Stat 260/CS 294-102. Learning in Sequential Decision Problems.

Peter Bartlett

1. Adversarial bandits

- Definition: sequential game.
- Lower bounds on regret from the stochastic case.
- Exp3: exponential weights strategy.

Adversarial bandits

Repeated game: strategy chooses I_{t}, then adversary chooses $\left(x_{1, t}, \ldots, x_{k, t}\right)$.

Aim to minimize regret,

$$
R_{n}=\max _{j} \sum_{t=1}^{n} x_{j, t}-\sum_{t=1}^{n} x_{I_{t}, t},
$$

or pseudo-regret

$$
\bar{R}_{n}=\max _{j} \mathbb{E} \sum_{t=1}^{n} x_{j, t}-\mathbb{E} \sum_{t=1}^{n} x_{I_{t}, t}
$$

Adversarial bandits

Some scenarios:

- I_{t} deterministic. Hopeless.
- Must have I_{t} randomized: strategy plays a distribution. Regret is random. Could consider expected regret, or high probability regret bounds.
- Adversary chooses $x_{j, t}$ independent of strategy's previous random outcomes I_{t}. Oblivious adversary.
- Adversary chooses $x_{j, t}$ with knowledge of strategy's previous random outcomes I_{t}. Adaptive adversary or nonoblivious adversary. But then what does regret mean?

Adversarial bandits: Lower bounds

It's clear that $\bar{R}_{n} \leq \mathbb{E} R_{n}$. So a lower bound on pseudo-regret gives lower bounds on expected regret. Lower bounds in the stochastic setting suffice here (the adversary can certainly choose a sequence randomly).

Theorem: For any strategy and any n, there is an oblivious adversary playing $x_{j, t} \in\{0,1\}$ for which

$$
\bar{R}_{n} \geq \frac{1}{18} \min \{\sqrt{n k}, n\}
$$

In particular, it suffices for the adversary to play i.i.d. Bernoulli rewards to achieve a pseudo-regret that is this large.

Adversarial bandit strategies

How should a strategy choose the distribution over I_{t} in the adversarial setting?

- Exploration vs exploitation remains an important issue.
- Exploitation appears to be even more dangerous.
- Let's digress and consider the corresponding full information game. It's standard (and, we'll see, convenient) to pose it in terms of losses, rather than rewards. For $x_{i, t}$ in $[0,1]$, think of $\ell_{i, t}=1-x_{i, t}$, so that $\ell_{i, t}$ is in $[0,1]$.

An aside: A full information prediction game

Consider the following repeated game: at time t,

1. strategy chooses a distribution p_{t} over k experts $\left(I_{t} \sim p_{t}\right)$,
2. adversary chooses a loss vector $\ell_{t}=\left(\ell_{1, t}, \ldots, \ell_{k, t}\right) \in[0,1]^{k}$,
3. strategy sees ℓ_{t}.

The aim is to ensure that, for all choices of the adversary,

$$
\bar{R}_{n}=\sum_{t=1}^{n} \mathbb{E} \ell_{I_{t}, t}-\min _{j} \sum_{t=1}^{n} \ell_{j, t}
$$

is not too large.

An aside: A full information prediction game

$$
\begin{aligned}
& \text { Exponential Weights Strategy (with parameter } \eta \text {) } \\
& \text { set } p_{1,1}=\cdots=p_{k, 1}=1 / k .
\end{aligned}
$$

for $t=1,2, \ldots, n$, choose $I_{t} \sim p_{t}$, observe ℓ_{t}.

$$
\begin{aligned}
L_{i, t} & =\sum_{s=1}^{t} \ell_{i, s} \\
p_{i, t+1} & =\frac{\exp \left(-\eta L_{i, t}\right)}{\sum_{j=1}^{k} \exp \left(-\eta L_{j, t}\right)}
\end{aligned}
$$

An aside: A full information prediction game

Theorem: The exponential weights strategy with parameter η incurs regret

$$
\bar{R}_{n} \leq \frac{n \eta}{8}+\frac{\log k}{\eta}
$$

Choosing $\eta=\sqrt{8 \log k / n}$ gives $\bar{R}_{n} \leq \sqrt{n \log k / 2}$.

An aside: A full information prediction game

Proof idea: For this choice of p_{t},

$$
\Phi_{t}=-\frac{1}{\eta} \log \left(\sum_{i=1}^{k} \exp \left(-\eta L_{i, t}\right)\right)
$$

is a measure of progress. When $\mathbb{E} \ell_{I_{t}, t}$ is big, there is a big increase from Φ_{t-1} to Φ_{t}. But $\Phi_{n} \leq \min _{j} L_{j, n}$.

An aside: A full information prediction game

For $\ell_{i, t} \in[0,1]$, Hoeffding's inequality shows that

$$
\log \mathbb{E} \exp \left(-\eta\left(\ell_{I_{t}, t}-\mathbb{E} \ell_{I_{t}, t}\right)\right) \leq \frac{\eta^{2}}{8}
$$

that is,

$$
\mathbb{E} \ell_{I_{t}, t} \leq \frac{\eta}{8}-\frac{1}{\eta} \log \mathbb{E} \exp \left(-\eta \ell_{I_{t}, t}\right)
$$

But the choice of p_{t} means that the sum of these c.g.f.s telescopes:

$$
\begin{aligned}
\sum_{t=1}^{n} \log \mathbb{E} \exp \left(-\eta \ell_{I_{t}, t}\right) & =\sum_{t=1}^{n} \log \left(\frac{\sum_{i=1}^{k} \exp \left(-\eta L_{i, t}\right)}{\sum_{i=1}^{k} \exp \left(-\eta L_{i, t-1}\right)}\right) \\
& =\log \left(\sum_{i=1}^{k} \exp \left(-\eta L_{i, n}\right)\right)-\log k
\end{aligned}
$$

An aside: A full information prediction game

Thus,

$$
\begin{aligned}
\sum_{t=1}^{n} \mathbb{E} \ell_{I_{t}, t} & \leq \frac{\eta n}{8}+\frac{\log k}{\eta}-\frac{1}{\eta} \log \underbrace{\left(\sum_{i=1}^{k} \exp \left(-\eta L_{i, n}\right)\right)}_{\geq \exp \left(-\eta L_{j, n}\right)} \\
& \leq \frac{\eta n}{8}+\frac{\log k}{\eta}+\min _{j} L_{j, n} . \\
\bar{R}_{n} & =\sum_{t=1}^{n} \mathbb{E} \ell_{I_{t}, t}-\min _{j} \sum_{t=1}^{n} \ell_{j, t} \leq \frac{\eta n}{8}+\frac{\log k}{\eta} .
\end{aligned}
$$

Back to bandits

What can the strategy do when it only sees $\ell_{I_{t}, t}$?
Importance sampling: in the strategy, replace $\ell_{i, t}$ by

$$
\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{p_{i, t}} 1\left[I_{t}=i\right] .
$$

This is an unbiased estimate of the unseen losses:

$$
\ell_{j, t}=\mathbb{E} \tilde{l}_{j, t}
$$

Exp3: Exponential weights

Strategy Exp3

set p_{1} uniform on $\{1, \ldots, k\}$.
for $t=1,2, \ldots, n$, choose $I_{t} \sim p_{t}$, observe $\ell_{I_{t}, t}$.

$$
\begin{aligned}
\tilde{\ell}_{i, t} & =\frac{\ell_{i, t}}{p_{i, t}} 1\left[I_{t}=i\right] \\
\tilde{L}_{i, t} & =\sum_{s=1}^{t} \tilde{\ell}_{i, s} \\
p_{i, t+1} & =\frac{\exp \left(-\eta \tilde{L}_{i, t}\right)}{\sum_{j=1}^{k} \exp \left(-\eta \tilde{L}_{j, t}\right)}
\end{aligned}
$$

Back to bandits

Then the regret involves $\sum_{t}\left(\ell_{I_{t}, t}-\ell_{j, t}\right)$, and

$$
\ell_{I_{t}, t}=\sum_{i=1}^{k} p_{i, t} \tilde{\ell}_{i, t} \quad \quad \ell_{j, t}=\mathbb{E} \tilde{l}_{j, t} .
$$

But we can no longer appeal to Hoeffding's inequality, because $\tilde{u}_{i, t}$ is unbounded. Happily, we only need an upper bound on the c.g.f. $\Gamma(\lambda)$ for negative values of $\lambda=-\eta$. This corresponds to a lower tail concentration inequality for the non-negative random variable $\tilde{\ell}_{I_{t}, t}$. But non-negative random variables with finite variance have sub-Gaussian lower tails:

Sub-Gaussian lower tails for non-negative r.v.s

Lemma: For $X \geq 0$ and $\lambda>0$,

$$
\log \mathbb{E} e^{-\lambda X} \leq \frac{\lambda^{2}}{2} \mathbb{E} X^{2}-\lambda \mathbb{E} X,
$$

hence

$$
\mathbb{E} X \leq \frac{1}{\lambda} \log \mathbb{E} e^{-\lambda X}+\frac{\lambda}{2} \mathbb{E} X^{2} .
$$

Proof.

$$
\begin{aligned}
\log \mathbb{E} \exp (-\lambda(X-\mathbb{E} X)) & =\log \mathbb{E} \exp (-\lambda X)+\lambda \mathbb{E} X \\
& \leq \mathbb{E} \exp (-\lambda X)-1+\lambda \mathbb{E} X \\
& \leq \mathbb{E} \frac{\lambda^{2} X^{2}}{2},
\end{aligned}
$$

because $\log y \leq y-1$ for all y and $e^{-x} \leq 1-x+x^{2} / 2$ for $x \geq 0$.

Exp3: Exponential weights

Theorem: Exp3 with parameter η incurs regret

$$
\bar{R}_{n} \leq \frac{n \eta k}{2}+\frac{\log k}{\eta}
$$

Choosing $\eta=\sqrt{2 \log k /(n k)}$ gives $\bar{R}_{n} \leq \sqrt{2 n k \log k}$.
(Recall the lower bound $\bar{R}_{n}=\Omega(\sqrt{n k})$. This strategy matches it to within a $\log k$ factor.)

Exp3: Exponential weights

$$
\begin{aligned}
\sum_{t=1}^{n} \ell_{I_{t}, t} & =\sum_{t=1}^{n} \sum_{i=1}^{k} p_{i, t} \tilde{\ell}_{i, t} \\
& \leq \sum_{t=1}^{n}\left(\frac{\lambda}{2} \sum_{i=1}^{k} p_{i, t} \tilde{\ell}_{i, t}^{2}-\frac{1}{\lambda} \log \left(\sum_{i=1}^{k} p_{i, t} \exp \left(-\lambda \tilde{\ell}_{i, t}\right)\right)\right)
\end{aligned}
$$

For the first term, we can bound the variance by k :

$$
\mathbb{E} \sum_{i=1}^{k} p_{i, t} \tilde{\ell}_{i, t}^{2}=\mathbb{E} \frac{\ell_{I_{t}, t}^{2}}{p_{I_{t}, t}} \leq \mathbb{E} \frac{1}{p_{I_{t}, t}}=k
$$

For the second, as in the full information case, for $\lambda=\eta$ and any j,

$$
-\frac{1}{\eta} \sum_{t=1}^{n} \log \left(\sum_{i=1}^{k} p_{i, t} \exp \left(-\lambda \tilde{\ell}_{i, t}\right)\right) \leq \frac{\log k}{\eta}+\mathbb{E} \tilde{L}_{j, n}
$$

Exp3: Exponential weights

Hence,

$$
\begin{aligned}
\bar{R}_{n} & =\mathbb{E} \sum_{t=1}^{n} \ell_{I_{t}, t}-\min _{j} \mathbb{E} \sum_{t=1}^{n} \ell_{j, t} \\
& =\mathbb{E} \sum_{t=1}^{n} \ell_{I_{t}, t}-\min _{j} \mathbb{E} \tilde{L}_{j, n} \\
& \leq \frac{\eta n k}{2}+\frac{\log k}{\eta} .
\end{aligned}
$$

Exp3: Exponential weights

- Auer, Cesa-Bianchi, Freund and Schapire introduced Exp3 (but with a uniform distribution mixed in, to keep $1 / p_{I_{t}, t}$ bounded).
- Stoltz showed that the uniform distribution is not necessary, through the sub-Gaussian lower tails idea. (See the 'Readings' page on the website.)
- Notice that the η parameter is set using the time horizon n. There are two approaches to avoiding this:
- Run Exp3 in multiple epochs, doubling n in each epoch, and then the regret is no more than the sum of the regrets, which grows like the square root of the total time horizon.
- Set η_{t} on a decreasing schedule: $\eta_{t}=\sqrt{\log k /(t k)}$. Since η_{t} is decreasing, the telescoping sum becomes a sum that is no more than 0 , and the $k n \eta / 2$ becomes $k \sum_{t} \eta_{t} / 2=O(\sqrt{n k \log k})$.

Exp3: Exponential weights

- High probability? Variances of the losses are big $\left(\mathbb{E} \tilde{\ell}_{j, t}^{2}=\tilde{\ell}_{j, t}^{2} / p_{j, t}\right)$. Mixing the uniform distribution does not help (for a small regret, the uniform component must be as small as $n^{-1 / 2}$). Need a new strategy. Instead, use a biased estimate in place of $\tilde{\ell}_{j, t}$: subtract a small offset so $\tilde{L}_{j, t}$ becomes a lower confidence bound on the cumulative expected loss $L_{j, t}$ (or, in the case of gains, an upper confidence bound on the cumlative expected reward).
- Log factor? Can eliminate the $\log k$ factor. One approach is to replace exponential weights with a generalization, mirror descent, with an appropriate potential function.
- Other comparisons? Can compete with sequences of actions, with a bounded number of switches.

