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1. Multi-armed bandit algorithms.

• Consistency: optimal per-round reward.

• Robbins’ consistent algorithm:

vanishing exploration implies consistency.

• Upper confidence bound (UCB) algorithms

(and a foray into concentration inequalities).
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Stochastic bandit problem.

• k arms.

• Arm j has unknown reward distributionPθj , for θj ∈ Θ.

• Reward:Xj,t ∼ Pθj .

• Mean reward:µj = EXj,1.

• Best:µ∗ = maxj∗=1,...,k µj∗ .

• Gap:∆j = µ∗ − µj .

• Number of plays:Tj(s) =
∑s

t=1
1[It = j].

• Pseudo-regret:

Rn = nmaxj∗=1,...,k µj∗ − E
∑n

t=1
XIt,t =

∑k
j=1

ETj(n)∆j .
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Consistency.

Call a strategyconsistent if

Rn

n
→ 0.

How might we achieve consistency?

• Explore for a while, then exploit?

But with positive probability, exploration will mislead us.

⇒ Must explore forever.

3



Robbin’s strategy.

Fix disjoint exploration sequences

1 = e11 < e12 < · · · < e1n < · · · ,

2 = e21 < e22 < · · · < e2n < · · · ,

...

k = ek1 < ek2 < · · · < ekn < · · · .

At time t, if somej, i hast = eji , playIt = j. Otherwise play

It = ĵt = argmax
j

1

Tj(t)

t
∑

s=1

XIs,s1[Is = j].
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Robbin’s strategy.

Sinceejn → ∞, Tj(t) → ∞, so the strong law of large numbers shows

that

µ̂j(t) :=
1

Tj(t)

t
∑

s=1

XIs,s1[Is = j]
as
→ µj ,

hencêjt → j∗.

How often should we explore?

• Explore some fixed proportion of the time?

But that proportion will always cost us.

⇒ Must explore forever, but a vanishing fraction of the time.
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Robbin’s strategy.

Vanishing exploration implies consistency:

Theorem: If the exploration set up to timen,

En := {t ≤ n : somej, i hast = eji},

satisfies|En|/n→ 0, then

Rn

n
=
∑

j 6=j∗

ETj(n)

n
∆j → 0.
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Robbin’s strategy.

Proof. With vanishing exploration, ifj 6= j∗,

Tj(n)

n
=

1

n

n
∑

t=1

(

1[∃i s.t. t = xji ] + 1[t 6∈ Et, ĵt = j]
)

≤
|En|

n
+

1

n

n
∑

t=1

1[ĵt = j]

as
→ 0.
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UCB strategy.

Upper Confidence Bounds:
Use data to define an upper bound onµj .

Choose the arm with the largest upper bound.

• Optimism in the face of uncertainty.

• Nicely balances exploration (few pulls⇒ loose upper bound⇒ more

likely to try it) and exploitation (when confidence intervals are small,

the best arm has the best upper bound).
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UCB strategy.

• We want tight upper bounds (or we waste our time on a bad arm), but

• We don’t want the bounds too tight (or we might miss a good arm).

• We shouldn’t leave an arm untried for too long (since if we are

misled to wrongfully neglect an arm with a very small probability,

that becomes important again after a long period of neglect).

We’ll consider estimates based on sample averages,µ̂j(t), and

concentration inequalities in terms ofcumulant generating functions. So

we’ll have a brief digression to look at concentration inequalities...
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Concentration inequalities.

Definition: For a random variableX with meanµ, the moment-

generating function is

MX−µ(λ) = E exp(λ(X − EX)),

the cumulant-generating function is

ΓX−µ(λ) = logMX−µ(λ).
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Concentration inequalities.

Definition: For a random variableX , ψ : R → R is acumulant

generating function upper bound if, for λ > 0,

ψ(λ) ≥ max {ΓX(λ),Γ−X(λ)} ,

ψ(−λ) = ψ(λ).

TheLegendre transform (convex conjugate) of ψ is

ψ∗(ǫ) = sup
λ∈R

(λǫ− ψ(λ)) .
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Concentration Inequalities.

Theorem:

ΓX+c(λ) = λc+ ΓX(λ),

Γ∗
X+c(ǫ) = Γ∗

X(ǫ− c).

(Easy to check.)
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Concentration Inequalities.

Theorem: For ǫ ≥ 0, P (X − EX ≥ ǫ) ≤ exp
(

−ψ∗
X−EX(ǫ)

)

.
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Concentration Inequality: Proof.

logP (X − EX ≥ ǫ)

= inf
λ>0

logP (exp (λ (X − EX − ǫ)) ≥ 1) (exp is monotonic)

≤ inf
λ>0

logE exp (λ (X − EX − ǫ)) (Markov’s inequality)

≤ inf
λ>0

(ψX−EX(λ)− λǫ) (cgf bound)

= inf
λ∈R

(ψX−EX(λ)− λǫ) (fromǫ > 0, definition ofψ(−λ))

= −ψ∗
X−EX(ǫ).
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Concentration Inequalities.

Theorem: If X1, X2, . . . , Xn are mean zero, i.i.d. with cgf upper

boundψ, thenX̄n = 1

n

∑n

i=1
Xi has cgf bound

ψX̄n
(λ) = nψ

(

λ

n

)

,

and ψ∗
X̄n

(ǫ) = nψ∗(ǫ),

hence, P
(

X̄n ≥ ǫ
)

≤ exp (−nψ∗(ǫ)) ,

(Easy to check.)

15



Example: Gaussian

ForX ∼ N(µ, σ2),

ΓX−µ(λ) =
λ2σ2

2
, Γ∗

X−µ(ǫ) =
ǫ2

2σ2
.

ForX1, . . . , Xn ∼ N(µ, σ2), it’s easy to check that the bound is tight:

lim
n→∞

1

n
lnP (X̄n − µ ≥ ǫ) = −

ǫ2

2σ2
.
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Example: Bounded Support

Theorem: [Hoeffding’s Inequality] For a random variableX ∈

[a, b] with EX = µ andλ ∈ R,

lnMX−µ(λ) ≤
λ2(b− a)2

8
.

Note the resemblance to a Gaussian:

λ2σ2

2
vs
λ2(b− a)2

8
.

(And sinceP has support in[a, b], VarX ≤ (b− a)2/4.)
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Example: Hoeffding’s Inequality Proof

Define

A(λ) = log
(

EeλX
)

= log

(
∫

eλx dP (x)

)

,

whereX ∼ P . ThenA is the log normalization of the exponential family
random variableXλ with reference measureP and sufficient statisticx.
SinceP has bounded support,A(λ) <∞ for all λ, and we know that

A′(λ) = E(Xλ), A′′(λ) = Var(Xλ).

SinceP has support in[a, b], Var(Xλ) ≤ (b− a)2/4. Then a Taylor
expansion aboutλ = 0 (at this value ofλ,Xλ has the same distribution as
X , hence the same expectation) gives

A(λ) ≤ λEX +
λ2

2

(b− a)2

4
.
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Sub-Gaussian Random Variables

Definition: X is sub-Gaussianwith parameterσ2 if, for all

λ ∈ R,

lnMX−µ(λ) ≤
λ2σ2

2
.

Note: Gaussian is sub-Gaussian.X sub-Gaussian iff−X sub-Gaussian.

X sub-Gaussian impliesP (X − µ ≥ t) ≤ exp(−t2/(2σ2)).
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Hoeffding Bound

Theorem: For X1, . . . , Xn independent,EXi = µ, Xi sub-

Gaussian with parameterσ2, then for allt > 0,

P

(

1

n

n
∑

i=1

Xi − µ ≥ t

)

≤ exp

(

−
nt2

2σ2

)

.
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