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1. Lower bounds on regret for multi-armed bandits.
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Stochastic bandit problem: notation.

• k arms.

• Arm j has unknown reward distributionPθj , for θj ∈ Θ.

• Reward:Xj,t ∼ Pθj .

• Mean reward:µj = EXj,1.

• Best:µ∗ = maxj∗=1,...,k µj∗ .

• Gap:∆j = µ∗ − µj .

• Number of plays:Tj(s) =
∑s

t=1 1[It = j].
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Lower bounds on regret.

Because

Rn = n max
j∗=1,...,k

Eµj∗ − E

n∑

t=1

XIt,t =
k∑

j=1

ETj(n)∆j ,

we need to understand howETj(n) behaves forj 6= j∗.

We’ll see that (asymptotically)

ETj(n) &
logn

DKL(Pθj , Pθ∗)
.

Here, whenP ≪ Q,

DKL(P,Q) =

∫

log
dP

dQ
dP.
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Lower bounds on regret.

Key insight: Consider two bandit problems:

θ = (θ1, θ2, . . . , θk),

θ = (θ1, θ
′
2, . . . , θk),

with µ1 > µ2 ≥ µ3 ≥ · · · ≥ µk,

µ′
2 & µ1 > µ3 ≥ · · · ≥ µk.

If a strategy performs well forθ, andPθ2 andPθ
2′

are close, then the

same data is likely under both, so it must perform poorly forθ′.

The lower bound will require the strategy to perform well forall θ

(c.f. a stopped clock).

(And the right way of measuring “close” is via a change of measure

betweenPθ2 andPθ′

2
≈ Pθ1 , which leads to the KL-divergence.)
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Lower bounds on regret.

[Radon-Nikodym derivative] For any eventA,

Pθ′(A) =

∫

A

dPθ′

dPθ

dPθ.

Need to havePθ′ ≪ Pθ.

(i.e.,Pθ′ is absolutely continuous wrtPθ,

i.e., if Pθ(E) = 0 thenPθ′(E) = 0.)
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Lower bounds on regret.

Fix a strategy, and write:

Xj,s = outcome from pulls of armj,

P = joint distribution over{It, Xj,s} under distributionPθ,

P
′ = joint distribution under distributionPθ′ .
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Lower bounds on regret.

For an eventA ⊆ {T2(n) = n2}, we can write

P
′(A) =

∫

A

n2∏

s=1

dPθ′

2

dPθ2

(X2,s) dP

=

∫

A

exp

(
n2∑

s=1

log
dPθ′

2

dPθ2

(X2,s)

)

dP

=

∫

A

e−Ln2 dP,

where

Ln2
=

n2∑

s=1

log
dPθ2

dPθ′

2

(X2,s).

So ifA ⊆ {T2(n) = n2 andLn2
≤ cn}, (data fromθ could plausibly have come fromθ′ )

thenP′(A) ≥ e−cnP(A), that is,P(A) ≤ ecnP′(A).
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Lower bounds on regret.

Fix sequencesfn andcn (we’ll pick them later).

P (T2(n) < fn) (suboptimal arm not chosen too often)

≤ P
(
T2(n) < fn & LT2(n) ≤ cn

)
+ P

(
T2(n) < fn & LT2(n) > cn

)

≤ ecnP′
(
T2(n) < fn & LT2(n) ≤ cn

)
+ P

(
T2(n) < fn & LT2(n) > cn

)

≤ ecn P
′ (T2(n) < fn)
︸ ︷︷ ︸

(optimal arm not chosen often)

+P
(
T2(n) < fn & LT2(n) > cn

)

︸ ︷︷ ︸

(and data fromθ unlikely to have come fromθ′ )

.
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Lower bounds on regret.

UnderP′, arm 2 is optimal, so the first probability,

P
′ (T2(n) < fn) ,

is the probability that the optimal arm is not chosen too often. This should
be small whenever the strategy does a good job (andfn quantifies what a
good job means). We’ll ensurefn = o(n). Then if we assume that, for
anyα > 0, the expected number of pulls that the strategy wastes on
sub-optimal arms iso(nα), that is,

E
′ (n− T2(n)) = o(nα),

Markov’s inequality shows that

P
′ (T2(n) < fn) ≤

E
′(n− T2(n))

n− fn
= o(nα−1).
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Lower bounds on regret.

The second term is

P



T2(n) < fn &
T2(n)∑

s=1

log
dPθ2

dPθ′

2

(X2,s) > cn



 .

But notice that the expectation (underP) of eachlog
dPθ2

dPθ′
2

(X2,s) term is

DKL(Pθ2 , Pθ′

2
), the KL-divergence ofPθ′

2
from Pθ2 .

If cn is a little bigger thanfnDKL(Pθ2 , Pθ′

2
), the law of large numbers

will ensure that this term will go to zero.
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Lower bounds on regret.

Choosing (for a suitableδ > 0)

fn = (1− δ)
logn

DKL(Pθ2 , Pθ′

2
)

ensuresP (T2(n) < fn) = o(1). Hence choosingPθ′

2
suitably close to

Pθ1 gives

lim
n→∞

inf
ET2(n)

logn
≥

1

DKL(Pθ2 , Pθ∗)
.

11



Lower bounds on regret.

Theorem: [Lai-Robbins, 1985] SupposePθ andΘ are such that:

1. Wheneverµ(θ1) > µ(θ2), 0 < DKL(Pθ2 , Pθ1) < ∞, and

2. (denseness condition onµ(Θ))

3. (continuity condition onθ1 7→ DKL(θ2, θ1))

If a strategy has, for allθ = (θ1, . . . , θk) and allα > 0,

Rn(θ) = o(nα), then

lim
n→∞

inf
Rn(θ)

logn
≥

∑

j:µj<µ∗

µ∗ − µj

DKL(Pθj , Pθ∗)
.
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Lower bounds on regret.

Example: Bernoulli. Parameter isµ.

DKL(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
.

The lower bound implies

lim
n→∞

inf
Rn(θ)

logn
≥ µ∗(1− µ∗)

∑

j:µj<µ∗

1

µ∗ − µj

.
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Lower bounds on regret.

To see this, use the upper boundlog(x) ≤ x− 1 to give

DKL(p, q) = p log
p

q
+ (1− p) log

1− p

1− q

≤ p
p− q

q
+ (1− p)

q − p

1− q

=
(p(1− q)− (1− p)q)(p− q)

q(1− q)

=
(p− q)2

q(1− q)
.

Then the lower bound becomes
∑

j:µj<µ∗

µ∗ − µj

DKL(Pθj , Pθ∗)
≥ µ∗(1− µ∗)

∑

j:µj<µ∗

1

µ∗ − µj

.

14



Lower bounds on regret.

Also, this form of the inequality for Bernoulli distributions does not lose

much:

Theorem: [Pinsker’s inequality]

DKL(P,Q) ≥ 2dTV (P,Q)2,

where the total variation distance is defined as

dTV (P,Q) = sup{|P (A)−Q(A)| : A measurable}.

For Bernoulli distributions,dTV (p, q) = |p− q|, so

DKL(Pθj , Pθ∗) ≥ 2(µ∗ − µj)
2.
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Lower bounds on regret.

An aside:

To prove Pinsker’s inequality for Bernoulli, it suffices to calculate the

partial derivative ofDKL(p, q)− 2(p− q)2 wrt q. Actually, this leads to

the proof of Pinsker’s inequality for any distribution:

dTV (P,Q) = P (A)−Q(A) = dTV (PA, QA) for

A =

{
dP

d(P +Q)
>

dQ

d(P +Q)

}

andPA andQA are the induced (Bernoulli) distributions on the elements

of the partitionA = {A, Ā}. But thepartition inequality for

KL-divergence shows that, for any partition,

DKL(P,Q) ≥ DKL(PA, QA).
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