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1. Stochastic bandits.
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Stochastic bandit problems.

• k arms.

• Some model for reward distributions Pθ for θ ∈ Θ. (But Θ might be

very large; e.g., {Pθ : θ ∈ Θ} might be the set of all probability

distributions on [0, 1].)

• Arm j has unknown reward distribution Pθj , and pulling that arm

produces rewards Xj,1, Xj,2, . . . chosen independently from Pθj .

• At time t, the problem is to use the available information (that is,

previous choices and outcomes, I1, XI1,1, . . . , It−1, XIt−1,t−1) to

choose an arm It ∈ {1, . . . , k}.

• This choice can be randomized.
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Stochastic bandit problems.

We aim to get a high total reward. Several formulations:

1. We might consider regret,

Rn = max
j∗=1,...,k

n
∑

t=1

Xj∗,t −
n
∑

t=1

XIt,t,

and aim to minimize expected regret, ERn, or aim to minimize regret

with high probability,

Pr(Rn − fn ≥ ǫ) ≤ δ.
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Stochastic bandit problems.

2. Or we might consider total reward,

n
∑

t=1

XIt,t.

Maximizing expected total reward is equivalent to minimizing
pseudo-regret,

Rn = max
j∗=1,...,k

E

[

n
∑

t=1

Xj∗,t −
n
∑

t=1

XIt,t

]

= n max
j∗=1,...,k

µj∗ − E

n
∑

t=1

XIt,t,

where µj = EXj,1. Note that Rn ≤ ERn. We might instead aim to
maximize total reward with high probability.
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Stochastic bandit problems.

Fluctuations in
∑n

t=1
Xj,t grow like

√
n, so we cannot hope to achieve

ERn better than this order. We’ll focus on pseudo-regret.

Notation:

• Mean reward: µj = EXj,1.

• Best: µ∗ = maxj∗=1,...,k µj∗ .

• Gap: ∆j = µ∗ − µj .

• Number of plays: Tj(s) =
∑s

t=1
1[It = j].

Hence,

Rn = nµ∗ −
k

∑

j=1

ETj(n)µj =
k
∑

j=1

ETj(n)∆j .
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