Stat 260/CS 294-102. Learning in Sequential Decision Problems.

Peter Bartlett

- 1. Minimax regret bounds
 - Upper bounds: worst case over Δ_j .
 - Lower bounds.

Pseudo-regret

Recall

$$\overline{R}_n(P_\theta) = \max_{j^*=1,\dots,k} \mathbb{E}\left[\sum_{t=1}^n X_{j^*,t} - \sum_{t=1}^n X_{I_t,t}\right] = n\mu^* - \mathbb{E}\sum_{t=1}^n X_{I_t,t}.$$

We have seen pseudo-regret bounds for a particular strategy, of the form: For all reward distributions on [0, 1] and all n,

$$\overline{R}_n(P) = \sum_{j=1}^k \Delta_j \mathbb{E}T_j(n) \le c_1 \sum_{j=1}^k \frac{\Delta_j \log n}{d(\mu_j, \mu^*)} + c_2(\mu_1, \dots, \mu_k),$$

where d is the KL-divergence between Bernoulli distributions with the given expectations. These are obtained by showing that

$$\Delta_j \mathbb{E}T_j(n) \le \frac{c_1 \Delta_j \log n}{d(\mu_j, \mu^*)} + c_2(\mu_1, \dots, \mu_k).$$

Minimax upper bounds

These bounds get worse as the Δ_j get smaller. We can also obtain regret bounds that are independent of the Δ_j , but the rate is worse.

Theorem: If a particular strategy satisfies: for all reward distributions on [0, 1] and all n,

$$\mathbb{E}T_j(n) \le c_1 \frac{\log n}{d(\mu_j, \mu^*)} + \frac{c_2}{\Delta_j^2}.$$

then for all n,

$$\sup_{P} \overline{R}_n(P) \le \sqrt{kn\left(\frac{c_1}{2}\log n + c_2\right)}.$$

Minimax upper bounds

We know that, for a fixed distribution, we can achieve a much better regret rate (logarithmic in n), but the constant in that rate depends on the distribution. This bound holds uniformly across all distributions. It's a *minimax* bound:

$$\min_{S} \max_{P} \overline{R}_{n}(P) \leq \sqrt{kn\left(\frac{c_{1}}{2}\log n + c_{2}\right)},$$

where the min is over strategies.

These are also called *distribution-free* regret bounds.

(Note: the c_2/Δ_j^2 term was unimportant when we were treating the Δ_j as constants. But its dependence on Δ_j is important here.)

Minimax upper bounds: proof

Pinsker's inequality $(d(\mu_j, \mu^*) \ge 2\Delta_j^2)$ implies

$$\Delta_j \mathbb{E} T_j(n) \le \frac{1}{\Delta_j} \left(\frac{c_1}{2} \log n + c_2 \right).$$

If we define $p_j = \mathbb{E}T_j(n)/n$, so that $\sum_j p_j = 1$, then

$$\overline{R}_n(P) = \sum_{j=1}^k \Delta_j \mathbb{E}T_j(n)$$
$$\leq \sum_{j=1}^k \min\left\{\frac{1}{\Delta_j} \left(\frac{c_1}{2}\log n + c_2\right), p_j n \Delta_j\right\}$$

Minimax upper bounds: proof

The minimum is maximized for

$$\frac{1}{\Delta_j} \left(\frac{c_1}{2} \log n + c_2 \right) = p_j n \Delta_j,$$

and solving for Δ_j gives

$$np_j\Delta_j = \sqrt{np_j\left(\frac{c_1}{2}\log n + c_2\right)}.$$

(And the two terms in the minimum are monotonically increasing and decreasing in Δ_j , so if this choice of Δ_j is impossible—e.g., $\Delta_j > 1$ —then the minimum is only smaller.)

Minimax upper bounds: proof

Thus,

$$\overline{R}_n(P) \le \sqrt{n\left(\frac{c_1}{2}\log n + c_2\right)} \sum_{j=1}^k \sqrt{p_j}$$
$$\le \sqrt{n\left(\frac{c_1}{2}\log n + c_2\right)} \left(\sum_{j=1}^k p_j\right)^{1/2} \left(\sum_{j=1}^k 1\right)^{1/2}$$
$$= \sqrt{kn\left(\frac{c_1}{2}\log n + c_2\right)},$$

by Cauchy-Schwarz.

Minimax lower bound

Theorem: Let \mathcal{P} be the set of all Bernoulli reward distributions. Then for all n,

$$\inf_{\text{strategies}} \sup_{P \in \mathcal{P}^k} \overline{R}_n(P) \ge \frac{1}{18} \min\{\sqrt{nk}, n\}.$$

Note the order of quantifiers: fix any strategy, then for all n, there is a reward distribution for which the regret is $\Omega(\sqrt{nk})$. On the other hand, we know that there are strategies so that for any reward distributions, the regret grows like $O(\log n)$. The lower bound is saying that the envelope of all of these regret curves must be $\Omega(\sqrt{nk})$.

Minimax lower bound: intuition

After *n* rounds, some arm has not been pulled more than n/k times. For that arm, the deviations in the sample averages are of the order of $\sqrt{k/n}$, so we cannot hope to identify the best arm on a finer scale than this. So choosing a distribution so that the best arm is only $\sqrt{k/n}$ better than the others, the regret should be roughly $n\sqrt{k/n} = \sqrt{kn}$.

We'll use the probabilistic method: randomly choose the reward distributions and show that, for any strategy, under that random choice,

$$\mathbb{E}\overline{R}_n(P) \ge \frac{1}{18}\min\{\sqrt{nk}, n\}.$$

This implies that, for that strategy, there must be a reward distribution that incurs at least that regret.

Rewards:

$$\mu^* = \frac{1}{2} + \epsilon, \qquad \mu_j = \frac{1}{2} \qquad \text{for } j \neq j^*.$$

(We'll choose ϵ later.)

Choose index j^* uniformly at random.

Fix a strategy. Let \mathbb{P}_{j^*} denote the distribution of the sequence of rewards $Y_t = X_{I_t,t}$ (and the expectation under that distribution) with the fixed strategy and the choice of index j^* .

$$\frac{1}{k} \sum_{j^*=1}^k \overline{R}_n(\mathbb{P}_{j^*}) = \frac{1}{k} \sum_{j^*=1}^k \mathbb{P}_{j^*} \sum_{j=1}^k \Delta_j T_j(n)$$
$$= \frac{\epsilon}{k} \sum_{j^*=1}^k \mathbb{P}_{j^*} \sum_{j\neq j^*} T_j(n)$$
$$= \epsilon \left(n - \frac{1}{k} \sum_{j^*=1}^k \mathbb{P}_{j^*} T_{j^*}(n) \right)$$

Let \mathbb{P} denote the distribution of the sequence of rewards $Y_t = X_{I_t,t}$ (and the expectation under that distribution) with the fixed strategy, when the rewards $X_{j,t}$ have $\mu_j = 1/2$ for all j. Then

$$\mathbb{P}_{j^*} T_{j^*}(n) \leq \mathbb{P} T_{j^*}(n) + n D_{TV}(\mathbb{P}, \mathbb{P}_{j^*}) \quad \text{(see (1) below)}$$

$$\leq \mathbb{P} T_{j^*}(n) + n \sqrt{\frac{1}{2}} D_{KL}(\mathbb{P}, \mathbb{P}_{j^*}) \quad \text{(Pinsker (2))}$$

$$= \mathbb{P} T_{j^*}(n) + \frac{n}{2} \sqrt{\log \frac{1}{1 - 4\epsilon^2}} \mathbb{P} T_{j^*}(n) \quad \text{(chain rule (3))}.$$

Notice that
$$\sum_{j^*=1}^k \mathbb{P}T_{j^*}(n) = n$$
:

$$\frac{1}{k} \sum_{j^*=1}^{k} \mathbb{P}_{j^*} T_{j^*}(n)
\leq \frac{1}{k} \sum_{j^*=1}^{k} \mathbb{P}_{j^*}(n) + \frac{n}{2k} \sum_{j^*=1}^{k} \sqrt{\log \frac{1}{1 - 4\epsilon^2}} \mathbb{P}_{j^*}(n)
\leq \frac{n}{k} + \frac{n}{2} \sqrt{\log \frac{1}{1 - 4\epsilon^2}} \frac{1}{k} \sum_{j^*=1}^{k} \mathbb{P}_{j^*}(n) \quad \text{(Jensen)}
= \frac{n}{k} + \frac{n}{2} \sqrt{\frac{n}{k} \log \frac{1}{1 - 4\epsilon^2}}.$$

Combining,

$$\frac{1}{k} \sum_{j^*=1}^k \overline{R}_n(\mathbb{P}_{j^*}) \ge \epsilon n \left(1 - \frac{1}{k} - \frac{1}{2} \sqrt{\frac{n}{k} \log \frac{1}{1 - 4\epsilon^2}} \right)$$

Since $\log(1-x)$ is concave, the line between two points on its graph lies below the graph: $\log(1-x) \ge -\log(1-c)x/c$ for $0 \le x \le c$. So $\log(1/(1-4\epsilon^2) \ge c\epsilon^2$. Picking $\epsilon = \min(\sqrt{k/n}, 1)/4$ gives

$$\frac{1}{k}\sum_{j^*=1}^k \overline{R}_n(\mathbb{P}_{j^*}) \ge \frac{1}{18}\min\left\{\sqrt{kn}, n\right\}.$$

(1) D_{TV} and changes of expectation

Lemma: If
$$\sup_x f(x) - \inf_x f(x) = 1$$
,
 $|Pf - Qf| \le D_{TV}(P, Q).$

$$Pf - Qf = \int f \, dP - \int f \, dQ$$

$$\leq \int 1 \left[\frac{dP}{d(P+Q)} > \frac{dQ}{d(P+Q)} \right] \, d(P-Q)$$

$$= D_{TV}(P,Q).$$

(2) Pinsker's inequality

Lemma:

$D_{KL}(P,Q) \ge 2D_{TV}(P,Q)^2.$

(3) Chain rule for KL-divergence

Lemma: For \mathbb{P} and \mathbb{Q} distributions of sequences Y_1, \ldots, Y_n ,

$$D_{KL}\left(\mathbb{P},\mathbb{Q}\right) = \mathbb{P}\sum_{t=1}^{n} D_{KL}\left(\mathbb{P}(Y_t|Y^{t-1}),\mathbb{Q}(Y_t|Y^{t-1})\right)$$

(3) Chain rule for KL-divergence

Proof.

$$D_{KL} (\mathbb{P}, \mathbb{Q}) = \int \log \frac{d\mathbb{P}}{d\mathbb{Q}} (y^n) d\mathbb{P}(y^n)$$

=
$$\int \int \log \left(\frac{d\mathbb{P}(x_n | y^{n-1})}{d\mathbb{Q}(x_n | y^{n-1})} (y_n) \times \frac{d\mathbb{P}(x^{n-1})}{d\mathbb{Q}(x^{n-1})} (y^{n-1}) \right) d\mathbb{P}(y_n | y^{n-1}) d\mathbb{P}(y^{n-1})$$

=
$$\int D_{KL} \left(\mathbb{P}(y_n | y^{n-1}), \mathbb{Q}(y_n | y^{n-1}) \right) d\mathbb{P}(y^{n-1}) + D_{KL} \left(\mathbb{P}(y^{n-1}), \mathbb{Q}(y^{n-1}) \right)$$

(3) Chain rule for KL-divergence

Here,

$$\sum_{t=1}^{n} \mathbb{P}D_{KL} \left(\mathbb{P}(Y_t | Y^{t-1}), \mathbb{P}_{j^*}(Y_t | Y^{t-1}) \right)$$

= $\sum_{t=1}^{n} \left(0 \times \mathbb{P}\{I_t \neq j^*\} + d\left(\frac{1}{2}, \frac{1}{2} + \epsilon\right) \mathbb{P}\{I_t = j^*\} \right)$
= $\sum_{t=1}^{n} \mathbb{P}\{I_t = j^*\} \frac{1}{2} \log \frac{1}{1 - 4\epsilon^2}$
= $\frac{1}{2} \log \left(\frac{1}{1 - 4\epsilon^2}\right) \mathbb{P}T_{j^*}(n).$