
Stat 260/CS 294-102. Learning in Sequential Decision
Problems.

Peter Bartlett

1. Recall: MDPs, value iteration, policy iteration.

2. Linear programming formulation.

3. Q functions.

4. Approximate methods for MDPS.

1



Recall: Markov Decision Processes

Definition: A Markov Decision Process (MDP) consists of

1. A state spaceX ,

2. An action spaceA,

3. A set of Markov chains,M = (X , Pa), one for eacha ∈ A,

4. A reward distributionR : X ×A → ∆(R).

A policy is a sequence of functionsπt : X → ∆(A), one for each

time t. (A stationary policy is constant witht.)

2



Recall: Dynamic programming operator

Definition: Define the operatorsT, Tπ : RX → R
X by

(TJ)(x) = max
a∈A

E [r0 + αJ(x1)|x0 = x, a0 = a] ,

(TπJ)(x) = E [r0 + J(x1)|x0 = x, a0 = π(x0)] .

For a value function estimatêJ ∈ R
X , define the greedy operator

G : RX → AX :

(GĴ)(x) := argmax
a∈A

E

[

r0 + αĴ(x1)
∣

∣

∣
x0 = x, a0 = a

]

.

3



Recall: Value iteration and (generalized) policy iteration

Value iteration:

Ĵk+1 := T Ĵk, πk+1 := GĴk+1.

Policy iteration:

πk+1 := GJπk .

Generalized policy iteration:

Jk+1 := T l
πk
Jk, πk+1 := GJk+1.

4



Linear program

Bellman equations:

J = TJ.

Linear programming formulation:

Fix a probability distributionp with supportX .

min
J

pTJ

s.t. J ≥ TJ.

5



Linear program

Proof. Uses monotonicity:J ≥ J ′ impliesTJ ≥ TJ ′. SoJ ≥ TJ

impliesJ ≥ T kJ → J∗. Minimizing µTJ setsJ = J∗.

6



Dual linear program

max
µ

∑

x∈X

∑

a∈A

µ(x, a)E [r0|x0 = x, a0 = a]

s.t. ∀x′ ∈ X ,
∑

a∈A

µ(x′, a) = p(x)

+ α
∑

x∈X

∑

a∈A

µ(x, a)P [x1 = x′|x0 = x, a0 = a].

View µ as discounted expected number of state-action visits, starting from

the distributionp. So criterion is expected discounted reward.

Primal-dual are related via optimal policy:π∗(x) = argmaxa∈A µ(x, a).

7



Q values

Analogous toJ∗, butE andmax are reversed:

Q∗(x, a) := E

[

r0 + αmax
a1∈A

Q∗(x1, a1)

∣

∣

∣

∣

x0 = x, a0 = a

]

,

π∗(x) := argmax
a∈A

Q∗(x, a).

Value iteration:

Q̂k+1(x, a) := E

[

r0 + αmax
a1∈A

Q̂k(x1, a1)

∣

∣

∣

∣

x0 = x, a0 = a

]

,

πk+1(x) := argmax
a∈A

Q̂k+1(x, a).

8



Approximate dynamic programming

The grand challenge: large-scale MDPs.

In general, cannot hope to find optimal policy if state space is large.

Instead, aim to compete with a policy in a restricted class.

e.g., parameterized approximations of value:Ĵθ : X → R. Hope to

compete with the best greedy policy corresponding to one of these

approximations.

9



Approximate dynamic programming

Define features,Φ ∈ R
X×d. Value approximation might be linear in these

features,Ĵθ = Φθ.

The choice of features is important.

(Alternatively it might be non-linear, for example, deep neural networks.

But it is difficult to prove anything; when failure occurs, it’s difficult to

know whether it’s attributable to the choice of the class of approximating

functions or to the parameter estimation heuristics.)

1. Approximate policy iteration

2. Approximate value iteration

3. Approximate linear program

10



Approximate policy iteration

• Findθ so Ĵθ approximatesJπ for current policyπ.

− e.g., linear regression, with covariate-response from simulation.

(Exploration is an issue: under-represented states.)

− e.g.,TD(λ): stochastic iterative approach to solving

Φθ ≈ Tπ(Φθ).

• UseĴθ to determine action in each state (i.e., update policyπ).

11



Approximate value iteration

• Initial θ0; updateθt+1 soĴθt+1
approximatesT Ĵθt . (e.g., fitting on a

small subset of states, chosen from simulation)

• Works well if ‖Ĵθt+1
− T Ĵθt‖∞ is small. But, e.g., minimizing

squared error (even on complete state space) can lead to divergence.

Not a contraction; mismatch of norms.

• Q learning:

− Maintain approximation̂Qθ : X ×A → R toQ. e.g.,

Q̂θ(x, a) = Φ(x, a)T θ.

− Update using a small subset of states. (e.g., from simulation)

− UseQ̂θ for greedy policy. (Don’t need to know transition

probabilities.)

12



Approximate linear program

Fix a probability distributionp onX .

min
J

pTΦθ

s.t. Φθ ≥ TΦθ.

This has fewer variables, but still too many constraints. Can use, e.g.,

constraint sampling.

13


