Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett

1. Lower bounds on regret for multi-armed bandits.

Stochastic bandit problem: notation.

- k arms.
- Arm *j* has unknown reward distribution P_{θ_j} , for $\theta_j \in \Theta$.
- Reward: $X_{j,t} \sim P_{\theta_j}$.
- Mean reward: $\mu_j = \mathbb{E}X_{j,1}$.
- Best: $\mu^* = \max_{j^*=1,...,k} \mu_{j^*}$.
- Gap: $\Delta_j = \mu^* \mu_j$.
- Number of plays: $T_j(s) = \sum_{t=1}^s \mathbb{1}[I_t = j].$

Because

$$\overline{R}_n = n \max_{j^*=1,\dots,k} \mathbb{E}\mu_{j^*} - \mathbb{E}\sum_{t=1}^n X_{I_t,t} = \sum_{j=1}^k \mathbb{E}T_j(n)\Delta_j,$$

we need to understand how $\mathbb{E}T_j(n)$ behaves for $j \neq j^*$.

We'll see that (asymptotically)

$$\mathbb{E}T_j(n) \gtrsim \frac{\log n}{D_{KL}(P_{\theta_j}, P_{\theta^*})}$$

Here, when $P \ll Q$,

$$D_{KL}(P,Q) = \int \log \frac{dP}{dQ} dP.$$

Key insight: Consider two bandit problems:

 $\theta = (\theta_1, \theta_2, \dots, \theta_k),$ $\theta = (\theta_1, \theta'_2, \dots, \theta_k),$ with $\mu_1 > \mu_2 \ge \mu_3 \ge \dots \ge \mu_k,$ $\mu'_2 \gtrsim \mu_1 > \mu_3 \ge \dots \ge \mu_k.$

If a strategy performs well for θ , and P_{θ_2} and $P_{\theta_{2'}}$ are close, then the same data is likely under both, so it must perform poorly for θ' .

The lower bound will require the strategy to perform well for all θ (c.f. a stopped clock).

(And the right way of measuring "close" is via a change of measure between P_{θ_2} and $P_{\theta'_2} \approx P_{\theta_1}$, which leads to the KL-divergence.)

[Radon-Nikodym derivative] For any event A,

$$P_{\theta'}(A) = \int_A \frac{dP_{\theta'}}{dP_{\theta}} \, dP_{\theta}.$$

Need to have $P_{\theta'} \ll P_{\theta}$. (i.e., $P_{\theta'}$ is absolutely continuous wrt P_{θ} , i.e., if $P_{\theta}(E) = 0$ then $P_{\theta'}(E) = 0$.)

Fix a strategy, and write:

 $X_{j,s}$ = outcome from pull *s* of arm *j*,

 \mathbb{P} = joint distribution over $\{I_t, X_{j,s}\}$ under distribution P_{θ} ,

 \mathbb{P}' = joint distribution under distribution $P_{\theta'}$.

For an event $A \subseteq \{T_2(n) = n_2\}$, we can write

$$\mathbb{P}'(A) = \int_A \prod_{s=1}^{n_2} \frac{dP_{\theta'_2}}{dP_{\theta_2}}(X_{2,s}) d\mathbb{P}$$
$$= \int_A \exp\left(\sum_{s=1}^{n_2} \log \frac{dP_{\theta'_2}}{dP_{\theta_2}}(X_{2,s})\right) d\mathbb{P}$$
$$= \int_A e^{-L_{n_2}} d\mathbb{P},$$

where

$$L_{n_2} = \sum_{s=1}^{n_2} \log \frac{dP_{\theta_2}}{dP_{\theta'_2}}(X_{2,s}).$$

So if $A \subseteq \{T_2(n) = n_2 \text{ and } L_{n_2} \leq c_n\}$, (data from θ could plausibly have come from θ') then $\mathbb{P}'(A) \geq e^{-c_n} \mathbb{P}(A)$, that is, $\mathbb{P}(A) \leq e^{c_n} \mathbb{P}'(A)$.

Fix sequences f_n and c_n (we'll pick them later).

 $\mathbb{P}\left(T_{2}(n) < f_{n}\right) \qquad \text{(suboptimal arm not chosen too often)}$ $\leq \mathbb{P}\left(T_{2}(n) < f_{n} \& L_{T_{2}(n)} \leq c_{n}\right) + \mathbb{P}\left(T_{2}(n) < f_{n} \& L_{T_{2}(n)} > c_{n}\right)$ $\leq e^{c_{n}} \mathbb{P}'\left(T_{2}(n) < f_{n} \& L_{T_{2}(n)} \leq c_{n}\right) + \mathbb{P}\left(T_{2}(n) < f_{n} \& L_{T_{2}(n)} > c_{n}\right)$ $\leq e^{c_{n}} \mathbb{P}'\left(T_{2}(n) < f_{n}\right) + \mathbb{P}\left(T_{2}(n) < f_{n} \& L_{T_{2}(n)} > c_{n}\right).$

(optimal arm not chosen often)

(and data from θ unlikely to have come from θ')

Under \mathbb{P}' , arm 2 is optimal, so the first probability,

 $\mathbb{P}'\left(T_2(n) < f_n\right),\,$

is the probability that the optimal arm is not chosen too often. This should be small whenever the strategy does a good job (and f_n quantifies what a good job means). We'll ensure $f_n = o(n)$. Then if we assume that, for any $\alpha > 0$, the expected number of pulls that the strategy wastes on sub-optimal arms is $o(n^{\alpha})$, that is,

$$\mathbb{E}'(n - T_2(n)) = o(n^{\alpha}),$$

Markov's inequality shows that

$$\mathbb{P}'(T_2(n) < f_n) \le \frac{\mathbb{E}'(n - T_2(n))}{n - f_n} = o(n^{\alpha - 1}).$$

The second term is

$$\mathbb{P}\left(T_2(n) < f_n \& \sum_{s=1}^{T_2(n)} \log \frac{dP_{\theta_2}}{dP_{\theta'_2}}(X_{2,s}) > c_n\right).$$

But notice that the expectation (under \mathbb{P}) of each $\log \frac{dP_{\theta_2}}{dP_{\theta'_2}}(X_{2,s})$ term is $D_{KL}(P_{\theta_2}, P_{\theta'_2})$, the KL-divergence of $P_{\theta'_2}$ from P_{θ_2} .

If c_n is a little bigger than $f_n D_{KL}(P_{\theta_2}, P_{\theta'_2})$, the law of large numbers will ensure that this term will go to zero.

Choosing (for a suitable $\delta > 0$)

$$f_n = (1 - \delta) \frac{\log n}{D_{KL}(P_{\theta_2}, P_{\theta'_2})}$$

ensures $\mathbb{P}\left(T_2(n) < f_n\right) = o(1).$ Hence choosing $P_{\theta_2'}$ suitably close to P_{θ_1} gives

$$\lim_{n \to \infty} \inf \frac{\mathbb{E}T_2(n)}{\log n} \ge \frac{1}{D_{KL}(P_{\theta_2}, P_{\theta^*})}$$

Theorem: [Lai-Robbins, 1985] Suppose P_{θ} and Θ are such that:

- 1. Whenever $\mu(\theta_1) > \mu(\theta_2), 0 < D_{KL}(P_{\theta_2}, P_{\theta_1}) < \infty$, and
- 2. (denseness condition on $\mu(\Theta)$)
- 3. (continuity condition on $\theta_1 \mapsto D_{KL}(\theta_2, \theta_1)$)

If a strategy has, for all $\theta = (\theta_1, \dots, \theta_k)$ and all $\alpha > 0$, $\overline{R}_n(\theta) = o(n^{\alpha})$, then

$$\lim_{n \to \infty} \inf \frac{\overline{R}_n(\theta)}{\log n} \ge \sum_{j:\mu_j < \mu^*} \frac{\mu^* - \mu_j}{D_{KL}(P_{\theta_j}, P_{\theta^*})}$$

Example: Bernoulli. Parameter is μ .

$$D_{KL}(p,q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}.$$

The lower bound implies

$$\lim_{n \to \infty} \inf \frac{\overline{R}_n(\theta)}{\log n} \ge \mu^* (1 - \mu^*) \sum_{j: \mu_j < \mu^*} \frac{1}{\mu^* - \mu_j}.$$

To see this, use the upper bound $\log(x) \le x - 1$ to give

$$D_{KL}(p,q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}$$

$$\leq p \frac{p-q}{q} + (1-p) \frac{q-p}{1-q}$$

$$= \frac{(p(1-q) - (1-p)q)(p-q)}{q(1-q)}$$

$$= \frac{(p-q)^2}{q(1-q)}.$$

Then the lower bound becomes

$$\sum_{j:\mu_j < \mu^*} \frac{\mu^* - \mu_j}{D_{KL}(P_{\theta_j}, P_{\theta^*})} \ge \mu^* (1 - \mu^*) \sum_{j:\mu_j < \mu^*} \frac{1}{\mu^* - \mu_j}$$

Also, this form of the inequality for Bernoulli distributions does not lose much:

Theorem: [Pinsker's inequality]

 $D_{KL}(P,Q) \ge 2d_{TV}(P,Q)^2,$

where the total variation distance is defined as

 $d_{TV}(P,Q) = \sup\{|P(A) - Q(A)| : A \text{ measurable}\}.$

For Bernoulli distributions, $d_{TV}(p,q) = |p-q|$, so

$$D_{KL}(P_{\theta_j}, P_{\theta^*}) \ge 2(\mu^* - \mu_j)^2.$$

An aside:

To prove Pinsker's inequality for Bernoulli, it suffices to calculate the partial derivative of $D_{KL}(p,q) - 2(p-q)^2$ wrt q. Actually, this leads to the proof of Pinsker's inequality for any distribution: $d_{TV}(P,Q) = P(A) - Q(A) = d_{TV}(P + Q +)$ for

 $d_{TV}(P,Q) = P(A) - Q(A) = d_{TV}(P_{\mathcal{A}}, Q_{\mathcal{A}}) \text{ for }$

$$A = \left\{ \frac{dP}{d(P+Q)} > \frac{dQ}{d(P+Q)} \right\}$$

and $P_{\mathcal{A}}$ and $Q_{\mathcal{A}}$ are the induced (Bernoulli) distributions on the elements of the partition $\mathcal{A} = \{A, \overline{A}\}$. But the *partition inequality for KL-divergence* shows that, for any partition, $D_{KL}(P, Q) \ge D_{KL}(P_{\mathcal{A}}, Q_{\mathcal{A}}).$