Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett

- 1. Recall: MDPs, value iteration, policy iteration.
- 2. Linear programming formulation.
- 3. Q functions.
- 4. Approximate methods for MDPS.

Recall: Markov Decision Processes

Definition: A Markov Decision Process (MDP) consists of

- 1. A state space \mathcal{X} ,
- 2. An action space \mathcal{A} ,

3. A set of Markov chains, $\mathcal{M} = (\mathcal{X}, P_a)$, one for each $a \in \mathcal{A}$,

4. A reward distribution $R : \mathcal{X} \times \mathcal{A} \to \Delta(\mathbb{R})$.

A policy is a sequence of functions $\pi_t : \mathcal{X} \to \Delta(\mathcal{A})$, one for each time t. (A stationary policy is constant with t.)

Recall: Dynamic programming operator

Definition: Define the operators $T, T_{\pi} : \mathbb{R}^{\mathcal{X}} \to \mathbb{R}^{\mathcal{X}}$ by

$$(TJ)(x) = \max_{a \in \mathcal{A}} \mathbb{E} \left[r_0 + \alpha J(x_1) | x_0 = x, a_0 = a \right],$$

$$(T_{\pi}J)(x) = \mathbb{E} \left[r_0 + J(x_1) | x_0 = x, a_0 = \pi(x_0) \right].$$

For a value function estimate $\hat{J} \in \mathbb{R}^{\mathcal{X}}$, define the greedy operator $G : \mathbb{R}^{\mathcal{X}} \to \mathcal{A}^{\mathcal{X}}$:

$$(G\hat{J})(x) := \arg\max_{a \in \mathcal{A}} \mathbb{E}\left[\left. r_0 + \alpha \hat{J}(x_1) \right| x_0 = x, a_0 = a \right]$$

Recall: Value iteration and (generalized) policy iteration

Value iteration:

$$\hat{J}_{k+1} := T\hat{J}_k, \qquad \pi_{k+1} := G\hat{J}_{k+1}.$$

Policy iteration:

$$\pi_{k+1} := GJ^{\pi_k}.$$

Generalized policy iteration:

$$J_{k+1} := T_{\pi_k}^l J_k, \qquad \pi_{k+1} := G J_{k+1}.$$

Linear program

Bellman equations:

$$J = TJ.$$

Linear programming formulation: Fix a probability distribution p with support \mathcal{X} .

$$\min_{J} \qquad p^{T}J \\
\text{s.t.} \qquad J \ge TJ.$$

Linear program

Proof. Uses monotonicity: $J \ge J'$ implies $TJ \ge TJ'$. So $J \ge TJ$ implies $J \ge T^k J \to J^*$. Minimizing $\mu^T J$ sets $J = J^*$.

Dual linear program

$$\max_{\mu} \qquad \sum_{x \in \mathcal{X}} \sum_{a \in \mathcal{A}} \mu(x, a) \mathbb{E} \left[r_0 | x_0 = x, a_0 = a \right]$$

s.t. $\forall x' \in \mathcal{X}, \sum_{a \in \mathcal{A}} \mu(x', a) = p(x)$
 $+ \alpha \sum_{x \in \mathcal{X}} \sum_{a \in \mathcal{A}} \mu(x, a) P[x_1 = x' | x_0 = x, a_0 = a].$

View μ as discounted expected number of state-action visits, starting from the distribution p. So criterion is expected discounted reward.

Primal-dual are related via optimal policy: $\pi^*(x) = \arg \max_{a \in \mathcal{A}} \mu(x, a)$.

Q values

Analogous to J^* , but \mathbb{E} and max are reversed:

$$Q^*(x,a) := \mathbb{E}\left[\left. r_0 + \alpha \max_{a_1 \in \mathcal{A}} Q^*(x_1,a_1) \right| x_0 = x, a_0 = a \right],$$
$$\pi^*(x) := \arg \max_{a \in \mathcal{A}} Q^*(x,a).$$

Value iteration:

$$\hat{Q}_{k+1}(x,a) := \mathbb{E}\left[\left.r_0 + \alpha \max_{a_1 \in \mathcal{A}} \hat{Q}_k(x_1,a_1)\right| x_0 = x, a_0 = a\right],$$
$$\pi_{k+1}(x) := \arg \max_{a \in \mathcal{A}} \hat{Q}_{k+1}(x,a).$$

Approximate dynamic programming

The grand challenge: large-scale MDPs.

In general, cannot hope to find optimal policy if state space is large. Instead, aim to compete with a policy in a restricted class.

e.g., parameterized approximations of value: $\hat{J}_{\theta} : \mathcal{X} \to \mathbb{R}$. Hope to compete with the best greedy policy corresponding to one of these approximations.

Approximate dynamic programming

Define features, $\Phi \in \mathbb{R}^{\mathcal{X} \times d}$. Value approximation might be linear in these features, $\hat{J}_{\theta} = \Phi \theta$.

The choice of features is important.

(Alternatively it might be non-linear, for example, deep neural networks. But it is difficult to prove anything; when failure occurs, it's difficult to know whether it's attributable to the choice of the class of approximating functions or to the parameter estimation heuristics.)

- 1. Approximate policy iteration
- 2. Approximate value iteration
- 3. Approximate linear program

Approximate policy iteration

• Find θ so \hat{J}_{θ} approximates J_{π} for current policy π .

- e.g., linear regression, with covariate-response from simulation.
 (Exploration is an issue: under-represented states.)
- e.g., $TD(\lambda)$: stochastic iterative approach to solving $\Phi\theta \approx T_{\pi}(\Phi\theta).$
- Use \hat{J}_{θ} to determine action in each state (i.e., update policy π).

Approximate value iteration

- Initial θ_0 ; update θ_{t+1} so $\hat{J}_{\theta_{t+1}}$ approximates $T\hat{J}_{\theta_t}$. (e.g., fitting on a small subset of states, chosen from simulation)
- Works well if || Ĵ_{θt+1} − T Ĵ_{θt} ||_∞ is small. But, e.g., minimizing squared error (even on complete state space) can lead to divergence. Not a contraction; mismatch of norms.
- Q learning:
 - Maintain approximation $\hat{Q}_{\theta} : \mathcal{X} \times \mathcal{A} \to \mathbb{R}$ to Q. e.g., $\hat{Q}_{\theta}(x, a) = \Phi(x, a)^T \theta.$
 - Update using a small subset of states. (e.g., from simulation)
 - Use \hat{Q}_{θ} for greedy policy. (Don't need to know transition probabilities.)

Approximate linear program

Fix a probability distribution p on \mathcal{X} .

$$\min_{J} \qquad p^{T} \Phi \theta \\ \text{s.t.} \qquad \Phi \theta \geq T \Phi \theta$$

This has fewer variables, but still too many constraints. Can use, e.g., constraint sampling.