Stat 260/CS 294-102. Learning in Sequential Decision Problems.

Peter Bartlett

- 1. More contextual bandits.
 - Recall: Bandits with expert advice.
 - Infinite comparison classes.
 - Examples: parameterized policies.
 - Finite approximations: ϵ -covers and Exp4.
 - Constructing ϵ -covers:
 - (a) Lipschitz, bounded parameterization.
 - (b) Π with bounded VC-dimension.

Recall: Contextual bandits

At each round:

- See $X_t \in \mathcal{X}$.
- Choose $I_t \in \mathcal{A}, \mathcal{A} = \{1, \ldots, k\}.$
- Receive reward $Y_{I_t,t} \in \mathbb{R}$.

Stochastic/adversarial model for $(X, Y) \in \mathcal{X} \times \mathbb{R}^{\mathcal{A}}$.

Pseudo-regret:

$$\overline{R}_n = \sup_{\pi \in \Pi} \mathbb{E} \sum_{t=1}^n Y_{\pi(X_t),t} - \mathbb{E} \sum_{t=1}^n Y_{I_t,t}.$$

where Π is *comparison class* of policies $\pi : \mathcal{X} \to \mathcal{A}$.

Recall: Bandits with expert advice

Repeated game:

- 1. Adversary chooses rewards $(y_{1,t}, \ldots, y_{k,t})$.
- 2. Adversary presents expert advice $\xi_t^1, \ldots, \xi_t^N \in \Delta_k$.
- 3. Strategy chooses the distribution of I_t .
- 4. Strategy receives reward $y_{I_t,t}$.

Recall: Exp4 Strategy Exp4 set q_1 uniform on $\{1, \ldots, N\}$. for $t = 1, 2, \ldots, n$, observe $\xi_t^1, \ldots, \xi_t^N \in \Delta_k$; choose $I_t \sim p_t$, where $p_{i,t} = \mathbb{E}_{J \sim q_t} \xi_{i,t}^J$; observe $\ell_{I_t,t}$. $\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{p_{i,t}} \mathbb{1}[I_t = i], \qquad \tilde{y}_{j,t} = \mathbb{E}_{I \sim \xi_t^j} \tilde{\ell}_{I,t},$ $\tilde{Y}_{j,t} = \sum_{s=1}^{t} \tilde{y}_{j,t}, \qquad q_{j,t+1} = \frac{\exp\left(-\eta \tilde{Y}_{j,t}\right)}{\sum_{i=1}^{N} \exp\left(-\eta \tilde{Y}_{i,t}\right)}.$

Recall: Exp4

Theorem: Regret of Exp4:

$$\eta = \sqrt{\frac{2\log N}{nk}},$$
$$\eta = \sqrt{\frac{\log N}{tk}},$$

$$\overline{R}_n \le \sqrt{2nk \log N}.$$

$$\overline{R}_n \le 2\sqrt{nk\log N}.$$

More interesting cases allow the comparison class Π to be infinite. For instance, for $\mathcal{X} \subseteq \mathbb{R}^d$, we might consider linear threshold functions,

$$\pi(x) = \arg \max_{j \in \{1,\dots,k\}} x' \theta_j,$$

where $\theta_1, \ldots, \theta_k$ are parameter vectors. Or linear threshold functions defined in terms of features of x and $j \in A$,

$$\pi(x) = \arg \max_{j \in \mathcal{A}} \phi(x, j)' \theta.$$

Or a probabilistic version, $\pi : \mathcal{X} \to \Delta_{\mathcal{A}}$,

$$\pi(j|x) = \frac{\exp(\phi(x,j)'\theta)}{\sum_{i} \exp(\phi(x,i)'\theta)}.$$

(Or decision trees, or ...)

Exp4 cannot be applied to an infinite Π for computational (can't maintain the q_t distribution) and statistical (log $|\Pi| = \infty$) reasons.

But the cardinality of Π might not capture its complexity. A smaller class might be essentially the same. Consider the following approach:

- 1. Construct a finite approximation $\hat{\Pi}$ to Π .
- 2. Use Exp4 on $\hat{\Pi}$.

Consider an i.i.d. stochastic model: $(X_t, Y_t) \sim P$.

Suppose the approximation is such that, for every $\pi \in \Pi$, there is a $\hat{\pi} \in \Pi$ with

$$\Pr\left(\pi(X_t) \neq \hat{\pi}(X_t)\right) \le \epsilon,$$

then for $Y \in [0, 1]$,

$$\mathbb{E}\left|Y_{\pi(X_t),t} - Y_{\hat{\pi}(X_t),t}\right| \leq \epsilon.$$

$$\begin{aligned} \overline{R}_n(\Pi) &= \sup_{\pi \in \Pi} \mathbb{E} \sum_{t=1}^n Y_{\pi(X_t),t} - \mathbb{E} \sum_{t=1}^n Y_{I_t,t} \\ &= \sup_{\pi \in \Pi} \mathbb{E} \sum_{t=1}^n Y_{\pi(X_t),t} - \sup_{\hat{\pi} \in \hat{\Pi}} \mathbb{E} \sum_{t=1}^n Y_{\hat{\pi}(X_t),t} \\ &+ \sup_{\hat{\pi} \in \hat{\Pi}} \mathbb{E} \sum_{t=1}^n Y_{\hat{\pi}(X_t),t} - \mathbb{E} \sum_{t=1}^n Y_{I_t,t} \\ &= \sup_{\pi \in \Pi} \inf_{\hat{\pi} \in \hat{\Pi}} \mathbb{E} \sum_{t=1}^n \left(Y_{\pi(X_t),t} - Y_{\hat{\pi}(X_t),t} \right) \\ &+ \sup_{\hat{\pi} \in \hat{\Pi}} \mathbb{E} \sum_{t=1}^n Y_{\hat{\pi}(X_t),t} - \mathbb{E} \sum_{t=1}^n Y_{I_t,t} \\ &\leq n\epsilon + \overline{R}_n(\hat{\Pi}). \end{aligned}$$

A set $\hat{\Pi}$ that can ϵ -approximate Π in this way is called an ϵ -cover of Π in the pseudometric

$$\rho(\hat{\pi}, \pi) = \Pr\left(\pi(X_t) \neq \hat{\pi}(X_t)\right).$$

The cardinality of the smallest ϵ -cover of Π is called its ϵ -covering number, and denoted $\mathcal{N}_{\Pi}(\epsilon)$.

Theorem: Under the i.i.d. stochastic model: $(X_t, Y_t) \sim P$, strategy Exp4 on the class $\hat{\Pi}$, which is a minimal ϵ -cover of Π , where ϵ is chosen to minimize

$$\epsilon + \sqrt{\frac{2k\log\mathcal{N}_{\Pi}(\epsilon)}{n}},$$

gives pseudo-regret

$$\overline{R}_n \le n \min_{\epsilon \ge 0} \left(\epsilon + \sqrt{\frac{2k \log \mathcal{N}_{\Pi}(\epsilon)}{n}} \right)$$

How could we construct an ϵ -cover $\hat{\Pi}$ of Π ?

If Π is a parametric class, $\Pi = \{\pi_{\theta} : \theta \in \Theta\}$, where, for all $x \in \mathcal{X}$, the map $\theta \to \pi_{\theta}(x)$ is a Lipschitz map: $\rho(\pi_{\theta}, \pi_{\theta'}) \leq c \|\theta - \theta'\|$, and Θ is compact, then we can construct an (ϵ/c) -cover $\hat{\Theta}$ of Θ , and define

$$\hat{\Pi} = \left\{ \pi_{\hat{\theta}} : \hat{\theta} \in \hat{\Theta} \right\}.$$

(For instance, consider the parameterized class

$$\pi_{\theta}(j|x) = \frac{\exp(\phi(x,j)'\theta)}{\sum_{i} \exp(\phi(x,i)'\theta)}$$

with bounded features ϕ and bounded parameters θ .)

Another example: Suppose that the *shattering coefficient*

$$S_{\Pi}(n) := \max_{x_1, \dots, x_n \in \mathcal{X}} |\{ (\pi(x_1), \dots, \pi(x_n)) : \pi \in \Pi \} |$$

grows slowly with n (much slower than exponential in n). Then we can use that to build a small cover.

High level idea:

- 1. Gather some data X_1, \ldots, X_m (making arbitrary decisions I_t),
- 2. Construct $\hat{\Pi}$ containing one representative for each element of $\{(\pi(X_1), \ldots, \pi(X_m)) : \pi \in \Pi\}$. (So that $|\hat{\Pi}| \leq S_{\Pi}(m)$.)
- 3. Use Exp4 with $\hat{\Pi}$.

Theorem: Under the i.i.d. stochastic model: $(X_t, Y_t) \sim P$, with probability $1 - \delta$, the $\hat{\Pi}$ constructed in this way is an ϵ -cover for Π of size no more than $S_{\Pi}(m)$, for

$$\epsilon = \frac{2}{m} \log_2 \left(\frac{2S_{\Pi}(2m)^2}{\delta} \right).$$

Thus, the pseudo-regret of this strategy satisfies

$$\overline{R}_n \leq m + (n-m)\delta + (n-m)\epsilon + \sqrt{2(n-m)k\log(S_{\Pi}(m))}.$$

If $S_{\Pi}(m) = O\left((m/d)^d\right)$, setting $m = \sqrt{nd\log(n/d)}$ and $\delta = m/n$ gives

$$\overline{R}_n = O\left(\sqrt{nkd\log\frac{n}{d}}\right).$$

A symmetrization idea due to Vapnik and Chervonenkis, plus a simple counting argument shows that $\hat{\Pi}$ is an ϵ -cover:

Lemma: Given i.i.d. data $D_n = \{X_1, \ldots, X_n\}$, and a set \mathcal{E} of events in \mathcal{X} ,

 $P^n (\exists E \in \mathcal{E}, D \cap E = \emptyset, P(E) \ge \epsilon) \le 2S_{\mathcal{E}}(2n)2^{-\epsilon n/2},$

where $S_{\mathcal{E}}(n)$ is the shattering coefficient of $\{1_E : E \in \mathcal{E}\}$.

Defining $\mathcal{E} = \{\{x : \pi(x) = \hat{\pi}(x)\} : (\pi, \hat{\pi}) \in \Pi^2\}$, we have, with probability at least $1 - \delta$ over D_m , the initial *m*-sample, for every $\pi \in \Pi$ there is a $\hat{\pi} \in \hat{\Pi}$ (the one that equals π on D_m) with $\Pr(\pi(X) \neq \hat{\pi}(X)) \leq \epsilon$, that is, $\hat{\Pi}$ is an ϵ -cover for Π .

When does $S_{\Pi}(n)$ grow slowly with n?

Definition: A class $\Pi \subseteq \{0,1\}^{\mathcal{X}}$ shatters $\{x_1,\ldots,x_d\} \subseteq \mathcal{X}$ means that $|\Pi(x_1^d)| = 2^d$. The Vapnik-Chervonenkis dimension of Π is $d_{VC}(\Pi) = \max \{d : \text{some } x_1, \ldots, x_d \in \mathcal{X} \text{ is shattered by } \Pi\}$ $= \max \{d : S_{\Pi}(d) = 2^d\}.$

Vapnik-Chervonenkis dimension: "Sauer's Lemma"

Theorem: [Vapnik-Chervonenkis] $d_{VC}(F) \le d$ implies

$$S_{\Pi}(n) \le \sum_{i=0}^d \binom{n}{i}.$$

If $n \ge d$, the latter sum is no more than $\left(\frac{en}{d}\right)^d$.

So the VC-dimension is a single integer summary of the shatter coefficients: either it is finite, and $S_{\Pi}(n) = O(n^d)$, or $S_{\Pi}(n) = 2^n$. No other growth is possible.

$$S_{\Pi}(n) \begin{cases} = 2^n & \text{if } n \leq d, \\ \leq (e/d)^d n^d & \text{if } n > d. \end{cases}$$

Vapnik-Chervonenkis dimension: "Sauer's Lemma"

Stronger than this: finiteness of the VC-dimension is necessary. If the VC-dimension is infinite, then there are distributions for which competing with Π , even in the full information case, is impossible: for every strategy, there is a probability distribution such that with high probability, the regret grows linearly.

(And it's the same story for k-valued functions, modulo $\log k$ factors.)

VC-dimension bounds for parameterized families

Consider a parameterized class of k-valued functions,

$$\Pi = \left\{ x \mapsto f(x, \theta) : \theta \in \mathbb{R}^p \right\},\$$

where $f : \mathbb{R}^m \times \mathbb{R}^p \to \{1, \dots, k\}.$

Suppose that f can be computed using no more than t operations of the following kinds:

- 1. arithmetic $(+, -, \times, /)$,
- 2. comparisons (>, =, <),
- 3. output a constant in $\{1, \ldots, k\}$

Theorem: $d_{VC}(F) = O(pt \log k).$

(And a similar story applies, with a worse dependence on t, if we include the exponential function in the set of operations.)

Summary: Infinite comparison classes

Competing with infinite $\Pi \subseteq \{1, \ldots, k\}^{\mathcal{X}}$:

- If we want to compete with an infinite Π for all distributions on $\mathcal{X} \times [0,1]^k$, $S_{\Pi}(n)$ must have polynomial growth, say $O(n^d)$.
- We can use i.i.d. data to build an ϵ -cover of Π of size $O(S_{\Pi}(n)) = O(n^d)$.
- Running Exp4 with this class of experts gives regret

$$\overline{R}_n = O\left(\sqrt{nkd\log n}\right).$$

• The drawback is *computational*: $S_{\Pi}(n)$ is polynomial in n, but exponential in the dimension d. For example, for

$$\pi(x) = \arg\max_{j \in \mathcal{A}} \phi(x, j)'\theta,$$

the computation grows exponentially with the number of features.