 \sqrt{n\left(d+c_{d}\right) \log |\mathcal{A}|}
\end{aligned}
$$

Recall: Barycentric spanner

For μ uniform on a barycentric spanner:

$$
\arg \max _{b_{1}, \ldots, b_{d}} \operatorname{det}\left(\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{d}
\end{array}\right)
$$

we have

$$
\sup _{a, b \in \mathcal{A}} a^{T} \Sigma_{t}^{-1} b \leq \frac{d^{2}}{\gamma}
$$

(that is, $c_{d} \leq d^{2}$). Hence,

$$
\bar{R}_{n} \leq 2 d \sqrt{2 n \log |\mathcal{A}|} .
$$

Recall: John's distribution

For any convex set $\mathcal{A} \subset \mathbb{R}^{d}$, there is a set of m contact points u_{1}, \ldots, u_{m} between \mathcal{A} and the ellipsoid of minimal volume containing it, and a distribution p on this set such that any $x \in \mathbb{R}^{d}$ can be written

$$
x=d \sum_{i=1}^{m} p_{i}\left\langle x, u_{i}\right\rangle u_{i}
$$

where $\langle\cdot, \cdot\rangle$ is the inner product for which the minimal ellipsoid is the unit ball. Setting the exploration distribution μ to be the distribution p over the set of contact points, we see that

$$
\sup _{a, b \in \mathcal{A}} a^{T} \Sigma_{t}^{-1} b \leq \frac{d}{\gamma}
$$

(that is, $c_{d} \leq d$). Hence,

$$
\bar{R}_{n} \leq 2 \sqrt{2 n d \log |\mathcal{A}|}
$$

Lower bounds

Again, lower bounds from the stochastic setting suffice.
Theorem: Consider $\mathcal{A}=\{ \pm 1\}^{d}, \mathcal{L} \supseteq\left\{ \pm e_{i}: 1 \leq i \leq d\right\}$. There is a constant c such that, for any strategy and any n, there is an i.i.d. adversary for which

$$
\bar{R}_{n} \geq c d \sqrt{n}
$$

(Here, $\sqrt{n d \log |\mathcal{A}|}=O(d \sqrt{n})$.)

Lower bounds: proof

Probabilistic method: Fix $\epsilon \in(0,1 / 2)$ and, for each $b \in\{ \pm 1\}^{d}$, define P_{b} on \mathcal{L} as

$$
\begin{aligned}
P_{b}\left(e_{i}\right) & =\frac{1-b_{i} \epsilon}{2 d} \\
P_{b}\left(-e_{i}\right) & =\frac{1+b_{i} \epsilon}{2 d}
\end{aligned}
$$

(so that the optimal $a^{*}=b$). We'll choose b uniformly, and show that the expected regret under this choice is large.

Lower bounds: proof

$$
\begin{aligned}
\bar{R}_{n}\left(P_{b}\right) & =\sum_{t=1}^{n} \sum_{i=1}^{d} \mathbb{E}\left[\ell_{t, i}\left(a_{t, i}-b_{i}\right)\right] \\
& =\sum_{t=1}^{n} \sum_{i=1}^{d}\left(a_{t, i}-b_{i}\right)\left(\frac{1-2 b_{i} \epsilon}{2 d}-\frac{1+2 b_{i} \epsilon}{2 d}\right) \\
& =\sum_{t=1}^{n} \sum_{i=1}^{d}\left(b_{i}-a_{t, i} \frac{b_{i} \epsilon}{d}\right. \\
& =\sum_{i=1}^{d} \underbrace{\frac{2 \epsilon}{d} \sum_{t=1}^{n} 1\left[a_{t, i} \neq b_{i}\right]}_{\bar{R}_{n}^{i}\left(b_{i}\right)} .
\end{aligned}
$$

Lower bounds: proof

The regret of sub-game $i, \bar{R}_{n}^{i}\left(b_{i}\right)$, is at least the regret that would be incurred if the strategy knew that the adversary was using one of the P_{b} distributions, and also knew $\left\{b_{j}: j \neq i\right\}$. In that case, it would know

$$
\theta:=\mathbb{E} \sum_{j \neq i} l_{t, j} a_{t, j}
$$

and so at each round, it would see a (± 1) Bernoulli random variable $\ell_{t}^{T} a_{t}$, with mean

$$
\theta-b_{i} a_{t, i} \frac{\epsilon}{d}
$$

Notice that the $1 / d$ here is crucial: because information about the i th component only arrives once every d rounds on average, the range of values of the unknown Bernoulli mean has shrunk. If the strategy saw the components of ℓ_{i} (even in the semi-bandit setting, with $\mathcal{A}=\{0,1\}^{d}$ and feedback $\left(\ell_{t, 1} a_{t, 1}, \ldots, \ell_{t, d} a_{t, d}\right)$), it would not suffer this disadvantage.

Lower bounds: proof

Using the same argument as we saw for the stochastic multi-armed bandit case (with a little extra work to show that θ is unlikely to be too close to 0 or 1 , so that the variance of the Bernoulli is not too small), we see that

$$
\mathbb{E} \bar{R}_{n}^{i}\left(b_{i}\right) \geq \frac{2 \epsilon n}{d}\left(\frac{1}{2}-c \frac{\epsilon \sqrt{n}}{d}\right) .
$$

Choosing $\epsilon=d /(4 c \sqrt{n})$ gives $\mathbb{E} \bar{R}_{n}^{i}\left(b_{i}\right)=\Omega(\sqrt{n})$, and so
$\mathbb{E} \bar{R}_{n}\left(P_{b}\right)=\Omega(d \sqrt{n})$.

