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1. Contextual bandits.

• Bandits with side information.

• Model assumptions versus comparison class.

• Woodroofe/Sarkar one-armed bandit with side information.

• |X | distinct bandit problems.

• Bandits with expert advice.
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Contextual bandits

Bandits with side information.

Hope that the extra information will allow better decisions.

At each round:

• SeeXt ∈ X .

• ChooseIt ∈ {1, . . . , k}.

• Receive rewardYIt,t ∈ R.
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Contextual bandits

1. Stochastic model:
joint distribution(X, Y ) ∼ Pθ, X ∈ X , Y ∈ R

k.

2. Game theoretic model:
(X, Y ) pairs chosen adversarially.

3. Mixture:
e.g.,X fixed design/adversarial,Y ∼ Pθ,X .

Regret and pseudo-regret:

Rn = sup
f

n
∑

t=1

Yf(Xt),t −
n
∑

t=1

YIt,t.

Rn = sup
f

E

n
∑

t=1

Yf(Xt),t − E

n
∑

t=1

YIt,t.

wheresup is overcomparison class F of functionsf : X → {1, . . . , k}.
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Contextual bandits

1. If the comparison classF is all constant mappings

{fj : X → {1, . . . , k} s.t. j ∈ {1, . . . , k}, ∀x ∈ X , fj(x) = j} ,

then this is no harder than the multi-armed bandit problem
(depending on{Pθ}, it might be much easier, because of the extra

information).

2. If F is all functionsf : X → {1, . . . , k}, then the aim is to predict,

for eachx, the maximizerj∗ of j 7→ E[Yj |X = x].

(a) If X = {1, 2, . . . ,m}, then we can view it asm separatek-armed
bandit problems. TheXt tells the strategy which bandit it is
playing. And if{Pθ} is such that the distributionY |X gives no

information aboutY |X ′, thek-armed bandit problems decouple
in this way.
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Contextual bandits

(b) If X is infinite (andF is all measurable functions
f : X → {1, . . . , k}), it may be more appropriate to view it as a
pattern classification problem, but with limited information about the
labels. (In the pattern classification setting,f∗(x) = j∗ is called the
Bayes decision rule.)

3. If F is a family of prediction rules (such as linear threshold
functions, or decision trees), then the aim is to accumulatealmost as
much reward as the best of these prediction rules.

4. We can also allowF to be a family ofrandomized functions, that is,
functions that map fromX to∆k, the set of probability distributions
over thek arms. (In that case, we can interpretYf(Xt),t as a random
variable, and we’re typically interested in maximizing theexpectation
of the sum of these.)
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Contextual bandits

Two broad approaches:

1. Impose strong constraints on{Pθ}, and aim for optimality (that is,

use an unrestricted comparison class).

(Woodroofe, 1979), (Sarkar, 1991), (Wang, Kulkarni, Poor,2005),

(Abe and Long, 1999), (Auer, 2002), (Li et al, 2010).

2. Impose few constraints on{Pθ}, but strong constraints on the

comparison policies.

(Auer et al, 2002), (Dudik et al, 2011), (Agarwal et al, 2014).
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Contextual bandits

(Woodroofe, 1979): Aim to maximize expected total discounted reward,

E

∞
∑

t=1

γtYf(Xt),t,

in a Bayesian setting.

Considered a one-armed bandit

• E[Y0|X ] is known,

• (X, Y1 − E[Y0|X ]) ∼ Pθ with θ ∼ π (prior π),

with a simple modelPθ.
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Contextual bandits

(Sarkar, 1991) extended to the one-parameter exponential family model:

Y1 − E[Y0|X ] has density

f(y|x, θ) = exp (θ′T (x, y)− A(x, θ)) .

Then (under suitable conditions on the distribution ofX), the greedy

policy,

It = arg max
j∈{1,...,k}

E [Yj,t |Xt, history tot− 1 ] ,

is optimal asymptotically (asγ → 1).

Resolves an ethical dilemma?

Thus, the myopic procedure... fulfills the utilitarian goalas

well as the individualistic one.
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|X | distinct bandit problems

Suppose thatX = {1, 2, . . . ,m}, and we wish to compete with

F (m) = {f : X → {1, . . . , k}} .

We can think of each value ofX as an index indicating which of them

bandit problems the strategy must play.

Weak constraints on data; comparison class is constrained becauseX is

small.
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|X | distinct bandit problems

There is a simple approach:

runm distinct multi-armed bandit strategies. For instance, forthe EXP3

forecaster:

Theorem: Using EXP3 for each of them bandits gives pseudo-

regret

Rn = sup
f∈F (m)

E

n
∑

t=1

Yf(Xt),t − E

n
∑

t=1

YIt,t ≤ 2
√

nmk log k.
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|X | distinct bandit problems

Proof. Recall:

Theorem: Exp3 with parameterη =
√

2 log k/(nk) incurs regret

Rn ≤
√

2nk log k.

Exp3 with parameterηt =
√

log k/(tk) incurs regret

Rn ≤ 2
√

nk log k.

Define the number of rounds of each of them separate bandit problems,

ni =
n
∑

t=1

1[Xt = i].
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|X | distinct bandit problems

We have

Rn = sup
f∈F (m)

E

n
∑

t=1

(

Yf(Xt),t − YIt,t

)

= sup
f∈F (m)

m
∑

i=1

E

∑

t:Xt=i

(

Yf(i),t − YIt,t

)

=
m
∑

i=1

max
f(i)∈{1,...,k}

E

∑

t:Xt=i

(

Yf(i),t − YIt,t

)

≤
m
∑

i=1

2
√

nik log k

≤ 2
√

k log k
√
m
√
n. (Cauchy-Schwarz)
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|X | distinct bandit problems

Theorem: For any strategy and anyn, there is an oblivious ad-

versary playing i.i.d. (product of uniform and Bernoullis)

(Xt, Y1,t, . . . , Yk,t) ∈ {1, . . . ,m} × {0, 1}k

for which

Rn = Ω
(√

nmk
)

.
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|X | distinct bandit problems

Proof. Recall

Theorem: For any strategy and anyn, there is an oblivious ad-

versary playing Bernoulli rewardsyj,t ∈ {0, 1} for which

Rn ≥ 1

18
min{

√
nk, n}.

Under a uniform choice ofXt, E |{i : ni ≥ n/(2m)}| is Ω(m), provided

n = Ω(m). For each of theseΩ(m) (decoupled) games, we incur regret

Ω(
√

nk/m). In particular, forn ≥ 2m, Pr (ni ≥ n/(2m)) ≥ 1/2, so:
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|X | distinct bandit problems

Rn = sup
f∈F (m)

E

n
∑

t=1

(

Yf(Xt),t − YIt,t

)

= sup
f∈F (m)

m
∑

i=1

E

∑

t:Xt=i

(

Yf(i),t − YIt,t

)

=
m
∑

i=1

max
f(i)∈{1,...,k}

E

∑

t:Xt=i

(

Yf(i),t − YIt,t

)

≥
m
∑

i=1

E

[

1
[

ni ≥
n

2m

]

max
f(i)∈{1,...,k}

E

∑

t:Xt=i

(

Yf(i),t − YIt,t

)

]

≥ mPr
(

n1 ≥ n

2m

)

Ω
(

√

kn/m
)

= Ω
(√

mnk
)

.
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Bandits with expert advice

Consider another setting where we impose only weak constraints on the

process generating the data (we allow it to be adversarial),but constrain

the comparison class by making it small, say cardinalityN . We can even

ignore the contextXt, and rely only on the ‘expert advice’ provided by

functions in the comparison class. This is the setting ofbandits with

expert advice. We’ll allow the comparison class to be distributions over

thek arms. And we’ll allow the choice of advice to be adversarial.
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Bandits with expert advice

Repeated game:

1. Adversary chooses rewards(y1,t, . . . , yk,t).

2. Adversary presents expert adviceξ1t , . . . , ξ
N
t ∈ ∆k.

3. Strategy chooses the distribution ofIt.

4. Strategy receives rewardyIt,t.

Aim to minimize psuedo-regret,

Rn = max
i

E

[

n
∑

t=1

EJ∼ξit
yJ,t −

n
∑

t=1

yIt,t

]

.
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Bandits with expert advice

We could treat each expert as an arm and use Exp3. This would give a

distribution over experts in each round, and we could play the induced

distribution over arms. By treating it as a random choice of expert, we

can view the loss we observe as the loss of the chosen expert, and get a

regret bound ofO
(√

nN logN
)

.

If k is large compared toN (many arms, few experts), this is a reasonable

approach. But if not, a better regret is possible:O
(√

nk logN
)

. Thus, it

is possible to compete with a much larger family of experts.
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Bandits with expert advice

The strategy corresponds to using Exp3 over experts, but computing the

estimates of the experts losses from the (known) expert distributions.

Computing expectations under theξjt , rather than using an unbiased

estimate, saves some variance: The
√
k term comes from the bound on

the second moment of the estimated losses (it would be a
√
N if we used

the estimate), whereas thelogN term comes from the initial value of the

potential function.
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Bandits with expert advice

Recall:

Strategy Exp3
setp1 uniform on{1, . . . , k}.

for t = 1, 2, . . . , n, chooseIt ∼ pt, observeℓIt,t.

ℓ̃i,t =
ℓi,t
pi,t

1[It = i],

L̃i,t =
t

∑

s=1

ℓ̃i,s,

pi,t+1 =
exp

(

−ηL̃i,t

)

∑k

j=1 exp
(

−ηL̃j,t

) .
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Bandits with expert advice

Strategy Exp4
setq1 uniform on{1, . . . , N}.

for t = 1, 2, . . . , n, observeξ1t , . . . , ξ
N
t ∈ ∆k;

chooseIt ∼ pt, wherepi,t = EJ∼qtξ
J
i,t; observeℓIt,t.

ℓ̃i,t =
ℓi,t
pi,t

1[It = i], ỹj,t = E
I∼ξ

j
t
ℓ̃I,t,

Ỹj,t =
t

∑

s=1

ỹj,t, qj,t+1 =
exp

(

−ηỸj,t

)

∑N

i=1 exp
(

−ηỸi,t

) .
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Bandits with expert advice

Theorem: Exp4 with parameterη incurs regret

Rn ≤ nηk

2
+

logN

η
.

Choosingη =
√

2 logN/(nk) givesRn ≤
√
2nk logN .

(And choosingηt =
√

logN/(tk) givesRn ≤ 2
√
nk logN .)
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Bandits with expert advice

Proof. The regret is

Rn = min
j

E

n
∑

t=1

(

ℓIt,t − E
I∼ξ

j
t
ℓI,t

)

.

We have

ℓIt,t = EI∼pt
ℓ̃I,t = EJ∼qtEI∼ξJt

ℓ̃I,t = EJ∼qt ỹJ,t.

yj,t := E
I∼ξ

j
t
ℓI,t = EIt∼pt

E
I∼ξ

j
t
ℓ̃I,t = EIt∼pt

ỹj,t.

E

n
∑

t=1

yj,t = E

n
∑

t=1

EIt∼pt
[ ỹj,t| I1, . . . , It−1] = EỸj,n.
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Bandits with expert advice

EJ∼qt ỹ
2
J,t = EJ∼qt

(

EI∼ξJt
ℓ̃I,t

)2

≤ EJ∼qtEI∼ξJt
ℓ̃2I,t = EI∼pt

ℓ̃2I,t =
ℓ2It,t
pIt,t

.

Hence, as in the argument for Exp3, we exploit the one-sided
sub-Gaussian behavior ofỹ ≥ 0 to show that, for anyj,

E

n
∑

t=1

ℓIt,t = E

n
∑

t=1

EJ∼qt ỹJ,t

≤ E

n
∑

t=1

η

2
EJ∼qt ỹ

2
J,t +

logN

η
+ EỸj,n

≤ ηnk

2
+

logN

η
+ E

n
∑

t=1

yj,t.
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