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1. Minimax regret bounds

Upper bounds: worst case ovAr..

Lower bounds.




‘ Pseudo-regret I
Recall

R, (Py) = ,max B Z y —ZXM] =np* —E) Xp,4.
t=1 t=1

We have seen pseudo-regret bounds for a particular stratetpe form:
For all reward distributions ofb, 1] and alln,

d(pj, p

k k
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R,(P) = E AGET;( E Co(fh1y -y k),
j=1

whered is the KL-divergence between Bernoulli distributions wtiie
given expectations. These are obtained by showing that

c1Ajlogn

AS;ET;(n) < A0 ) + co(pt1y - ooy i)




Minimax upper bounds'

These bounds get worse as the get smaller. We can also obtain regret
bounds that are independent of the, but the rate is worse.

Theorem: If a particular strategy satisfies:
for all reward distributions o0, 1] and alln,

logn C2

ET:(n) <c + —=.
j( ) 1d(:uj>:u*) A?

then for alln,

sup R, (P) < \/kn (C—l logn + 02>.
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Minimax upper bounds'

We know that, for a fixed distribution, we can achieve a mudkebe

regret rate (logarithmic in), but the constant in that rate depends on thé¢
distribution. This bound holds uniformly across all distrions. It's a
minimax bound:

. 5] C1
< i
mb;nmngn(P) < \/kn ( 5 logn+02>,

where the min is over strategies.
These are also callddistribution-free regret bounds.

(Note: thecy / A? term was unimportant when we were treating fheas
constants. But its dependence AR is important here.)




‘Minimax upper bounds: proof'

Pinsker’s inequalityd( ., 1*) > 2A?) implies

AETy(n) < (

Cll 4 >
A 9 ogn Co | .

J

If we definep; = ET)j(n)/n, sothaty . p; =1, then




‘Minimax upper bounds: proof'

The minimum Is maximized for

1 C1
A—j (3 logn + 02) = pinA;,

and solving forA; gives

c
np;A; = \/npj (51 logn + (32).

(And the two terms in the minimum are monotonically incragsand
decreasing i) ;, so if this choice ofA ; is impossible—e.g.,
A; > 1—then the minimum is only smaller.)




‘Minimax upper bounds: proof'

R,(P) < \/fn, (%lognJch) Z\/]Tj

J=1

N2 1/
< \/n (%logn—|—02> (ij> (Zl)

g=1

= \/kn (%lognJch),

by Cauchy-Schwarz.

j=1




\I\/Iinimax lower bound'

Theorem: Let P be the set of all Bernoulli reward distributions.
Then for alln,

— 1
inf sup R,(P)> — min{vVnk,n}.
strategiesp < px 18

Note the order of quantifiers: fix any strategy, then fomallhere is a
reward distribution for which the regret§¥(+/nk). On the other hand,
we know that there are strategies so that for any rewardlulistons, the
regret grows likeD(logn). The lower bound is saying that the envelope
of all of these regret curves must Bév/nk).




Minimax lower bound: intuition'

After n rounds, some arm has not been pulled more thantimes. For

that arm, the deviations in the sample averages are of tteg ofd/k/n,
S0 we cannot hope to identify the best arm on a finer scale tisn3o
choosing a distribution so that the best arm is opliz/n better than the
others, the regret should be roughly/k/n = vkn.




‘ Minimax lower bound: proof I

We’'ll use the probabilistic method: randomly choose thearelv
distributions and show that, for any strategy, under thadoan choice,

— 1
ER,(P) > 13 min{vnk,n}.

This implies that, for that strategy, there must be a rewatlidution that
Incurs at least that regret.




‘ Minimax lower bound: proof I

Rewards:

1 1

w=g te pi =5 forj# g

(We’ll choosec later.)

Choose index™* uniformly at random.

Fix a strategy. LeP;- denote the distribution of the sequence of rewardg
Y:; = X1, + (and the expectation under that distribution) with the fixed
strategy and the choice of indégx.




‘ Minimax lower bound: proof I




‘ Minimax lower bound: proof I

Let P denote the distribution of the sequence of rewards- X;, ; (and
the expectation under that distribution) with the fixedtsgg, when the
rewardsX, ; haveu; = 1/2 for all j. Then

P;«Tj«(n) < PTj«(n) + nDry (P, Pj«) (see (1) below)

< PT;«(n)+ n\/%DKL (P, IPj-) (Pinsker (2))

n 1 .
_\/ log T4 PT;-(n) (chain rule (3))




‘ Minimax lower bound: proof I

Notice thatZ?LZl PT+«(n) = n:

1

1 -
Og1—462k

K
Y PTj(n)  (Jensen)

j*=1




‘ Minimax lower bound: proof I

Combining,

Sincelog(1 — x) is concave, the line between two points on its graph ligs
below the graphtog(1 — z) > —log(1 — ¢)z/cfor0 <z < c¢. SO

log(1/(1 — 4€?) > ce?. Pickinge = min(+/k/n,1)/4 gives

1 o 1
EZE >—8m1n{\/%,n}.
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(1) Dy and changes of expectation I

Lemma: If sup, f(z) —inf, f(x) =1,

Pf—Qf| < Drv(P,Q).

Pf-Qf= [ rar~ [ iq

P 40
S/1 [d(P+Q) g d(P+Q)] AF-0Q)
= D7y (P, Q).




‘(2) Pinsker’sinequality'

Dxr(P,Q) > 2Dry (P, Q)*.




(3) Chain rulefor KL-divergenceI

Lemma: ForP andQ distributions of sequencés,...,Y,,

]P’ZDKL (Y [Y'1), Qv Y h)).




(3) Chain rulefor KL-divergenceI

Proof.

dP

W) W)

DKL <]P>, Q) = /log

= [ 108 (Gt L ()
0 n
& dQ(xy, |ym— 1 (v

dP(z"")
d@(xn 1)

B /DKL (P(ynly™ 1), Qlyaly" ™)) dP(y™ ")

+ Drr (P(y" ), Q(y" 1))

(v~ >) AP (yn ™) dB (™)




(3) Chain rulefor KL-divergenceI

Z]P’DKL (P(tht_l)vpj*(yt‘yt_l))
t=1

:i: (o x P{1, #j*}+d(%,%+e) P ZJ*}>

t=1

:E :]p] =411
—1 =3 }2 Og1—462

1 1
= — 1 PT.+(n).
20g(1—462) ()




