Stat 260/CS 294-102. Learning in Sequential Decision
Problems.
Peter Bartlett

1. Recall: MDPs, value iteration, policy iteration.
2. Linear programming formulation.

3. Q functions.

4. Approximate methods for MDPS.




\Recall: Markov Decision Processe'

Definition: A Markov Decision Process (MDP) consists of

1. A state spaced’,

2. An action space,

3. A set of Markov chainsM = (X', P,), one for eaclu € A,
4. Areward distribution? : X x A — A(R).

A policy is a sequence of functions : X — A(.A), one for eacl
timet. (A stationary policy is constant with)




‘ Recall: Dynamic programming operator'

Definition: Define the operator®, T, : R* — R by

(TJ)(x) = meach (70 + aJ(z1)| 2o = 2,00 = a] ,

(TrJ)(x) =E[rg+ J(x1)|x0 = 2,00 = 7(20)] -

For a value function estimaté € R, define the greedy operat
G :RY - A*:

(GJ)(x) = argmaj(E r0+ozj(a;1)|:v0:x,a0:a :
ac




Recall: Value iteration and (generalized) policy iteratian I

Value iteration:

J]€_|_1 = TJk, Te4+1 - — GJk+1.

Policy iteration:
el = GJ™*.

Generalized policy iteration:

[
Jk.|.1 = ka‘]]ﬁ Te+1 -— GJk+1.




‘ Linear program I

Bellman equations:
J=1TJ.

Linear programming formulation:
Fix a probability distributiorp with supportX'.

: T
in J
mJ D

S.t. J >TJ.




‘ Linear program I

Proof. Uses monotonicityy > J' impliesTJ > TJ'. SoJ > TJ
impliesJ > T*J — J*. Minimizing u'J setsJ = J*.




‘ Dual linear program I

) Z Z u(z, a)E [rolzo = z,a0 =

reX ac A

st.  Va'eX, Z pu(x',a) = p(x)
acA

+ « Z Z p(x,a)Plry = 2'|zg = x, a9 = al.

reX aeA

View 1 as discounted expected number of state-action visitgirgidrom
the distributionp. So criterion is expected discounted reward.

Primal-dual are related via optimal policy: (x) = arg max,c 4 pu(x, a).




‘ Q vaIuesI

Analogous ta/*, butl£ andmax are reversed.:

Q*($,&) =K [TO —|—Oémai(lQ*($1,a1) Lo = &L, a9 = CL] )
ai€

" (x) = arggleaj(Q (x,a).

Value Iiteration:

a1 €

Qk+1(a;,a) = ['ro + « maicl@k(a;l,al) Xo = T,aq0 = a] :

Ti+1(2) = arg max Qk—H (z,a).
acA




Approximate dynamic programming I

The grand challenge: large-scale MDPs.

In general, cannot hope to find optimal policy if state spadamge.
Instead, aim to compete with a policy in a restricted class.

e.g., parameterized approximations of valdg: X — R. Hope to
compete with the best greedy policy corresponding to onbesd
approximations.




Approximate dynamic programming I

Define featuresp € R**<. Value approximation might be linear in thes¢
features,jy = 6.

The choice of features is important.

(Alternatively it might be non-linear, for example, deeurad networks.

But it is difficult to prove anything; when failure occurssidifficult to
know whether it's attributable to the choice of the classpdraximating
functions or to the parameter estimation heuristics.)

1. Approximate policy iteration
2. Approximate value iteration

3. Approximate linear program




Approximate policy iteration I

Find 6 so.J, approximates/,. for current policysr.

e.g., linear regression, with covariate-response fronulsition.
(Exploration is an issue: under-represented states.)

e.g., T D()\): stochastic iterative approach to solving
OO ~ T, (P0).

Use.J, to determine action in each state (i.e., update poticy




Approximate value iteration I

e Initial 6y; updatesd;. , so j9t+1 approximateﬁ”j@t. (e.qg., fitting on a
small subset of states, chosen from simulation)

o Works well if | Jp, ., — T'Jp, || is small. But, e.g., minimizing
squared error (even on complete state space) can lead tgeine.
Not a contraction; mismatch of norms.

e Q learning:
— Maintain approximatioy : X x A — Rt0 Q. e.g.,
Qo(z,a) = d(z,a)T.
— Update using a small subset of states. (e.g., from simulatio

— Use(Q), for greedy policy. (Don't need to know transition
probabilities.)




Approximate linear program I

Fix a probability distributiorp on X'.

min pl ®H

J
S.t. dH > TP0.

This has fewer variables, but still too many constraintaa Gse, e.g.,
constraint sampling.




