Stat 260/CS 294-102. Learning in Sequential Decision
Problems.
Peter Bartlett
1. Multi-armed bandit algorithms.
Consistency: optimal per-round reward.

Robbins’ consistent algorithm:
vanishing exploration implies consistency.

Upper confidence bound (UCB) algorithms
(and a foray into concentration inequalities).




Stochastic bandit problem.'

k arms.

Arm j has unknown reward distributiaf , for 6; € ©.
Reward: X;; ~ P, .

Mean rewardy; = EX; ;.

Best: /" = max;«—1 . i fbj*.

Gap: A, = p* — ;.

Number of playsT;(s) = > ;_, 1[Iz = j].

Pseudo-regret:
En — nmaXjx=1,. .k Mj*x — EZ:Q XIt,t — Z -




‘ Consistency'

Call a strategyonsistent if

— 0.

Ry
n

How might we achieve consistency?

Explore for a while, then exploit?
But with positive probability, exploration will mislead us
= Must explore forever.




Robbin’s strategy.'

Fix disjoint exploration sequences

l=ej <ez<---<er < -,

Y << <

k

k=ef <ef<---<eb <.

Attimet, if somey, i hast = e{, play I; = j. Otherwise play

t

. 1
I; = j; = argmax X1, s1[1s = j].
i T5(t) Sz_:l




Robbin’s strategy.'

Sincee, — oo, T (t) — oo, so the strong law of large numbers shows
that

t
Z IS,S ] _>:uja

hencej, — j*.
How often should we explore?

Explore some fixed proportion of the time?
But that proportion will always cost us.
= Must explore forever, but a vanishing fraction of the time.




Robbin’s strategy.'

Vanishing exploration implies consistency:

Theorem: If the exploration set up to timen,
E, :={t <n: somej,ihast = e},

satisfied E,,|/n — 0, then

R, ET:
R— = Z j(n) Aj — 0.
n

— n
J#I*




Robbin’s strategy.'

Proof. With vanishing exploration, if # j*,

Tj(n) 1 zn: (1[32' stt=al]+1[t & Ey, ji = ﬂ)

n n
t=

1
Enl 1=,
< — 1 —
<~ +n1t—zl ¢ = 4]

S

— 0.




‘ UCB strategy.'

Upper Confidence Bounds:
Use data to define an upper boundon
Choose the arm with the largest upper bound.

e Optimism in the face of uncertainty.

e Nicely balances exploration (few puls loose upper boungs> more
likely to try it) and exploitation (when confidence intersare small,
the best arm has the best upper bound).




‘ UCB strategy.'

o We want tight upper bounds (or we waste our time on a bad aum), p

e We don’t want the bounds too tight (or we might miss a good arm)

e We shouldn’t leave an arm untried for too long (since if we are
misled to wrongfully neglect an arm with a very small proli&pi
that becomes important again after a long period of neglect)

We'll consider estimates based on sample avergggs), and
concentration inequalities in terms @fmulant generating functions. So
we’ll have a brief digression to look at concentration inglgies...



Concentration inequalities.'

Definition: For a random variabl& with meanyu, the moment;
generating function is

Mx_,(A) = Eexp(A(X — EX)),

the cumulant-generating function is

FX—/LO‘) = log MX—/LO‘)'




Concentration inequalities..

Definition: For a random variabl&’, ) : R — R is acumulant
generating function upper bound if, for A > 0,

Y(A) = max{l'x(A),T-x(A)},

(=) = p(A).

The Legendre transform (convex conjugate) of v is

" (€) = sup (e —(A)) .

AER




Concentration Inequalities.'

Theorem:

Ixie(A) = Ac+Tx(N),

Ixtele) =Tx (e o).

(Easy to check.)




Concentration Inequalities.'

Theorem: Fore > 0,P(X —EX > ¢) < exp (—¢%_gx(€)).




‘Concentration Inequality: Proof. I

logP (X —EX > ¢)

— )i\nii)logIP’(eXp (A(X —EX —¢)) > 1)
>

inf logEexp (A (X —EX —¢))
A>0

inf (Vx—Ex(A) — Ae)

inf (Vx—Ex(A) — A€)

= —x_gx(€)-

(exp is monotonic)

(Markov's inequality)

(cgf bound)

(frome > 0, definition of) (— X))




Concentration Inequalities.'

and

hence,

Theorem: If X, X5, ..

., X,, are mean zero, i.i.d. with cgf upp

boundy, thenX,, = = >"" | X; has cgf bound

Vx, (A)

%, (€)
P ()_(n > e)

o)
ny* (),
exp (—n”(€))

(Easy to check.)




‘ Example: Gaussiad

For X ~ N(u,0?),

\2o? .
FX—,LL()\) — T4 FX—,LL(E) —

2 202"

ForXy,...,X, ~ N(u,o0?), it's easy to check that the bound is tight:

o1 _ €?
lim —InP(X,, —pu>¢€) =

n—o00 1 202"




‘ Example: Bounded SupportI

Theorem: [Hoeffding’s Inequality] For a random variabl¥ <
la, bl with EX = o and) € R,

201 \2
In My_,(\) < 2 “’8 )

Note the resemblance to a Gaussian:

Ng?  A%(b—a)?
VS .
2 8

(And sinceP has support ifla, b], VarX < (b — a)?/4.)




Example: Hoeffding’s Inequality Proof'

A(N) = log (Ee*) = log ( / e dP(:z;)) ,

whereX ~ P. ThenA is the log normalization of the exponential family
random variableX , with reference measur and sufficient statistic.
SinceP has bounded suppor,(\) < oo for all A\, and we know that

Define

A/()\) = E(XA), A//()\) = Var(XA).

SinceP has support ifla, b], Var(X,) < (b — a)?/4. Then a Taylor
expansion about = 0 (at this value of\, X, has the same distribution as
X, hence the same expectation) gives

A (b —a)?

A(N) < AEX
(\) S XEX + T




\ Sub-Gaussian Random Variablej

Definition: X is sub-Gaussianwith parameter2 if, for all
A € R,

Ao?

2

IHMX_“(A) S

Note: Gaussian Is sub-Gaussian.sub-Gaussian if- X sub-Gaussian.
X sub-Gaussian implieB(X — pu > t) < exp(—t?/(20?)).




‘ Hoeffding Bound'

Theorem: For X,...,X,, independentEX,; = u, X, sub-
Gaussian with parametet, then for allt > 0,

P 1§:X >t < nt’
— P— > <exp|———=].
n = H p 2072




