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1. Lower bounds on regret for multi-armed bandits.




Stochastic bandit problem: notation. I

k arms.

Arm j has unknown reward distributiaf , for 6; € ©.
Reward: X;; ~ P, .

Mean rewardy; = EX; ;.

Best: u* = max;«—1

Gap:Aj = u* — ;-

Number of playsT;(s) = > ;_, 1[It = j].




L ower bounds on regret.'

Because

R, =n max Eu]*—EZXItt_ZET

7*=1,.

we need to understand hd@’; (n) behaves foy # j*.
We’'ll see that (asymptotically)

1
ET;(n) > e
Dy (Po,, Po+)

Here, whenP < @,
dP

Dkr(P,Q) = /log @d}?
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Key insight: Consider two bandit problems:
0= (01,02,...,0),
0= (01,05,...,0;),
with p1 > p2 2 ph3 2 - 2 [k,

po 2 pi > pg > > [l

If a strategy performs well fo#, and P, and P, are close, then the
same data is likely under both, so it must perform poorlydfor

The lower bound will require the strategy to perform well &ird
(c.f. a stopped clock).

(And the right way of measuring “close” is via a change of nueas
betweenry, and Py, ~ Py, , which leads to the KL-divergence.)
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[Radon-Nikodym derivative] For any eveni4,

dPy
PQ,(A):/A dP@@ dP;.

Need to have’y, < Py.
(.e., Py, Is absolutely continuous wiy,
l.e., if Py(FE) =0thenPy (F)=0.)
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Fix a strategy, and write:

X ;s =outcome from pulk of armj,
IP = joint distribution over{ I;, X ; s } under distributionf,
' = joint distribution under distributioy. .




L ower bounds on regret.'

For an eventd C {T5(n) = no}, we can write

SO |fA g {TQ (n) = N9 andLn2 S Cn}, (data from6 could plausibly have come fro’)
thenlP’(A) > e7“»P(A), thatis,P(A) < e~ P'(A).
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Fix sequenceg,, andc,, (we’ll pick them later).

]P) (T2 (n) < fn) (suboptimal arm not chosen too often)

S P (TQ(TL) < fn & LTQ(n) S Cn) —+ P (TQ(TL) < fn & LTQ(n) > Cn)
< e P (Ta(n) < fr & Lyyiny < ¢n) + P (Ta(n) < fn & Lyym) > ¢4)
< e P (Ta(n) < fro) + P (T2(n) < fr & Lyyn) > cn) -

hd Vv~
(optimal arm not chosen often) (and data fron® unlikely to have come fron®’)
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Under”, arm 2 is optimal, so the first probability,

P’ (To(n) < fn)

IS the probability that the optimal arm is not chosen tooroftehis should
be small whenever the strategy does a good job farglantifies what a
good job means). We'll ensurg, = o(n). Then if we assume that, for
anya > 0, the expected number of pulls that the strategy wastes on
sub-optimal arms is(n®), that is,

E' (n —T»(n)) = o(n®),

Markov’s inequality shows that

P’ (Ta(n) < fn) <
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The second term is

P | To(n) i s) > Cn

But notice that the expectation (und&rof eachlog 3§Zf (X2.5) termis

2

Dk (Ps,, Py;), the KL-divergence of%, from Py,

If c,, is a little bigger thary,, D 1.(Ps,, P, ), the law of large numbers
will ensure that this term will go to zero.
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Choosing (for a suitablé > 0)

logn

fa={1-9) Dk 1.(Pay, Poy)

ensured” (15(n) < f,) = o(1). Hence choosing, suitably close to
Py, gives

ET2<TL) > 1
n—00 logn = Dgr(Py,, Po-)

lim inf
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Theorem: [Lai-Robbins, 1985] SupposeP, and© are such that:
1. Wheneve(61) > p(02),0 < Dir(Py,, Pp,) < oo, and
2. (denseness condition qr{©))

3. (continuity condition or; — D (62,61))

If a strategy has, forall = (64, ...,0;) and alla. > 0,
R, (0) = o(n®), then

lim inf > Z B =y

n—oo logn DKL P@ ,P@*)

Ik <p*
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Example: Bernoulli. Parameter ig.

The lower bound implies

lim inf R (0)

n—00 logn

>pt(l—p*) )

p l—p
Dxr(p,q) Zplogg +(1—p)log -

_q.

T
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To see this, use the upper bouod(x) < x — 1 to give

p
Dkr(p,q) = plog -+ (1 —p)log
(p,q) p ( ) -

<p" T+ —p)(i%p
q q
(1 —q)—(1—p)g)(p—2q)

q(1—q)

Then the lower bound becomes

Z By >
Dy (Py,, Po~)

Jipg<p*
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Also, this form of the inequality for Bernoulli distributn® does not lose
much:

Theorem: [Pinsker’sinequality]

Dy (P,Q) > 2drv (P, Q)7,

where the total variation distance is defined as

dry (P, Q) = sup{|P(A) — Q(A)| : A measurablg

For Bernoulli distributionsdry (p, q) = |p — ¢|, SO

Drcr(Po;, Pox) > 2(u" — 1),
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An aside:

To prove Pinsker’s inequality for Bernoulli, it suffices talculate the
partial derivative ofD 1. (p, ¢) — 2(p — q)* wrt q. Actually, this leads to
the proof of Pinsker’s inequality for any distribution:

drv (P, Q) = P(A) — Q(A) = drv (P4, Qa) for

dP dQ)
A= >
{d<P+Q) d<P+Q)}
andP 4 and( 4 are the induced (Bernoulli) distributions on the elementg
of the partitionA = {A, A}. But thepartition inequality for
KL-divergence shows that, for any partition,

Dir(P,Q) > Drr(Pa,QA).
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