Stat 260/CS 294-102. Learning in Sequential Decision Problems.

Peter Bartlett

1. Contextual bandits.

- Infinite comparison classes.
 - Examples: parameterized policies.
 - Recall: finite ϵ -covers and Exp4.
 - * Random ϵ -covers for VC classes.
 - Greedy optimization of regularized regret.

Recall: Contextual bandits

At each round:

- See $X_t \in \mathcal{X}$.
- Choose $I_t \in \mathcal{A}, \mathcal{A} = \{1, \ldots, k\}.$
- Receive reward $Y_{I_t,t} \in \mathbb{R}$.

Stochastic/adversarial model for $(X, Y) \in \mathcal{X} \times \mathbb{R}^{\mathcal{A}}$.

Pseudo-regret:

$$\overline{R}_n = \sup_{\pi \in \Pi} \mathbb{E} \sum_{t=1}^n Y_{\pi(X_t),t} - \mathbb{E} \sum_{t=1}^n Y_{I_t,t}.$$

where Π is *comparison class* of policies $\pi : \mathcal{X} \to \mathcal{A}$ (or the stochastic version, $\pi : \mathcal{X} \to \Delta^{\mathcal{A}}$).

Infinite comparison classes

For instance, linear threshold functions for $\mathcal{X} \subseteq \mathbb{R}^d$:

$$\pi(x) = \arg\max_{j \in \mathcal{A}} \phi(x, j)'\theta.$$

where $\theta \in \mathbb{R}^d$ is a parameter vector and $\phi : \mathcal{X} \times \mathcal{A} \to \mathbb{R}^d$ is a *feature map*.

Infinite comparison classes: Finite covers

Theorem: For a class Π with $S_{\Pi}(n) \leq Bn^d$, there is a strategy such that, under the i.i.d. stochastic model: $(X_t, Y_t) \sim P$, with probability $1 - \delta$,

$$\overline{R}_n = O\left(\sqrt{nkd\log\frac{n}{d}}\right).$$

This strategy takes $\tilde{O}(n^{d/2})$ time per round.

Infinite comparison classes: Finite covers

Approach:

1. Construct a finite ϵ -cover $\hat{\Pi}$ of Π , with respect to the pseudo-metric

$$\rho(\hat{\pi}, \pi) = \Pr\left(\pi(X_t) \neq \hat{\pi}(X_t)\right).$$

- e.g., construct a cover $\hat{\Pi}$ of Π from a cover of Θ .
- e.g., construct a cover Π̂ of Π as the (random) set of representatives of each element of

$$\{(\pi(X_1),\ldots,\pi(X_m)):\pi\in\Pi\}.$$

2. Use Exp4 on $\hat{\Pi}$.

Combinatorial dimensions

• The size of $\hat{\Pi}$ is no more than

$$S_{\Pi}(n) := \max_{x_1, \dots, x_n \in \mathcal{X}} |\{(\pi(x_1), \dots, \pi(x_n)) : \pi \in \Pi\}|.$$

Combinatorial dimensions (like the VC-dimension and its generalizations to k-valued functions) determine the rate of growth of S_Π(n): for d = d_{VC}(Π),

$$S_{\Pi}(n) \begin{cases} = 2^n & \text{if } n \leq d, \\ \leq (e/d)^d n^d & \text{if } n > d. \end{cases}$$

VC-dimension bounds for parameterized families

Consider a parameterized class of k-valued functions,

$$\Pi = \left\{ x \mapsto f(x,\theta) : \theta \in \mathbb{R}^p \right\},\$$

where $f : \mathbb{R}^m \times \mathbb{R}^p \to \{1, \dots, k\}.$

Suppose that f can be computed using no more than t operations of the following kinds:

- 1. arithmetic $(+, -, \times, /)$,
- 2. comparisons (>, =, <),
- 3. output a constant in $\{1, \ldots, k\}$

Theorem: $d_{VC}(\Pi) = O(pt \log k).$

(And a similar story applies, with a worse dependence on t, if we include the exponential function in the set of operations.)

Summary: Infinite $\Pi \subseteq \{1, \ldots, k\}^{\mathcal{X}}$

- If any strategy can compete with an infinite Π for all distributions on $\mathcal{X} \times [0,1]^k$, then $S_{\Pi}(n)$ must have polynomial growth, say $O(n^d)$.
- In that case, we can use i.i.d. data to build an ϵ -cover of Π of size $O(S_{\Pi}(n)) = O(n^d)$.
- Running Exp4 with this class of experts gives regret

$$\overline{R}_n = O\left(\sqrt{nkd\log n}\right).$$

• The drawback is *computational*: $S_{\Pi}(n)$ is polynomial in n, but exponential in the dimension d. For example, for

$$\pi(x) = \arg \max_{j \in \mathcal{A}} \phi(x, j)' \theta,$$

the computation grows exponentially with the number of features.

An alternative approach: Reduction to classification

The high-level idea:

- Gather relevant data $(x_t, a_t, r_t(a_t), p_t(a_t))$.
- Transform data to $(x, \ell) \in \mathcal{X} \times \mathbb{R}^{\mathcal{A}}$ pairs.
- Find a $\pi^t \in \Pi$ to minimize empirical risk,

$$\frac{1}{t}\sum_{s=1}^t \ell_s(\pi^t(x_s))$$

(Here, (x_t, r_t) are i.i.d.)

• Use π^t to update how strategy makes subsequent choices.

Assumes we have access to an efficient empirical risk minimization oracle.

An alternative approach: Reduction to classification

Example: ϵ -greedy.

- With probability ϵ , explore: choose a_t uniformly.
- Otherwise, choose $a_t \sim \pi^t$.
- Use exploration data for losses,

$$\ell_t(a) = \frac{(1 - r_t(a_t))1[a = a_t]}{p_t(a_t)} = k(1 - r_t(a_t))1[a = a_t].$$

- Uniform convergence ensures π^t has per-trial regret $O(1/\sqrt{\epsilon t})$. Regret from exploration trials is $O(\epsilon n)$.
- Optimizing gives $\epsilon \sim n^{-1/3}$, with $\overline{R}_n = O(n^{2/3})$.

(Or run ϵ -greedy with the doubling trick—also called *epoch-greedy*.) Separating exploration and exploitation gives sub-optimal $\Omega(n^{2/3})$ regret.

Combining exploration and exploitation

- Maintain distribution q_t over Π .
- Observe x_t , choose $a_t \sim p_t$ where

$$p_t(a) = \mathbb{E}_{\pi \sim q_t} \pi(a|x_t).$$

- Gather relevant data $(x_t, a_t, r_t(a_t), p_t(a_t))$.
- Transform data to $(x, \ell) \in \mathcal{X} \times \mathbb{R}^{\mathcal{A}}$ pairs.
- Find a $\pi^t \in \Pi$ to minimize empirical risk,

$$\frac{1}{t}\sum_{s=1}^t \ell_s(\pi^t(x_s)).$$

• Use π^t to update q_t .

An alternative approach: Reduction to classification

Exp4 used

$$\tilde{\ell}_t(a) = \frac{(1 - r_t(a_t))1[a = a_t]}{p_t(a_t)},$$

and maintained exponential weights over Π based on cumulative sums of

$$\widetilde{y}_t(\pi) = \mathbb{E}_{a \sim \pi} \widetilde{\ell}_t(a).$$

But this required enumeration over Π . Instead, we will

- 1. Give the strategy access to Π only via empirical risk minimization.
- 2. Determine the distribution q_t by the set of $\pi^t s$.

Assume we have access to an efficient empirical risk minimization oracle.

- (Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin, and Tong Zhang, 2011): Ellipsoid method to choose q_t.
 Polynomial (in n and k) number of calls to oracle.
- (Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, Robert E. Schapire, 2014): Gradient descent approach. O(√kn) calls to oracle.

We'll look at (Agarwal et al, 2014).

Gradient Descent Strategy

for epoch i

 $q_{i} = \text{distribution over } \Pi_{\text{(approximately)}} \text{ minimizing}$ $\mathbb{E}_{\pi \sim q} \hat{R}_{t}(\pi) + k \mu \hat{\mathbb{E}}_{x} d_{KL} \left(\mathbf{U}, q^{\mu}(\cdot|x) \right) \right).$

for t in epoch i

observe x_t , play $a_t \sim p_t$, where $p_t(a) = \mathbb{E}_{\pi \sim q_i} \pi(a|x_t)$, observe $r_t(a_t)$

Here, U is uniform on $\mathcal{A} = \{1, \ldots, k\}$,

 $\mu = \sqrt{\frac{\log\left(|\Pi|/\delta\right)}{kt}}, \qquad \text{(similar result with VC-dimension)}$ $q^{\mu}(a|x) = (1-\mu) \sum_{\pi \in \Pi} q(\pi) \mathbb{1}[\pi(x) = a] + \mu U(a)$

and the empirical per-trial regret is defined by

$$\hat{R}_t(\pi) = \hat{L}_t(\pi) - \min_{\pi \in \Pi} \hat{L}_t(\pi),$$
$$\hat{L}_t(\pi) = \hat{\mathbb{E}}_{(x,\tilde{\ell})} \tilde{\ell}(\pi(x)).$$

- The criterion for *q* combines empirical regret (exploitation) with distance to uniform (exploration).
- It can be approximately minimized by a coordinate descent approach: choose the π ∈ Π that is best aligned with the negative gradient.
- Finding the descent direction is (roughly) equivalent to choosing

which is
$$\begin{aligned} \arg\min_{\pi\in\Pi} \left(\hat{R}_t(\pi) - \hat{\mathbb{E}}_x \frac{\mu}{(1-\mu)q(\pi(x)|x) + \mu/k} \right) \\ \text{which is} \quad \arg\min_{\pi\in\Pi} \hat{\mathbb{E}}_{x,\ell}\ell(\pi(x)) \\ \text{where} \quad \ell_s(a) = \tilde{\ell}_s(a) - \frac{\mu}{(1-\mu)q(\pi(x_s)|x_s) + \mu/k}. \end{aligned}$$

Theorem: Under the i.i.d. stochastic model, $(x_t, r_t) \sim P$, with probability at least $1 - \delta$,

$$R_n = O\left(\sqrt{kn\log\left(\frac{n|\Pi|}{\delta}\right) + k\log\left(\frac{n|\Pi|}{\delta}\right)}\right)$$
with VC-dimension)

(similar result with VC-dimension)

Idea of proof: Solution q_i to optimization problem has

1. small empirical regret:

$$\mathbb{E}_{\pi \sim q} \hat{R}_t(\pi) \le ck\mu_i,$$

2. low variance: for all $\pi \in \Pi$,

$$\hat{\mathbb{E}}_x \frac{\mu_i}{(1-\mu_i)q(\pi(x)|x)+\mu_i} \le c\left(k\mu_i + \hat{R}_t(\pi)\right).$$

Hence, once $t = \Omega(k \log |\Pi|)$, with high probability, for all $\pi \in \Pi$,

$$R(\pi) := \min_{\pi^* \in \Pi} \mathbb{E}_{r,x} \left(r(\pi^*(x) - r(\pi(x))) \le 2\hat{R}_t(\pi) + O(k\mu_i) \right).$$

So

$$\mathbb{E}_{\pi \sim q_i} R(\pi) = O(k\mu_i).$$

Summing across time gives the regret bound.

Summary: Reduction to classification

- Maintain distribution q_t over Π .
- Observe x_t , choose $a_t \sim p_t = \mathbb{E}_{\pi \sim q_t} \pi(\cdot | x_t)$.
- Transform relevant data (xt, at, rt(at), pt(at)) to (x, ℓ) ∈ X × ℝ^A pairs.
- Find a $\pi^t \in \Pi$ to minimize empirical risk,

$$\frac{1}{t}\sum_{s=1}^t \ell_s(\pi^t(x_s)).$$

- Use π^t to update q_t:
 coordinate descent of regularized empirical regret.
- Regularization ensures empirical regret bounds regret.