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1. Minimax regret bounds

• Upper bounds: worst case over∆j .

• Lower bounds.

1



Pseudo-regret

Recall

Rn(Pθ) = max
j∗=1,...,k

E

[

n
∑

t=1

Xj∗,t −
n
∑

t=1

XIt,t

]

= nµ∗ − E

n
∑

t=1

XIt,t.

We have seen pseudo-regret bounds for a particular strategy, of the form:
For all reward distributions on[0, 1] and alln,

Rn(P ) =
k
∑

j=1

∆jETj(n) ≤ c1

k
∑

j=1

∆j logn

d(µj , µ∗)
+ c2(µ1, . . . , µk),

whered is the KL-divergence between Bernoulli distributions withthe
given expectations. These are obtained by showing that

∆jETj(n) ≤
c1∆j logn

d(µj , µ∗)
+ c2(µ1, . . . , µk).
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Minimax upper bounds

These bounds get worse as the∆j get smaller. We can also obtain regret

bounds that are independent of the∆j , but the rate is worse.

Theorem: If a particular strategy satisfies:

for all reward distributions on[0, 1] and alln,

ETj(n) ≤ c1
logn

d(µj , µ∗)
+

c2
∆2

j

.

then for alln,

sup
P

Rn(P ) ≤
√

kn
(c1
2
logn+ c2

)

.
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Minimax upper bounds

We know that, for a fixed distribution, we can achieve a much better

regret rate (logarithmic inn), but the constant in that rate depends on the

distribution. This bound holds uniformly across all distributions. It’s a

minimax bound:

min
S

max
P

Rn(P ) ≤
√

kn
(c1
2
logn+ c2

)

,

where the min is over strategies.

These are also calleddistribution-free regret bounds.

(Note: thec2/∆2

j term was unimportant when we were treating the∆j as

constants. But its dependence on∆j is important here.)
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Minimax upper bounds: proof

Pinsker’s inequality (d(µj , µ
∗) ≥ 2∆2

j ) implies

∆jETj(n) ≤
1

∆j

(c1
2
logn+ c2

)

.

If we definepj = ETj(n)/n, so that
∑

j pj = 1, then

Rn(P ) =
k
∑

j=1

∆jETj(n)

≤
k
∑

j=1

min

{

1

∆j

(c1
2
logn+ c2

)

, pjn∆j

}

.
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Minimax upper bounds: proof

The minimum is maximized for

1

∆j

(c1
2
logn+ c2

)

= pjn∆j ,

and solving for∆j gives

npj∆j =

√

npj

(c1
2
logn+ c2

)

.

(And the two terms in the minimum are monotonically increasing and

decreasing in∆j , so if this choice of∆j is impossible—e.g.,

∆j > 1—then the minimum is only smaller.)
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Minimax upper bounds: proof

Thus,

Rn(P ) ≤
√

n
(c1
2
logn+ c2

)

k
∑

j=1

√
pj

≤
√

n
(c1
2
logn+ c2

)





k
∑

j=1

pj





1/2



k
∑

j=1

1





1/2

=

√

kn
(c1
2
logn+ c2

)

,

by Cauchy-Schwarz.
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Minimax lower bound

Theorem: Let P be the set of all Bernoulli reward distributions.

Then for alln,

inf
strategies

sup
P∈Pk

Rn(P ) ≥ 1

18
min{

√
nk, n}.

Note the order of quantifiers: fix any strategy, then for alln, there is a

reward distribution for which the regret isΩ(
√
nk). On the other hand,

we know that there are strategies so that for any reward distributions, the

regret grows likeO(logn). The lower bound is saying that the envelope

of all of these regret curves must beΩ(
√
nk).
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Minimax lower bound: intuition

After n rounds, some arm has not been pulled more thann/k times. For

that arm, the deviations in the sample averages are of the order of
√

k/n,

so we cannot hope to identify the best arm on a finer scale than this. So

choosing a distribution so that the best arm is only
√

k/n better than the

others, the regret should be roughlyn
√

k/n =
√
kn.

9



Minimax lower bound: proof

We’ll use the probabilistic method: randomly choose the reward

distributions and show that, for any strategy, under that random choice,

ERn(P ) ≥ 1

18
min{

√
nk, n}.

This implies that, for that strategy, there must be a reward distribution that

incurs at least that regret.
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Minimax lower bound: proof

Rewards:

µ∗ =
1

2
+ ǫ, µj =

1

2
for j 6= j∗.

(We’ll chooseǫ later.)

Choose indexj∗ uniformly at random.

Fix a strategy. LetPj∗ denote the distribution of the sequence of rewards

Yt = XIt,t (and the expectation under that distribution) with the fixed

strategy and the choice of indexj∗.
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Minimax lower bound: proof

1

k

k
∑

j∗=1

Rn(Pj∗) =
1

k

k
∑

j∗=1

Pj∗

k
∑

j=1

∆jTj(n)

=
ǫ

k

k
∑

j∗=1

Pj∗

∑

j 6=j∗

Tj(n)

= ǫ



n− 1

k

k
∑

j∗=1

Pj∗Tj∗(n)



 .
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Minimax lower bound: proof

Let P denote the distribution of the sequence of rewardsYt = XIt,t (and

the expectation under that distribution) with the fixed strategy, when the

rewardsXj,t haveµj = 1/2 for all j. Then

Pj∗Tj∗(n) ≤ PTj∗(n) + nDTV (P,Pj∗) (see (1) below)

≤ PTj∗(n) + n

√

1

2
DKL (P,Pj∗) (Pinsker (2))

= PTj∗(n) +
n

2

√

log
1

1− 4ǫ2
PTj∗(n) (chain rule (3)).
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Minimax lower bound: proof

Notice that
∑k

j∗=1
PTj∗(n) = n:

1

k

k
∑

j∗=1

Pj∗Tj∗(n)

≤ 1

k

k
∑

j∗=1

PTj∗(n) +
n

2k

k
∑

j∗=1

√

log
1

1− 4ǫ2
PTj∗(n)

≤ n

k
+

n

2

√

√

√

√log
1

1− 4ǫ2
1

k

k
∑

j∗=1

PTj∗(n) (Jensen)

=
n

k
+

n

2

√

n

k
log

1

1− 4ǫ2
.
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Minimax lower bound: proof

Combining,

1

k

k
∑

j∗=1

Rn(Pj∗) ≥ ǫn

(

1− 1

k
− 1

2

√

n

k
log

1

1− 4ǫ2

)

.

Sincelog(1− x) is concave, the line between two points on its graph lies

below the graph:log(1− x) ≥ − log(1− c)x/c for 0 ≤ x ≤ c. So

log(1/(1− 4ǫ2) ≥ cǫ2. Pickingǫ = min(
√

k/n, 1)/4 gives

1

k

k
∑

j∗=1

Rn(Pj∗) ≥
1

18
min

{√
kn, n

}

.
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(1) DTV and changes of expectation

Lemma: If supx f(x)− infx f(x) = 1,

|Pf −Qf | ≤ DTV (P,Q).

Pf −Qf =

∫

f dP −
∫

f dQ

≤
∫

1

[

dP

d(P +Q)
>

dQ

d(P +Q)

]

d(P −Q)

= DTV (P,Q).
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(2) Pinsker’s inequality

Lemma:

DKL(P,Q) ≥ 2DTV (P,Q)2.
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(3) Chain rule for KL-divergence

Lemma: ForP andQ distributions of sequencesY1, . . . , Yn,

DKL (P,Q) = P

n
∑

t=1

DKL

(

P(Yt|Y t−1),Q(Yt|Y t−1)
)

.
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(3) Chain rule for KL-divergence

Proof.

DKL (P,Q) =

∫

log
dP

dQ
(yn) dP(yn)

=

∫ ∫

log

(

dP(xn|yn−1)

dQ(xn|yn−1)
(yn)

× dP(xn−1)

dQ(xn−1)
(yn−1)

)

dP(yn|yn−1) dP(yn−1)

=

∫

DKL

(

P(yn|yn−1),Q(yn|yn−1)
)

dP(yn−1)

+DKL

(

P(yn−1),Q(yn−1)
)

...
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(3) Chain rule for KL-divergence

Here,

n
∑

t=1

PDKL

(

P(Yt|Y t−1),Pj∗(Yt|Y t−1)
)

=
n
∑

t=1

(

0× P{It 6= j∗}+ d

(

1

2
,
1

2
+ ǫ

)

P{It = j∗}
)

=
n
∑

t=1

P{It = j∗}1
2
log

1

1− 4ǫ2

=
1

2
log

(

1

1− 4ǫ2

)

PTj∗(n).
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