Stat 260/CS 294-102. Learning in Sequential Decision Problems.

Peter Bartlett

1. Minimax regret bounds

- Upper bounds: worst case over Δ_{j}.
- Lower bounds.

Pseudo-regret

Recall

$$
\bar{R}_{n}\left(P_{\theta}\right)=\max _{j^{*}=1, \ldots, k} \mathbb{E}\left[\sum_{t=1}^{n} X_{j^{*}, t}-\sum_{t=1}^{n} X_{I_{t}, t}\right]=n \mu^{*}-\mathbb{E} \sum_{t=1}^{n} X_{I_{t}, t}
$$

We have seen pseudo-regret bounds for a particular strategy, of the form: For all reward distributions on $[0,1]$ and all n,

$$
\bar{R}_{n}(P)=\sum_{j=1}^{k} \Delta_{j} \mathbb{E} T_{j}(n) \leq c_{1} \sum_{j=1}^{k} \frac{\Delta_{j} \log n}{d\left(\mu_{j}, \mu^{*}\right)}+c_{2}\left(\mu_{1}, \ldots, \mu_{k}\right)
$$

where d is the KL-divergence between Bernoulli distributions with the given expectations. These are obtained by showing that

$$
\Delta_{j} \mathbb{E} T_{j}(n) \leq \frac{c_{1} \Delta_{j} \log n}{d\left(\mu_{j}, \mu^{*}\right)}+c_{2}\left(\mu_{1}, \ldots, \mu_{k}\right)
$$

Minimax upper bounds

These bounds get worse as the Δ_{j} get smaller. We can also obtain regret bounds that are independent of the Δ_{j}, but the rate is worse.

Theorem: If a particular strategy satisfies:
for all reward distributions on $[0,1]$ and all n,

$$
\mathbb{E} T_{j}(n) \leq c_{1} \frac{\log n}{d\left(\mu_{j}, \mu^{*}\right)}+\frac{c_{2}}{\Delta_{j}^{2}}
$$

then for all n,

$$
\sup _{P} \bar{R}_{n}(P) \leq \sqrt{k n\left(\frac{c_{1}}{2} \log n+c_{2}\right)} .
$$

Minimax upper bounds

We know that, for a fixed distribution, we can achieve a much better regret rate (logarithmic in n), but the constant in that rate depends on the distribution. This bound holds uniformly across all distributions. It's a minimax bound:

$$
\min _{S} \max _{P} \bar{R}_{n}(P) \leq \sqrt{k n\left(\frac{c_{1}}{2} \log n+c_{2}\right)}
$$

where the min is over strategies.
These are also called distribution-free regret bounds.
(Note: the c_{2} / Δ_{j}^{2} term was unimportant when we were treating the Δ_{j} as constants. But its dependence on Δ_{j} is important here.)

Minimax upper bounds: proof

Pinsker's inequality $\left(d\left(\mu_{j}, \mu^{*}\right) \geq 2 \Delta_{j}^{2}\right)$ implies

$$
\Delta_{j} \mathbb{E} T_{j}(n) \leq \frac{1}{\Delta_{j}}\left(\frac{c_{1}}{2} \log n+c_{2}\right) .
$$

If we define $p_{j}=\mathbb{E} T_{j}(n) / n$, so that $\sum_{j} p_{j}=1$, then

$$
\begin{aligned}
\bar{R}_{n}(P) & =\sum_{j=1}^{k} \Delta_{j} \mathbb{E} T_{j}(n) \\
& \leq \sum_{j=1}^{k} \min \left\{\frac{1}{\Delta_{j}}\left(\frac{c_{1}}{2} \log n+c_{2}\right), p_{j} n \Delta_{j}\right\} .
\end{aligned}
$$

Minimax upper bounds: proof

The minimum is maximized for

$$
\frac{1}{\Delta_{j}}\left(\frac{c_{1}}{2} \log n+c_{2}\right)=p_{j} n \Delta_{j}
$$

and solving for Δ_{j} gives

$$
n p_{j} \Delta_{j}=\sqrt{n p_{j}\left(\frac{c_{1}}{2} \log n+c_{2}\right)}
$$

(And the two terms in the minimum are monotonically increasing and decreasing in Δ_{j}, so if this choice of Δ_{j} is impossible-e.g., $\Delta_{j}>1$-then the minimum is only smaller.)

Minimax upper bounds: proof

Thus,

$$
\begin{aligned}
\bar{R}_{n}(P) & \leq \sqrt{n\left(\frac{c_{1}}{2} \log n+c_{2}\right)} \sum_{j=1}^{k} \sqrt{p_{j}} \\
& \leq \sqrt{n\left(\frac{c_{1}}{2} \log n+c_{2}\right)}\left(\sum_{j=1}^{k} p_{j}\right)^{1 / 2}\left(\sum_{j=1}^{k} 1\right)^{1 / 2} \\
& =\sqrt{k n\left(\frac{c_{1}}{2} \log n+c_{2}\right)}
\end{aligned}
$$

by Cauchy-Schwarz.

Minimax lower bound

Theorem: Let \mathcal{P} be the set of all Bernoulli reward distributions. Then for all n,

$$
\inf _{\text {strategies }} \sup _{P \in \mathcal{P}^{k}} \bar{R}_{n}(P) \geq \frac{1}{18} \min \{\sqrt{n k}, n\}
$$

Note the order of quantifiers: fix any strategy, then for all n, there is a reward distribution for which the regret is $\Omega(\sqrt{n k})$. On the other hand, we know that there are strategies so that for any reward distributions, the regret grows like $O(\log n)$. The lower bound is saying that the envelope of all of these regret curves must be $\Omega(\sqrt{n k})$.

Minimax lower bound: intuition

After n rounds, some arm has not been pulled more than n / k times. For that arm, the deviations in the sample averages are of the order of $\sqrt{k / n}$, so we cannot hope to identify the best arm on a finer scale than this. So choosing a distribution so that the best arm is only $\sqrt{k / n}$ better than the others, the regret should be roughly $n \sqrt{k / n}=\sqrt{k n}$.

Minimax lower bound: proof

We'll use the probabilistic method: randomly choose the reward distributions and show that, for any strategy, under that random choice,

$$
\mathbb{E} \bar{R}_{n}(P) \geq \frac{1}{18} \min \{\sqrt{n k}, n\}
$$

This implies that, for that strategy, there must be a reward distribution that incurs at least that regret.

Minimax lower bound: proof

Rewards:

$$
\mu^{*}=\frac{1}{2}+\epsilon, \quad \mu_{j}=\frac{1}{2} \quad \text { for } j \neq j^{*}
$$

(We'll choose ϵ later.)
Choose index j^{*} uniformly at random.
Fix a strategy. Let $\mathbb{P}_{j^{*}}$ denote the distribution of the sequence of rewards $Y_{t}=X_{I_{t}, t}$ (and the expectation under that distribution) with the fixed strategy and the choice of index j^{*}.

Minimax lower bound: proof

$$
\begin{aligned}
\frac{1}{k} \sum_{j^{*}=1}^{k} \bar{R}_{n}\left(\mathbb{P}_{j^{*}}\right) & =\frac{1}{k} \sum_{j^{*}=1}^{k} \mathbb{P}_{j^{*}} \sum_{j=1}^{k} \Delta_{j} T_{j}(n) \\
& =\frac{\epsilon}{k} \sum_{j^{*}=1}^{k} \mathbb{P}_{j^{*}} \sum_{j \neq j^{*}} T_{j}(n) \\
& =\epsilon\left(n-\frac{1}{k} \sum_{j^{*}=1}^{k} \mathbb{P}_{j^{*}} T_{j^{*}}(n)\right)
\end{aligned}
$$

Minimax lower bound: proof

Let \mathbb{P} denote the distribution of the sequence of rewards $Y_{t}=X_{I_{t}, t}$ (and the expectation under that distribution) with the fixed strategy, when the rewards $X_{j, t}$ have $\mu_{j}=1 / 2$ for all j. Then

$$
\begin{aligned}
\mathbb{P}_{j^{*}} T_{j^{*}}(n) & \leq \mathbb{P} T_{j^{*}}(n)+n D_{T V}\left(\mathbb{P}, \mathbb{P}_{j^{*}}\right) \quad \text { (see (1) below) } \\
& \leq \mathbb{P} T_{j^{*}}(n)+n \sqrt{\frac{1}{2} D_{K L}\left(\mathbb{P}, \mathbb{P}_{j^{*}}\right)} \quad \text { (Pinsker (2)) } \\
& =\mathbb{P} T_{j^{*}}(n)+\frac{n}{2} \sqrt{\log \frac{1}{1-4 \epsilon^{2}} \mathbb{P} T_{j^{*}}(n)} \quad \text { (chain rule (3)). }
\end{aligned}
$$

Minimax lower bound: proof

Notice that $\sum_{j^{*}=1}^{k} \mathbb{P} T_{j^{*}}(n)=n$:

$$
\begin{aligned}
& \frac{1}{k} \sum_{j^{*}=1}^{k} \mathbb{P}_{j^{*}} T_{j^{*}}(n) \\
& \leq \frac{1}{k} \sum_{j^{*}=1}^{k} \mathbb{P} T_{j^{*}}(n)+\frac{n}{2 k} \sum_{j^{*}=1}^{k} \sqrt{\log \frac{1}{1-4 \epsilon^{2}} \mathbb{P} T_{j^{*}}(n)} \\
& \leq \frac{n}{k}+\frac{n}{2} \sqrt{\log \frac{1}{1-4 \epsilon^{2}} \frac{1}{k} \sum_{j^{*}=1}^{k} \mathbb{P} T_{j^{*}}(n)} \quad \text { (Jensen) } \\
& =\frac{n}{k}+\frac{n}{2} \sqrt{\frac{n}{k} \log \frac{1}{1-4 \epsilon^{2}}} .
\end{aligned}
$$

Minimax lower bound: proof

Combining,

$$
\frac{1}{k} \sum_{j^{*}=1}^{k} \bar{R}_{n}\left(\mathbb{P}_{j^{*}}\right) \geq \epsilon n\left(1-\frac{1}{k}-\frac{1}{2} \sqrt{\frac{n}{k} \log \frac{1}{1-4 \epsilon^{2}}}\right)
$$

Since $\log (1-x)$ is concave, the line between two points on its graph lies below the graph: $\log (1-x) \geq-\log (1-c) x / c$ for $0 \leq x \leq c$. So $\log \left(1 /\left(1-4 \epsilon^{2}\right) \geq c \epsilon^{2}\right.$. Picking $\epsilon=\min (\sqrt{k / n}, 1) / 4$ gives

$$
\frac{1}{k} \sum_{j^{*}=1}^{k} \bar{R}_{n}\left(\mathbb{P}_{j^{*}}\right) \geq \frac{1}{18} \min \{\sqrt{k n}, n\}
$$

(1) $D_{T V}$ and changes of expectation

Lemma: If $\sup _{x} f(x)-\inf _{x} f(x)=1$,

$$
|P f-Q f| \leq D_{T V}(P, Q)
$$

$$
\begin{aligned}
P f-Q f & =\int f d P-\int f d Q \\
& \leq \int 1\left[\frac{d P}{d(P+Q)}>\frac{d Q}{d(P+Q)}\right] d(P-Q) \\
& =D_{T V}(P, Q)
\end{aligned}
$$

(2) Pinsker's inequality

Lemma:

$$
D_{K L}(P, Q) \geq 2 D_{T V}(P, Q)^{2}
$$

(3) Chain rule for KL-divergence

Lemma: For \mathbb{P} and \mathbb{Q} distributions of sequences Y_{1}, \ldots, Y_{n},

$$
D_{K L}(\mathbb{P}, \mathbb{Q})=\mathbb{P} \sum_{t=1}^{n} D_{K L}\left(\mathbb{P}\left(Y_{t} \mid Y^{t-1}\right), \mathbb{Q}\left(Y_{t} \mid Y^{t-1}\right)\right) .
$$

(3) Chain rule for KL-divergence

Proof.

$$
\begin{aligned}
& D_{K L}(\mathbb{P}, \mathbb{Q})= \int \log \frac{d \mathbb{P}}{d \mathbb{Q}}\left(y^{n}\right) d \mathbb{P}\left(y^{n}\right) \\
&= \iint \log \left(\frac{d \mathbb{P}\left(x_{n} \mid y^{n-1}\right)}{d \mathbb{Q}\left(x_{n} \mid y^{n-1}\right)}\left(y_{n}\right)\right. \\
&\left.\quad \times \frac{d \mathbb{P}\left(x^{n-1}\right)}{d \mathbb{Q}\left(x^{n-1}\right)}\left(y^{n-1}\right)\right) d \mathbb{P}\left(y_{n} \mid y^{n-1}\right) d \mathbb{P}\left(y^{n-1}\right) \\
&=\int D_{K L}\left(\mathbb{P}\left(y_{n} \mid y^{n-1}\right), \mathbb{Q}\left(y_{n} \mid y^{n-1}\right)\right) d \mathbb{P}\left(y^{n-1}\right) \\
& \quad+D_{K L}\left(\mathbb{P}\left(y^{n-1}\right), \mathbb{Q}\left(y^{n-1}\right)\right)
\end{aligned}
$$

(3) Chain rule for KL-divergence

Here,

$$
\begin{aligned}
& \sum_{t=1}^{n} \mathbb{P} D_{K L}\left(\mathbb{P}\left(Y_{t} \mid Y^{t-1}\right), \mathbb{P}_{j^{*}}\left(Y_{t} \mid Y^{t-1}\right)\right) \\
& =\sum_{t=1}^{n}\left(0 \times \mathbb{P}\left\{I_{t} \neq j^{*}\right\}+d\left(\frac{1}{2}, \frac{1}{2}+\epsilon\right) \mathbb{P}\left\{I_{t}=j^{*}\right\}\right) \\
& =\sum_{t=1}^{n} \mathbb{P}\left\{I_{t}=j^{*}\right\} \frac{1}{2} \log \frac{1}{1-4 \epsilon^{2}} \\
& =\frac{1}{2} \log \left(\frac{1}{1-4 \epsilon^{2}}\right) \mathbb{P} T_{j^{*}}(n)
\end{aligned}
$$

