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Abstract

The performance of spectral clustering is considerably improved via
regularization, as demonstrated empirically in Amini et al. [2]. Here, we
provide an attempt at quantifying this improvement through theoretical
analysis. Under the stochastic block model (SBM), and its extensions,
previous results on spectral clustering relied on the minimum degree of
the graph being sufficiently large for its good performance. We prove that
for an appropriate choice of regularization parameter 7, cluster recovery
results can be obtained even in scenarios where the minimum degree is
small. More importantly, we show the usefulness of regularization in situ-
ations where not all nodes belong to well-defined clusters. Our results rely
on the analysis of the spectrum of the Laplacian as a function of 7. As
a byproduct of our bounds, we propose a data-driven technique DK-est
(standing for estimated Davis-Kahn bounds), for choosing the regulariza-
tion parameter. This technique is shown to work well through simulations
and on a real data set.

1 Introduction

The problem of identifying communities, or clusters, in large networks is an
important contemporary problem in statistics. Spectral clustering is one of the
more popular techniques for such purposes, chiefly due to its computational
advantage and generality of application. The algorithm’s generality arises from
the fact that it is not tied to any modeling assumptions on the data, but is
rooted in intuitive measures of community structure such as sparsest cut based
measures [12], [26], [18], [22]. Other examples of applications of spectral clus-
tering include manifold learning [4], image segmentation [26], and text mining
[10].

The canonical nature of spectral clustering also generates interest in vari-
ants of the technique. Here, we attempt to better understand the impact of
regularized forms of spectral clustering for community detection in networks.
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In particular, we focus on the Perturbed Spectral Clustering (PSC) procedure
proposed in Amini et al. [2]. Their empirical findings demonstrates that the
performance of the PSC algorithm, in terms of obtaining the correct clusters,
is significantly better for certain values of the regularization parameter. An
alternative form of regularization was studied in Dasgupta et al. [9], Chaudhuri
et al. [7], and Qin and Rohe [24].

This paper provides an attempt to provide a theoretical understanding for
the regularization in the PSC algorithm under the stochastic block model (SBM)
framework. We also address the practical issue of the choice of regularization
parameter. The following are the main contributions of the paper.

(a) In Section 3 we demonstrate improvements in eigenvector perturbation
bounds through regularization. In particular, for a graph with n nodes,
previous theoretical analyses for spectral clustering, under the SBM and its
extensions, [25],[7], [27], [11] assumed that the minimum degree of the graph
scales at least by a polynomial power of log n. Even when this assumption is
satisfied, the dependence on the minimum degree is highly restrictive when
it comes to making inferences about cluster recovery. Our analysis provides
bounds on the perturbation of eigenvectors of the regularized Laplacian.
These bounds, when optimized over the regularization parameter, poten-
tially do not depend on the above mentioned constraint on the minimum
degree. As an example, for an SBM with two blocks (clusters), our bounds
are inversely related to the maximum degree, as opposed to the minimum
degree.

(b) In Section 4 we demonstrate that regularization has the potential of address-
ing a situation, often encountered in practice, where not all nodes belong
to well-defined clusters. Without regularization, these nodes would hamper
with the clustering of the remaining nodes in the following way: In order for
spectral clustering to work, the top eigenvectors - that is, the eigenvectors
corresponding to the largest eigenvalues of the Laplacian - need to be able
to discriminate between the clusters. Due to the effect of nodes that do not
belong to well-defined clusters, these top eigenvectors do not necessarily
discriminate between the clusters with ordinary spectral clustering. With a
proper choice of regularization parameter, we show that this problem can
be rectified. We also demonstrate this on simulated and real datasets.

(¢) In Section 6 we provide a data dependent technique for choosing the regu-
larization parameter based on our bounds. We demonstrate that it works
well through simulations and on a real data set.

A crucial ingredient in (a) and (b) is the analysis of the spectrum of the
Laplacian as a function of the regularization parameter. Assuming that there are
K clusters, an adequate gap between the top K eigenvalues and the remaining
eigenvalues, ensures that these clusters can be estimated well [28], [22], [18].
Such a gap is commonly referred to as the eigen gap. In the situation considered
in (b), an adequate eigen gap may not exist for the unregularized Laplacian.



We show that regularization works by creating a gap, allowing us to recover the
clusters.

The paper is divided as follows. In the next section we discuss preliminaries.
In particular, in Subsection 2.1 we review the PSC algorithm of [2], while in
Subsection 2.2 we review the stochastic block model. Our theoretical results,
described in (a) and (b) above, are provided in Sections 3 and 4. Section 5
discusses the regularization studied in the papers [9], [7], [24] in relation to our
work. Section 6 describes a data dependent method for choosing the regular-
ization parameter, motivated by our bounds. Section 7 provides the high-level
idea behind the proofs of results in Sections 3 and 4.

2 Preliminaries

In this section we review the perturbed spectral clustering (PSC) algorithm of
Amini et al. [2] and the stochastic block model framework.

We first introduce some basic notation. A graph with n nodes and edge set
E is represented by the n x n symmetric adjacency matrix A = ((A4;;)), where
A;j = 1 if there is an edge between 4 and j, otherwise A;; is 0. In other words,

1, if(i,j) el
Aij = . .
0, otherwise

Given such a graph, the typical community detection problem is synonymous
with finding a partition of the nodes. A good partitioning would be one in which
there are few edges between the various components of the partition, compared
to the number of edges within the components. Various measures for goodness
of a partition have been proposed, chiefly the Ratio Cut [12] and Normalized
Cut [26] . However, minimization of the above measures is an NP-hard problem
since it involves searching over all partitions of the nodes. The significance
of spectral clustering partly arises from the fact that it provides a continuous
approximation to the above discrete optimization problem [12], [26].

2.1 The PSC Algorithm [2]

We now describe the PSC algorithm [2], which is a regularized version of spec-
tral clustering. Denote by D = diag(dy,...,d,) the diagonal matrix of degrees,
where d; = Z?Zl A;;. The normalized (unregularized) symmetric graph Lapla-
cian is defined as

L=D"1'2AD7"/2

Regularization is introduced in the following way: Let J be a constant ma-
trix with all entries equal to 1/n. Then, in perturbed spectral clustering one
constructs a new adjacency matrix by adding 7J to the adjacency matrix A and
computing the corresponding Laplacian. In particular, let

Ar=A+1J,



where 7 > 0 is the regularization parameter. The corresponding regularized
symmetric Laplacian is defined as

L, =D7Y2A.D7Y2

Here, D, = diag(cZLT, e CZM) is the diagonal matrix of ‘degrees’ of the mod-
ified adjacency matrix A,. In other words, a?iﬁ =d; + .

The PSC algorithm for finding K communities is described in Algorithm 1.
The algorithm first computes V., the n x K eigenvector matrix corresponding to
the K largest (in absolute terms) eigenvalues of L. The columns of V. are taken
to be orthogonal. The rows of V;, denoted by V; ;, for i = 1,...,n, corresponds
to the nodes in the graph. Clustering the rows of V, provides a clustering of
the nodes. We remark that with 7 = 0, the PSC Algorithm 1 corresponds to
the usual spectral clustering algorithm.

We also remark that there is flexibility in the choice of the clustering proce-
dure in Step 2 of the algorithm we describe below. A natural choice would be
the k-means algorithm [22], [25], [17]. This was also used for the PSC algorithm
[2]. Algorithm 2, proposed in McSherry [20], provides an alternative procedure
that has been used in the literature. This algorithm, along with variants [7], [3],
uses pairwise distances of the rows of the eigenvector matrix to do clustering.

Algorithm 1 The PSC algorithm [2] with regularization parameter 7

Input : Laplacian matrix L., .
Step 1: Compute the n x K eigenvector matrix V..
Step 2: Use Algorithm 2 to cluster the rows of V; into K clusters.

Our main theoretical results concerns the impact of regularization on per-
turbation of eigenvectors. In order to translate these results into implications
for cluster recovery, we use Algorithm 2 in Step 2 of the PSC Algorithm 1 since
it is easier to analyze. Our simulation results will use the k-means algorithm in
Step 2 instead.

Algorithm 2 Clustering procedure in McSherry [20] with parameter ¢ > 0.

Input : Data points V; ,, for i =1,...,n.
Set k(1) =1and S ={2,...,n}.
while S # ) do
Choose a j in § at random. Set S =S — {j}.
if For some i € S, ||Vj., — Vi,|| <t then assign k(j) = k(i).

else
If there are unused labels in {1,..., K} then assign a new label
at random for k(j). Otherwise set k(j) = 0.
end if
end while

Output: Function k that provides the cluster labels.




In Algorithm 2 we denote by % : {1,...,n} = {0,1,..., K} as the function
that provides cluster labels for the n nodes. The algorithm returns lAc(z) = 0if
node 7 could not be assigned to any of the K clusters, although in our analysis
of clustering performance we show that all nodes are clustered accurately. The
appropriate choice of the parameter ¢, used as input to the algorithm, will be
specified in Lemma 2.

Our theoretical results assume that the data is randomly generated from a
stochastic block model (SBM), which we review in the next subsection. While it
is well known that there are real data examples where the SBM fails to provide
a good approximation, we believe that the above provides a good playground for
understanding the role of regularization in the PSC algorithm. Recent works [2],
[11], [25], [6], [16] have used this model, and its variants, to provide a theoretical
analyses for various community detection algorithms.

Notation

We use ||.|| to denote the spectral norm of a matrix. Notice that for vectors
this corresponds to the usual £o-norm. We use A’ to denote the transpose of a
matrix, or vector, A.

For positive a,,, b,, we use the notation a, =< b, if there exists universal
constants ¢, ¢ > 0 so that cia, < b, < csa,. Further, we use b, < a, if
by, < a6y, for some ¢y not depending on n. The notation b,, 2 a,, is analogously
defined.

2.2 The Stochastic Block Model

Given a set of n nodes, the stochastic block model (SBM), introduced in [14],
is one among many random graph models that has communities inherent in its
definition. We denote the number of communities in the SBM by K. Through-
out this paper we assume that K is known. The communities, which represent
a partition of the n nodes, are assumed to be fixed beforehand. Denote these
by Cl, ey OK.

Given the communities, the edges between nodes, say ¢ and j, are chosen
independently with probability depending the communities ¢ and j belong to.
In particular, for a node ¢ belonging to cluster Cj,, and node j belonging to
cluster Cl,, the probability of edge between ¢ and j is given by

Pij = Bk17k2‘ (1)
Here, the block probability matrix
B = ((Bk, ky)), whereky, ko=1,...,K

is a symmetric full rank matrix, with each entry between [0, 1].

The n x n matrix P = ((P,;)), given by (1), represents the population
counterpart of the adjacency matrix A. From (1), it is seen that the rank
of P is also K. This is most readily seen if the nodes are ordered according



to the clusters they belong to, in which case P has a block structure with K
blocks. The population counterpart for the degree matrix D is denoted by
2 = diag(dy, . ..,dy), where 2 = diag(P1). Here 1 denotes the column vector
of all ones.
Similarly, the population version of the symmetric Laplacian L, is denoted
by .%,, where
L =972 p.g7 12,

Here 2, = 2 + 71 and P, = P + 7J. The n x n matrices &, and P, represent
the population counterparts to D, and A, respectively. Notice that since P has
rank K, the same holds for .Z..

2.2.1 The Population Cluster Centers

We now proceed to define population cluster centers centy . € RE, for k =
1,..., K, for the K block SBM. These points are defined so that the rows of the
eigenvector matrix V; ,, for i € C, are expected to be scattered around centy, -.

Denote by ¥, an n x K matrix containing the eigenvectors of the K largest
eigenvalues (in absolute terms) of .%;. As with V., the columns of ¥, are also
assumed to be orthogonal.

Notice that both ¥, and —¥, are eigenvector matrices corresponding to .Z.
This ambiguity in the definition of ¥, is further complicated if an eigenvalue of
%, has multiplicity greater than one. We do away with this ambiguity in the
following way: Let H denote the set of all n x K eigenvector matrices of %,
corresponding to the top K eigenvalues. We take,

7/7': i T_Hv 2
arg min [[V; — H]| )

The matrix ¥#;, as defined above, represents the population counterpart of
the matrix V.

Let 7; ; denote the i-th row of #;. Notice that since the set H is closed under
the ||.|| norm, one has that ¥; is also an eigenvector matrix of %, corresponding
to the top K eigenvalues. Consequently, the rows ¥; ; are the same across nodes
belonging to a particular cluster (See, for example, Rohe et al. [25] for a proof
of this fact). In other words, there are K distinct rows of ¥; ,, with each row
corresponding to nodes from one of the K clusters. We denote the K distinct
rows of ¥, as centy ;,...,centg ..

Notice that the cent; r, ..., centx » depend on the sample eigenvector ma-
trix V; through (2), and consequently is a random quantity. However, the
following lemma shows that the pairwise distances between the centj ,’s are
non-random and, more importantly, independent of 7.

Lemma 1. Let 1 <k, k' < K. Then,

0, ifk =k

||centy, » — centy .|| = { 1 1 : /
Ick‘—i_lck’l, ka.#k




The above lemma, which is proved in Appendix D.4, states that the pairwise
distances between the population cluster centroids only depends on the sizes of
the various clusters and not on the regularization parameter 7.

For any node 4, denote by k(i) the index of the cluster in which node ¢
belongs to. In other words,

k(i) = k, if node i belongs to cluster Cy.

2.2.2 Relating Perturbation Of Eigenvectors And Cluster Recovery

Recall that spectral clustering works by clustering the rows of the n x K sam-
ple eigenvector matrix, denoted by V; ,, for i« = 1,...,n. If the points V; ;
occupy K well separated regions in RX, with each region corresponding to one
of C1,...,Ck, then the clustering procedure in Step 2 of the PSC Algorithm 1,
when applied to the V; ;’s, should able to identify Ci,...,Ck.

Notice that the cluster center corresponding to a node 7 is given by centy,;) 7.
In order for spectral clustering to work, the distance of each V; ; from its cluster
center centy;) -, given by

0r = max ||V;, — centye |l (3)
i=1,....,n

should be small relative to the pairwise distance between the centers. The
following quantity represents this relative perturbation:

5

mink7gk/ ||cent;m — centk/7T||

pert, = (4)
If pert, is small, then the distance of each V; ; from its cluster center, which is at
most 57, is small compared to the distances between the centers. In particular,
if pert, < 1/2 then this implies that among all the cluster centers centy, ., each
Vi,r is closest to its cluster center, given by centy ;) . Following the pattern of
Rohe et al. [25], we say that no nodes are misclustered if pert. < 1/2 holds.

Under a slightly stronger condition on pert_, one can show cluster recovery
using Algorithm 2. This shown in the lemma below. The proof of the lemma
can be inferred from McSherry [20]. For completeness, we provide its proof
below.

Lemma 2. If pert, < 1/4 then Algorithm 2, with

_ mingy ||centy, ; — centys .||
N 2

recovers the clusters Cy,...,Ck.

Proof. With t as above, we claim that ¢ and j are in the same cluster iff ||V; , —
Vj-|l < t. For the ‘only if’ part, assume that ¢ and j are in cluster Cj. Then
from triangle inequality,

||V'i,7' - Vj,‘r” < ||Vi,7' - Centkn’” + ||Vj7T - CenthH.



The right side is less than ¢ using pert, < 1/4.
Conversely, if i € Cy and j € Cys, with k £ &/, then

V

”VH' - V"r”
, J»

[centy,r — centy 7| — [|[Vi,r — centy 7 || — |[Vj,- — centy .||

mingg ||centy - — centy || B
5 —

Y

t

O

Recall that from Lemma 1 the denominator in pert. (4) does not depend
on 7. Consequently, the theoretically best choice of 7 would be the one that
minimizes the numerator in pert_, given by oy (3), when viewed a function of
7. Note, such a 7 cannot be computed in practice since the population centers
centy » are not known in advance.

3 Perturbation Bounds as a Function of 7

Theorem 3, below, describes our bound for the perturbation 5y (3). This in
turn will provide implications for cluster recovery using the PSC Algorithm 1.
We first describe the assumptions behind the theorem. Let
dpmin = min d;
i=1,...,n
denote the minimum population degree of the graph. The following quantity
will appear frequently in our analysis.

Tmin = maX{T, dmzn} (5)

The regularization parameter 7, which is allowed to depend on n, is taken
so that the following is satisfied:

Assumption 1 (Minimum 7).
Tmin = Ky logn, (6)
where k, > 32. In other words, Tyn 2 logn.

As mentioned earlier, previous analysis of spectral clustering assumed that
the minimum degree d,,;, grows at least as fast as logn. By choosing 7 appro-
priately large, Assumption 1 is satisfied even when the minimum degree is, say,
of constant order.

Let

12”1,7’2-~-2Mn,7

be the eigenvalues of the regularized population Laplacian %, arranged in de-
creasing order. The fact that pp , is 1 follows from standard results on the
spectrum of Laplacian matrices (see, for example, [28]). As mentioned in the
introduction, in order to control the perturbation of the first K eigenvectors,



the eigen gap, given by px r — pix+1,-, must be adequately large, as noted in
[28], [22], [18]. Since .Z; has rank K, one has pixy1,, = 0. Thus, the eigen gap
is simply pix . We require the following assumption on the size of the eigen
gap.

Assumption 2 (Eigen gap).

Viogn

Tmin

MK, > 20

Notice that both Assumptions 1 and 2 depend on 7. As mentioned above, a
large 7 will ensure that Assumption 1 is satisfied. However, as such, for a given
SBM it is not clear what values of 7 allow for Assumption 2 to be satisfied. The
next subsection demonstrates that for an appropriately chosen 7, improvements
in perturbation bounds can be obtained under assumptions weaker than that
used in literature. To do this, we require the following theorem which provides
bounds on the perturbation of eigenvectors for any 7 satisfying the above two
assumptions.

Theorem 3. Let Assumptions 1 and 2 hold. Then, with probability at least
1— (2K +5)/n,

by = max |Vi,r — centiiy o || < 0rpp fori=1,...,n (7)
i=1,...,n
where 07y, is the mazimum overi=1,...,n of
1 V1 V1 K1
993 Y08 | 3 %87 419 3/°2g" . (8)

1 Tmin / Tmin|Cl(s)] o

The above theorem is proved in Appendix B. The results in Theorem 3 are
valid even when the number of clusters K is allowed to grow with n. However,
for convenience, in this section we restrict our attention to the case where K
fixed. We also assume that |Cj;)| < n for each i. Consequently, the first term
0rn, given in Theorem 3, is larger implying that

5 = Viogn )
oo (NK,TM)Z.
Bound (7) also strengthens upon the Davis-Kahan (DK) bound for perturba-
tion of eigenvectors (see for example [28], [25]). Direct application of the DK
bound would lead to a weaker pf r1/Tmin in the denominator of (9), instead of
(K r \/7%)2 that we get. The proof technique involves results for the concen-
tration of Laplacian of random graphs [23], [19]. The improvement in Davis-
Kahan bounds, given in (7), arises from the extension of the techniques in [3]
to normalized graph Laplacians.
The bound in Theorem 3, which relies on the Davis-Kahan theorem, also
provides an insight into the role of the regularization parameter 7. As a conse-
quence of the Davis-Kahan theorem, the spectral norm of the difference in the



sample and population eigenvector matrices is dictated by

L,—%,

Increasing 7 will ensure that the Laplacian L, will be well concentrated
around .%,. Indeed, it can be shown that

Vlogn

min

ILr = Z|| S (11)
with high probability. This bound does not require any assumption on the
minimum degree, provided 7 has the form (6). However, increasing 7 also has
the effect of decreasing the eigen gap, which in this case is ug -, since the
population Laplacian becomes more like a constant matrix upon increasing .
Thus the optimum 7 results from the balancing out of these two competing
effects.

This is akin to a ‘bias-variance’ trade-off, with the ‘variance’ term repre-
sented by || L, —Z;||, while the ‘bias’ term is represented by 1/uk -. In particu-
lar, our results indicate that the 7 that minimizes d., or equivalently, maximizes

MK v Tmin,

can be chosen as a proxy for the best choice of regularization parameter for
PSC.

Independent of our work, a similar argument for the optimum choice of
regularization, using the Davis-Kahan theorem, was given in Qin and Rohe [24]
for the regulariztion proposed in [9], [7]. However, a quantification of the benefit
of regularization, in terms of improvements of the perturbation bounds, as given
in Subsections 3.1 and Section 4, was not given in this work. We provide further
comparisons in Section 5.

The next subsection quantifies the improvements via regularization. We do
this by comparing the perturbation bound 9. ., for a non-zero 7, with d »,, the
bound for ordinary spectral clustering.

Let Cias denote the largest cluster, with |C,q.| denoting its size. Notice
that from Lemma 1 the distance between any two distinct population centroids is
atleast \/2/|Caz|. Consequently, if for some choice of regularization parameter
T = Tp, One has

V2

4 | Omax |

then from Lemma 2 one gets that the PSC Algorithm 1 recovers the clusters.
The following is an immediate consequence of Theorem 3.

Tn,MN

Corollary 4. Let Assumption 1 and 2 be satisfied with reqularization parameter
T="Tn. If
(|Crmaz|logn)t/?

2
M 7, Tmin

=o(1)

10



then the PSC Algorithm 1 recovers the clusters Cy, ..., Ck with probability tend-
ing to 1 for large n. Here recall that Tpin = min{7,, dmin }-

(a) Unregularized (b) Regularized

Figure 1: Scatter plot of first two eigenvectors. Here the block probability
matrix B is as in (13). Plot a) corresponds to 7 = 0, while b) has 7 = 7,
which in this case is 53. The solid red dot in both plots indicate the population
cluster centers. For each 7, the rows of the sample eigen vector matrix, given
by Vi,r, are also plotted. The blue '4’s correspond to the V; -, with nodes ¢ in
the second cluster, while the green circles correspond to the nodes in the first
cluster.

3.1 Improvements In Perturbation Bounds

This subsection uses Theorem 3 to demonstrate improvements, as a result regu-
larization, over previous analyses of eigenvector perturbation. In particular, we
demonstrate that for a particular choice of regularization parameter, the depen-
dence of the bounds on the minimum degree can be removed. In this subsection
we assume that the community sizes are equal. While this assumption is not
really needed, it makes the anaylsis considerably less messy.

For the stochastic block model, all nodes in a particular cluster have the same
expected degree. In the lemma below we consider a two community stochastic
block model. Without loss, assume that each node in cluster 1 has degree v1
that is larger than the degree of nodes in cluster 2, given by 72 ,. Standard
results on spectral clustering provide bounds on the perturbation of the eigen-
vectors that are dictated by the minimum degree, which in this case is 72 .
However, we show that, through regularization, it is dictated by the maximum
degree v; ,,, without any assumption on the magnitude of the minimum degree.

Lemma 5. Consider the two community stochastic block model with
B= Pin dn .
dn  D2n

11



Assume qn, < p2n < Din. Then, the second eigenvalue por is a decreasing
function of T and for T, = v1 n,

por, 2 50 (12)

Further, if \/logn/(p12,0/71.n) = 0(1) then

< Viogn
~ (k2,00 71,0)?

max ||V r,, — centy) -,

with probability tending to 1 for large n.

The above lemma states that with the regularization parameter set as 7, =
v1,n, the perturbation of eigenvectors is dictated by the maximum degree 7,
instead of the minimum degree s ,,. Direct application of our bounds to ordi-
nary spectral clustering would lead to the larger

Viogn
(ﬂ2,0\/72,n)2 ’

along with the stronger requirement that v/logn/(u2.0./72.n) = o(1). The fol-
lowing is an immediate consequence of Corollary 4.

Corollary 6. For the two block SBM, if the mazimum population degree i,

grows faster than
vnlogn
/Jg,o
then the PSC Algorithm 1, with regularization parameter T, = y1 p, recovers the
clusters C1 and Co with probability tending to 1 for large n.

Figure 1 illustrates this with n = 2000 and edge probability matrix
.003 .003
B= ( .003 .05 > (13)
The figure provides the scatter plot of the first two eigenvectors of the unregu-
larized and regularized sample Laplacians. The figure on the left corresponds to
the usual spectral clustering, while the plot on the right corresponds to regular-
ized spectral clustering with 7, = 71, as suggested in Lemma 5. Notice that
there is considerably less scattering for points in cluster 2 with regularization.
Also note that, as predicted by the theory, the distance between the population
cluster centers does not change with regularization.
For the two block model, the eigenvalue p2 - could be explicitly computed.

We extend the above to the K block model, with constant interaction between
clusters. In other words, let

Pin dn dn
B = dn P2.n dn . (14)
dn PK,n

12



The number of communities K is assumed to be fixed. Without loss, assume
that p1, > pon... = Pr.n and let ¢, < prn. We demonstrate that the
perturbation of the eigenvectors is dictated by the vx_1,, = d;, where i is any
node belonging to cluster K — 1. In other words, it is dictated by the second
smallest degree, as opposed to the smallest degree.

Lemma 7. Let B be as in (14) and assume g, = o(px—1,n). Iflogn/yx_1n =
o(1), then, with 7, = Yx_1,n the eigenvalue pg ;, is bounded away from zero.

Further,
Vlogn

g _ ) <
z:Irllan Vi, = centiiy . || S YK-1;n

with probability tending to one as n tends to infinity.

Notice that since |Ciqz| < n, the above result, along with Corollary 4, leads
to the following analogue of Corollary 6.

Corollary 8. Let B as in (14) satisfy the assumption of Lemma 7. If yx_1
grows at a rate faster than

(nlogn)'/2,

then, for large n, the PSC Algorithm 1 with T, = YK —1,n, recovers the clusters
with high probability.

Both Lemmas 5 and 7 are proved in Appendix E. It may seem surprising
that the performance does not depend on the degree of the lowest block, that
is, 7x,n. One way of explaining this is that if one can do a good job identifying
the top K —1 highest degree clusters then the cluster with the lowest degree can
also be identified simply by eliminating nodes not belonging to this cluster. We
remark that the fact that our results do not depend on the minimum degree is
not due to our proof technique, but because of the regularization. Indeed, plots
such as in Figure 1 demonstrates that the perturbation of eigenvectors depends
on the minimum degree with ordinary spectral clustering.

4 Selection Of Strong Clusters

In many practical situations, not all nodes belong to clusters that can be esti-
mated well. As mentioned in the introduction, these nodes interfere with the
clustering of the remaining nodes in the sense that none of the top eigenvectors
might discriminate between the nodes that do belong to well-defined clusters.
As an example of a real life data set, we consider the political blogs data set,
which has two clusters, in Subsection 6.2. With ordinary spectral clustering,
the top two eigenvectors do not discriminate between the two clusters. Infact,
it is only the third eigenvector that discriminates between the two clusters.
This results in bad clustering performance when the first two eigenvectors are
considered. However, regularization rectifies this problem by ‘bringing up’ the
important eigenvector, thereby allowing for much better performance.

13



We model the above situation in the following way: Consider a stochastic
block model, as in (14), with K + K, blocks. In particular, let the block
probability matrix be given by

BS BSU}
s=(p B ): )
where By is a K x K matrix with (p1,y,...,Pk,») in the diagonal and g, in the
off-diagonal. Further, By,,, B, are K x K, and K,, x K,, dimensional matrices
respectively.

In the above (K + K, )-block SBM, the top K blocks corresponds to the well-
defined clusters, while the bottom K,, blocks corresponds to less well-defined
clusters. We refer to the K well-defined clusters as strong clusters. The K, less
well-defined clusters are called weak clusters. These are formalized below. The
matrix Bg models the distribution of edges between the nodes belonging to the
strong clusters, while the matrix B,, has the corresponding role for the weak
clusters. The matrix By, models the interaction between the strong and weak
clusters.

We only assume that the rank of By is K. Thus, the rank of B is at least
K. We remark that if rank(B) = K, then the model (15) encompasses certain
degree-corrected stochastic block models (see Karrer and Newman [16] for a
description of the model). We provide further remarks on this in Section 8.

As before, we assume that K is known and does not grow with n. The num-
ber of weak clusters, K,,, need not be known and is allowed to grow arbitrarily
with n. We do not even place any restriction on the sizes of a weak cluster.
Indeed, we even entertain the case that each of the K, clusters has one node.
In other words, the nodes in the weak clusters do not even need to form clusters.

We now formalize our notion of strong and weak clusters. As before, let
Vins ---Vi,n denote the degrees of the nodes in the K strong clusters. For
ease of analysis, we make the following simplifying assumptions. Assume that
Dkn = PKn, for each k =1,... K, and that the strong clusters Cy, ..., Cx have
equal sizes. Notice that in this case v;, = Yxn, for k=1,..., K.

Let b,,, and b,, be defined as the maximum of the elements in B,,, and B,
respectively. Denoting by Ck 1 the set of nodes belong to a weak cluster, we
define

YK +1,n = (N — |Cr41])bsw + [Cr41]buw-

The quantity yx 41, is a bound on the maximum degree of a node in a weak
cluster. We make the following assumptions,

IR+ _ o(1). (16)
TK,n

bsw ,S bw (17)

Do <1, (18)
PKn

where £ is a quantity that does not depend on n. Assumption (16) simply
states that the strong clusters have degrees that is of a high order of magnitude
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than the weak clusters. Assumption (17) states that the interaction between
the strong and weak clusters, denoted by bs,,, is not too large. More precisely,
it is allowed to be at most the same order of b,,, which is a proxy of how well
connected each weak cluster is. Further, Assumption (18) states that, in the
absence of the weak clusters, one can distinguish between the strong clusters
easily.

(@) ICk 41l xn (®) [Cr41] = o(n)

Figure 2: Adjacency matrices for a block model with strong and weak clusters.
a) Here n = 2000, with one strong cluster (K = 1) and four weak clusters
(M = 4). The first 1000 nodes are taken to belong to the strong cluster 1,
while the remaining 1000 nodes were evenly split between the weak clusters
2 to 5. The matrix B has diagonal elements (.025, .012, .009, .006, .004) and
off-diagonal element .0025. b) Here n = 2000, two strong clusters (K = 2),
three weak clusters (M = 3). The first 1600 nodes are evenly split between the
two strong clusters, with the remaining nodes split evenly between the weak
clusters. The matrix Bs in (15) has diagonal elements .025 and off-diagonal
elements .015. The diagonal elements of B,, are taken as (.007, .0071, .0069).
The remaining elements of B are taken to be .001.

For a given assignment of nodes in one of the K + K., clusters, we denote
L., % to be the sample, population regularized Laplacians respectively. As
before, let pi . for kK = 1,...,n, be the magnitude of the eigenvalues of %,
arranged in decreasing order. Note that ui, = 0 for £ > K + K, since .Z;
has rank at most K + K,,. We demonstrate the potential of regularization in
removing the effect of the weak clusters by consider two scenarios, namely, a)
|Ck+1] < n, and b) |Ck41]| = o(n). Example of adjacency matrices drawn from
these two cases are shown in Figure 2. The following lemma elucidates why
these cases are treated differently.

Lemma 9. The following holds with T, = Vi n:

Claim 1: If |Cry1| < n then uxi1.-, is bounded away from zero, while g2z,
goes to zero for large n.
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Claim 2: If |Ck41| = o(n) then pk -, is bounded away from zero, while g i1,r,
goes to zero for large n.

Lemma 9 states that for regularization parameter 7,, = vk ,,, the eigen gap is
bounded away from zero. Here the eigen gap is defined as px 1 -, — fti 42,7, for
the |Cr41| < n case, while it is taken as pix r, — k41,7, in the |Cxi1| = o(n)
case. Thus Lemma 9 allows one to control the perturbation of the top K + 1
sample eigenvectors in the Cky; < n case, and the top K eigenvectors in
the Ck11 = o(n) case. Note, since such an eigen gap need not exist in the
unregularized case, one may not be able to get perturbation results for the top
eigenvectors without regularization.

The next essential ingredient is to demonstrate that with 7, = vk, the
top population eigenvectors do indeed discriminate between the strong clusters.
This is elucidated in Figure 3. The figure deals with the population version
of the adjacency matrix in Figure 2(b), where there are 5 (K = 2 strong,
M = 3 weak) clusters. Figures 3(a) and 3(b) show the first 3 eigenvectors of the
population Laplacian in the regularized and unregularized cases. We plot the
first 3 instead of the first 5 eigenvectors in order to facilitate understanding of
the plot. In both cases the first eigenvector is not able to distinguish between the
two strong clusters. This makes sense since the first eigenvector of the Laplacian
has elements whose magnitude is proportional to square root of the population
degrees (see, for example, [28] for a proof of this fact). Consequently, as the
population degrees are the same for the two strong clusters, the values for this
eigenvector is constant for nodes belonging to the strong clusters.

The situation is different for the second population eigenvector. In the reg-
ularized case, the second eigenvector is able to distinguish between these two
clusters. However, this is not the case for the unregularized case. From Figure
3(a), not even the third unregularized eigenvector is able to distinguish between
the strong and weak clusters. Indeed, it is only the fifth eigenvector that dis-
tinguishes between the two strong clusters in the unregularized case.

The above provides a different perspective on the role of regularization:
Regularization is able to bring out the ‘useful’ eigenvectors as the ‘leading’
eigenvectors. From hereon we will assume 7,, = vk, unless otherwise specified.

Denote by V., the matrix of top K +1 eigenvectors of L. . Similarly, denote
by U, the matrix of top K eigenvectors of L., . Lemma 9 allows us to control the
perturbation of V,, in the |Cx41| =< n, and that of U;, in |Ck 41| = o(n) regime.
Subsections 4.1 and 4.2 deals with the cases |Cxy1| < n and |Cxy1| = o(n)
respectively.

As before, let k(i) denote the cluster index of node 4. In other words, k(i) =
k, when i is in cluster Cj, and k =1,..., K + 1. As before, we use V; -, Ui -,
to denote the i-th row of V. , U, respectively.

For the |Ck 41| =< n scenario, Subsection 4.1 provides results showing that the
rows V; ., fori =1,...,n, are clustered around K +1 points centy, ..., centg 1
in RE+1, with the centy’s being well separated. In particular, we show that the
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(a) Unregularized (b) Regularized

Figure 3: First three population eigenvectors corresponding to the adjacency
matrix in Figure 2(b). In both plots, the x-axis provides the node indices,
while the y-axis gives the eigenvector values. The regularization parameter was
taken to be vx ., = 32.4. The shaded blue and pink regions corresponds to
the nodes belonging to the two strong clusters. The solid red line, solid blue
line and —x— black lines correspond to the first, second and third population
eigenvectors respectively.

relative perturbation (see Subsection 2.2.2)

max;—1,..n ||Vir, —centy@l
pert =

- (19)
MINg <pAk'<K+1 ||centk. — centy ||
is small. This allows for recovery of the strong clusters Cy, ..., Ck, as well as
the set Ck 1 using the PSC Algorithm 1.

The |Ck 41| = o(n) scenario is addressed in Subsection 4.2. We show that
there are K well separated points cent<, ..., centﬁ in RX so that the relative
perturbation
max;go, ., Ui, — centf(i) I

pert’ = (20)

ming <p4p < [|centys — cents ||
is small. In other words, the rows of the matrix U, that are not in Cxy; are
concentrated around the centX’s. Note, since we say nothing about the nodes
in Ck 41, this result is in a sense weaker than that in Subsection 4.1. However,
since we are dealing with the situation where the size of C'k 1 is small compared
to n, this is not expected to have a significant impact on clustering.

The following quantity will appear as a bound on the perturbation of eigen-

vectors.
5 _ 1 { VlOgTL 7K+1,n}
n = max s
\/'m \/m VYK.n

Notice that d,, goes to zero if vk ,, grows faster than logn.

(21)

4.1 |OK+1| =N

Lemma 9 demonstrates that with 7,, = vk, there is a gap between the K 4 1-th
and K + 2-th smallest eigenvalues, given by k1 -, and pg 42, respectively.
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This eigen gap allows us to characterize the perturbation of the first K + 1
eigenvectors of L. . In particular, we demonstrate that with the first K + 1
eigenvectors of the sample Laplacian matrix L, one can reliably recover the
strong clusters. In essence, the eigenvectors treat C'x 1 as one composite cluster.
Theorem 10, below, describes our results.

Theorem 10. Assume logn/vk , = o(1) and 1, = Y. Then, there exists

K + 1 points centy, ..., centg 1 in RET with
lcentys — centyl] = | A+ —— for k' £k (22)
centy — centr|| = | — + ——  for
ICk|  |Cr|
so that

~ Yn-

max ||Vi,, — centk(i)H <3
i=1,...,n

with probability tending to one for large n. Here 0, is as in (21).

As mentioned earlier, we only wish to identify between the nodes in the
strong clusters. The corollary below states the result for recovery of the strong
clusters, as well as a Cky1. In Step 2 of Algorithm 1, we set Algorithm 2 to
output K + 1 clusters and take

_ minj<pzpr<k 11 ||centy — centy ||
= 5 )

We have the following.

Corollary 11. If \/nd, = o(1), then with 7, = vk, the PSC Algorithm 1
recovers the strong clusters Cy,...,Ck, as well as the cluster Ck 11, with prob-
ability tending to one for large n.

The above follows from (22) and (23), and using the fact that |Cy| < n for
each k. Consequently, pert < /nd,, where pert is given by (19). The result is
completed using Lemma 2.

Example sizes of yx , and yxy1,, for the condition in Corollary 11 to hold
are:

1. vk, grows linearly with n, while yx41.4, is o(n).
2. Yk.n grows faster than v/nlogn, while yr 11, is O(n'/*(logn)3/4)

Figure 4 illustrates the above theorem. Here, K = 1 and M = 4. Since the
four weak clusters are relatively indistinguishable, as can be seen from Figure
2(a), we only wish to separate the strong cluster from the set of weak clus-
ters. Figure 4 shows the scatter plot of the first two eigenvectors of the sample
Laplacian matrices. Without regularization, the rows of the eigenvector matrix
corresponding to the weak clusters are fairly spread out, as can be seen from
Figure 4(a). With regularization, these rows are less spread out, as predicted
from the above results. This is shown in Figure 4(b). Indeed, running k-means,
with & = 2, on the above resulted in a mis-classification of 9.2% of the nodes in
the unregularized case, compared with only 1.6% in the regularized case.
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(a) Unregularized (b) Regularized

Figure 4: Scatter plot of the first two eigenvectors of the sample Laplacian
corresponding to the adjacency matrix in Figure 2(a). The colors denote the
different clusters, with blue representing the strong cluster. The solid red points
denote the population cluster centers (see Subsection 2.2.1). For (b) we take
the regularization parameter 7, = 71, which in this case is 22.5.

4.2 |Cki1] =o(n)

For the case |Ck 11| = o(n), one gets from Lemma 9 that the difference between
tK,r, and pg41,7, is bounded away from 0. This allows one to bound the
perturbation of the first K eigenvectors of L, . Recall that U, is the n x K
matrix of first K eigenvectors of the sample Laplacian L., . The theorem below
states that the rows of U, , corresponding to a strong cluster, are close to one
of the K points centX ... centf  depending on the cluster the row belongs to.

Theorem 12. Assume logn/vin = o(1) and 7, = Yxn. Then there exists K

points centls ..., centk, with each centfk € RX, so that
|| centls — cent’ || = 1 + 1 for k' #k (24)
ICk|  [Cr
Further,
max ||Ui,r, — Centﬁi)H S On- (25)

i¢Cry1

with probability tending to one for large n.

Note that unlike Theorem 10, the above theorem states that the nodes be-
longing to the strong clusters are concentrated around K points. It says nothing
about the nodes belonging to the weak clusters, that is, those in Ck 1. In that
sense, the results of this subsection are weaker than that in Subsection 4.1.
However, since the size C'k 11 is small compared to n, this should not interfere
with the clustering of the rows U ., .

The weaker nature of Theorem 12 precludes a result on cluster recovery as
in Corollary 11. However, notice from Theorem 12 that pert’ < y/nd,, with high
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probability, where pert’ as in (20). Consequently, if we take

ming <j2p < ||centss — cents ||

t =
2

in Algorithm 2 then one has that for nodes ¢ and j in strong clusters, ||U; -, —
Uj.-. || <tiff i and j belong to the same strong cluster. Thus, the nodes in the
strong clusters are well separated.

. . . . . . I , . [—
20 400 B0 GD0 1000 1200 1400 1600 feoo 2000 20 400 G0 800 1000 1200 f400 1600 1600 2000

(a) Unregularized (b) Regularized

Figure 5: Second sample eigenvector corresponding to situation in Figure 3. As
before, in both plots, the x-axis provides the node indices, while the y-axis gives
the eigenvector values. As before, the shaded blue and pink regions corresponds
to the nodes belonging to the two strong clusters. For plots (a) & (b) the blue
line correspond to the second eigenvector of the respective sample Laplacian
matrices.

In Figure 5(a) and 5(b) we show the second sample eigenvector for the two
cases in Figure 3(a) and 3(b). Note, we do not show the first sample eigenvector
since from Figure 3(a) and 3(b), the corresponding population eigenvectors are
not able to distinguish between the two strong clusters. As expected, it is only
for the regularized case that one sees that the second eigenvector is able to do a
good job in separating the two strong clusters. Running k-means, with k£ = 2,
resulted in a mis-classification of 49% of the nodes in the strong clusters in the
unregularized case, compared with 16.25% in the regularized case.

5 Comparison With Regularization In [9], [7]

In Dasgupta et al. [9], Chaudhuri et al. [7], the following alternative regularized
version of the symmetric Laplacian is proposed:

Lieg» = DZY2ADI1/2, (26)

Here, the subscript deg stands for ‘degree’ since the regular Laplacian is modified
by adding 7 to the degree matrix D. Notice that for the PSC algorithm, the
matrix A in the above expression was replaced by A..
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Borrowing from results on the concentration of random graph Laplacians
[23], we were able to show concentration results (11) for the regularized Lapla-
cian in the PSC algorithm. This result does not require any assumption on
the minimum degree, provided T, 2 logn. It was shown in Qin and Rohe
[24] that analogous concentration results also hold for the regularized Lapla-
cian Lgeg,r. This was shown for the more general degree corrected stochastic
block model [16]. However, an analysis of the eigen gap of Lgeq  (or its pop-
ulation version), as a function of the regularization parameter, was not given
in these works. Consequently, it is unclear at this stage whether the benefits
of regularization, resulting from the trade-offs between the eigen gap and the
concentration bound, as demonstrated in Subsection 3.1 and Section 4 for the
PSC algorithm, also hold for the regularization in [7], [24].

Further, it is conjectured in [7], [24] that the regularization parameter taken
to be the average degree should be optimal in balancing the bounds. However,
for the situation in Lemma 7, the average degree can be too large, especially
when there are clusters with very high degree. Indeed, for the K block model
considered in Lemma 7, our proof technique also shows that if 7 grows faster
than vx 1, then the smallest eigenvalue of .Z; goes to 0 for large n. We believe
the same to hold true for the regularization (26) as well.

6 Data dependent choice of 7

For the results in Subsection 3.1 and Section 4, the regularization parameter
depended on a population quantity which is not known in practice. Here, we
propose a data dependent scheme to select the regularization parameter. We
also compare it with another scheme that uses the Girvan-Newman modularity
[6] . This was suggested in [8]. We use the normalized mutual information
criterion (NMI) [2], [29], to quantify the performance of the spectral clustering
algorithm in terms of closeness of the estimated clusters to the true clusters.
The NMI is a widely used measure of closeness of the estimated clusters to the
true clusters.

We now describe our proposed scheme: Our theoretical bounds provide a
means to select the regularization parameter 7. One possible route would be to

consider the statistic
v/ max{7, dpmin} fix, -

Here dmm is the minimum degree of the realized graph and fix  is K-th small-
est eigen value of the sample Laplacian L,. From bound (7), it appears that
finding the 7 that maximizes this criterion should provide a good estimate of
the optimum 7. However, the above criterion does not perform well when the
average degree of the graph is low, most likely due to the fact the fix r is a
poor substitute for its population counterpart. An alternative criterion, which
performs much better, is obtained by directly estimating the quantity in (10).
In particular, for each 7 in grid, an estimate 2, of %, is obtained using cluster
outputted from the PSC algorithm using that 7. Here, the estimate £ is the
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population Laplacian corresponding to an edge probability matrix P, as in (1),
with an estimated block probability matrix B. In particular, the (k1, k2)-th
entry of B is taken to be the proportion of edges between the nodes in the
estimates of the clusters k1 and ko with the given 7. The following statistic is
then considered:

1L, — 2|l
e ()

where g (,227) denotes the the K-th smallest eigenvalue of Z.. The 7 that

minimizes the DK — est, criterion is then chosen. Since this criterion provides
an estimate of the Davis-Kahan bound, we call it the DK-est criterion.

We compare the above to the scheme that uses Girvan-Newman modularity
[6], [21], as suggested in [8]. For a particular 7 in the grid, the Girvan-Newman
modularity is computed for the clusters outputted using the PSC algorithm
applied with that 7. The 7 that maximizes the modularity value over the grid
is then chosen.

Notice that the best possible choice of 7 would be the one that simply max-
imizes the NMI over the selected grid. However, this cannot be computed in
practice since calculation of the NMI requires knowledge of the true clusters.
Nevertheless, this provides a useful benchmark against which one can compare
the other two schemes. We call this the ‘oracle’ scheme.

DK —est; = (27)

6.1 Simulation Results

Figure 6 provides results comparing the two schemes. We perform simulations
following the pattern of [2]. If particular, for a graph with n nodes we take the
K clusters to be of equal sizes. The K x K block probability matrix is taken to
be of the form

Bwq 1 .. 1
B = fac L puws 1
Here, the vector w = (w1,...,wk), which are the inside weights, denotes the

relative degrees of nodes within the communities. Further, the quantity 8, which
is the out-in ratio, represents the ratio of the probability of an edge between
nodes from different communities to that of probability of edge between nodes in
the same community. The parameter fac is chosen so that the average expected
degree of the graph is equal to A. In the graphs of Figure 6, we denote § and w
as OIR and InWei respectively.

Figure 6 compares the two methods of choosing the best 7 for various choices
of n, K, OIR, InWei and A. In general, we see that the DK — est selection
procedure performs at least as well, and in some cases much better, than the
procedure that used the Girvan-Newman modularity. The performance of the
two methods is much closer when the average degree is small.
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Figure 6: Performance of spectral clustering as a function of 7 for stochastic
block model for A values of 30, 20 and 10. The right y-axis provides values for
the Girvan-Newman modularities and DK est functions, while the left y-axis
provides values for the normalized mutual information (NMI). The 3 labeled
dots correspond to values of the NMI at 7 values which minimizes the DK-est,
and maximizes the Girvan-Newman modularity and the NMI. Note, the oracle
T, or the 7 that maximizes the NMI, cannot be calculated in practice.

6.2 Analysis Of A Real Dataset

We also studied the efficacy of our procedure on the well studied network of
political blogs [1]. The data set aims to study the degree of interaction between
liberal and conservative blogs over a period prior to the 2004 U.S Presidential
Election. The nodes in the networks are select conservative and liberal blog
sites. While the original data set had directed edges corresponding to hyperlinks
between the blog sites, we converted it to an undirected graph by connecting
two nodes with an edge if there is at least one hyperlink from one node to the
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Figure 8: Second eigenvector of the unregularized and regularized Laplacians for
the political blogs data set [1]. The shaded blue and pink regions corresponds
to the nodes belonging to the liberal and conservative blogs respectively.

The data set has 1222 nodes with an average degree of 27. Simple spectral
clustering, that is with 7 = 0, resulted in only 51% of the nodes correctly
classified as liberal or conservative. The oracle procedure, with 7 = 0.5, resulted
in 95% of the nodes correctly classified. The DK-est procedure selected 7 =
2.25, with an accuracy of 81%. The Girvan-Newman procedure, in this case,
outperforms the DK-est procedure, providing the same accuracy as the oracle
procedure. Figure 7 illustrates these findings.

The results of Section 4 also explain why unregularized spectral clustering
performs badly. The first eigenvector in both cases (regularized and unregular-
ized) does not discriminate between the two clusters. In Figure 8, we plot the
second eigenvector of the regularized and unregularized Laplacians. The second
eigenvector is able to discriminate between the clusters in the regularized case,
while it fails to do so in without regularization. Indeed, it is only the third
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Figure 9: Third eigenvector of the unregularized Laplacian.

eigenvector in the unregularized case that distinguishes between the clusters, as
shown in Figure 9.

7 Proof Techniques

Here we discuss the high-level idea behind the proofs of the various theorems.
We first discuss the proof of Theorem 3.

7.1 Proof Of Theorem 3
The theorem provides a high-probability bound on

H‘/i,‘r - 7/1',7'”7 (28)

which is the ¢3-norm of the difference of the i-th row of the sample and popula-
tion eigenvectors. From the Davis-Kahan theorem [5], one can get the following
bound on the difference of sample and population eigenvector matrices:
L, - %
v %) 5 M= el
MK,T

Further, from recent results on concentration of Laplacian of random graphs
[23], [19], one gets that ||L, — % || < v1ogn//Tmin with high probability.
Consequently,

Viogn

Ve — 2 < PP with high probability. (29)

Using the fact that
||V;,'r - ’1/1',7'“ S ||VT - %’Ha

one can infer that the right side of (29) provides a bound on (28) as well.
However, the above bound it too weak to make inferences about cluster recovery.
Consequently, we strengthen these bounds by demonstrating that

Vlogn

Wir =Yiel S 77—
(NK,T\/ Tmin)2

with high probability. (30)
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These improvements arise from the extension of the techniques in [3] to normal-
ized Laplacians. We now briefly describe the technique.

For convenience, we remove the subscript 7 from the various quantities. Let
M = diag(Aq,. .., k) denote the diagonal matrix of top K eigenvalues of .Z,
where [A] > ... > [Ag| > 0. Notice that pur, = |Ag|. Further, let M be
the corresponding matrix for L. We use the symbol A to denote the difference
of a sample and population quantity. In particular, let AL = L — . and
AV =V —¥. Using LV = VM, note that

V¥ =LVM -
= (LH+ALV +AVM -y
Consequently, using £ = ¥ M, one has from the above
V- =ALYM '+ (L +ALAVM 4+ ¥ (M- MM (31

In Appendix A, in particular Lemma 14, we provide deterministic bounds on
the £o-norm of the i-th row of each of three terms in the right side of (31). These
bounds are applicable to the difference of top-K eigenvector matrices of any two
Laplacian matrices. Assuming an SBM framework, Appendix B provides high
probability bounds on each of the three terms in (31).

7.2 Proof Of Results In Section 4

We prove in Lemma 19, Appendix C, that with regularization parameter 7,, =
Vi, the Laplacian matrix .2 is close to a rank K + 1 Laplacian matrix
.,ZZTn in spectral norm. Here .Z. is the population regularized Laplacian of a
K + 1-block SBM constructed from clusters Ci, ...,Ck and Ck 41, and block

probability matrix
n o Bs bsw]-
= (e )

where the K x K matrix By, and the quantities bs,, b, are as in (15). Since B
has rank K +1, the same holds also for .Z;. We denote by iy -, for k=1,...,n,
to be the magnitude of the eigenvalues of %, arranged in decreasing order.
Notice that fip» = 0 for £ > K + 1. Explicit expressions for the non-zero
eigenvalues of £, are given in Lemma 21, Appendix C.4.

Consequently, from Lemma 19 one get that the eigenvalues of .7, are close
to that of an via Weyl’s inequality [5]. Lemma 9 follows from examining the
eigenvalues of .7 , as given in Lemma 21.

In the next subsection we provide the idea behind the proof of Theorem 10.
The proof of Theorem 12, although slightly more involved, is similar in spirit.
We leave its proof completely to Appendix C.3.

7.2.1 Proof Of Theorem 10

Let ¥, be the n x (K 4+ 1) matrix corresponding to the first K + 1 eigenvectors
of the population Laplacian ., . Recall that V. is the sample version of 7, .
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Further, denote by ”17“ “as the n x (K + 1) matrix corresponding to the first
K +1 eigenvectors of .7 .

Since .7, is the population Laplacian of a K + 1-block SBM, the matrix
“/;Tn has K + 1 distinct rows, with the unique rows corresponding to the K + 1
clusters. Take these distinct rows as centy, ..., centg 1. Then (22) follows from
Lemma 1.

_ As mentioned in Subsection 2.2, since there are multiple choices of 7, and
7r., we take 7, to be the eigenvector matrix of .Z, that is closest to V;, in
spectral norm. With 77, so defined, we take 7, to be eigenvector matrix of
.Zz.n that is analogously closest to 77 .

Theorem 10 follows from Theorem 13 below, which is proved in Appendix
C.2. Tt demonstrates that for a particular choice of regularization parameter 7,
not only is V; », close to its population counterpart % - , but also % - is close
to %,Tu- As before, the subscript 7 denotes the i-th row of these matrices.

Theorem 13. For the regularization parameter T, = Yk n, we have

YK+1,n (32)

i 1
Vil S ——

VIYKn TKn
Further, if logn/vk.n = o(1) then,

Vi =

:

logn

max [Vir, —¥ir, | S (33)

TK,n
with probability tending to one for large n.

The claim (32) uses the result that %, is close to %, for 7, = yx.n. This
leads to the fact that the eigenvector matrices 7, and "fin are also close. The
claim (33) follows from Theorem 17, which is a slightly more general version
of Theorem 3. The improvements in the Davis-Kahan bounds are essential
ingredients in the proofs of both (32) and (33).

Proof of Theorem 10. Recall that centy, ..., centx 1 are taken to be the K + 1
distinct rows of ¥, with cent;, corresponding to cluster C. The proof of (22)
follows from Lemma 1.

Theorem 13 states that if the bounds (32) and (33) are small, then the
rows of sample eigenvector matrix V;, are concentrated near one of the K + 1
distinct points representing the clusters Cy,...,Cky1. Correspondingly, (23)
follows from using

HViﬂ'n - 7/2’77"” < ”Vi,‘rn - %)Tn + ||/Vi77-n - %’T” :
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8 Discussion

The paper is an attempt to provide a theoretical quantification for regulariza-
tion in spectral clustering. Increasing the regularization parameter makes the
sample Laplacian better concentrated around its corresponding population ver-
sion. However, increasing the regularization parameter also changes the eigen
gap of the population Laplacian. This was also noticed in [7], [24] for a different
form of regularization. The larger this gap, the better is cluster recovery. Intu-
itively, this gap should be small for large 7 as the population Laplacian becomes
more like a constant matrix. Consequently, the best choice of regularization pa-
rameter is the one that balances these two competing effects. Sections 3 and
4 demonstrate two different ways in which regularization affects this gap. To
the best of our knowledge, this is the first paper that incorporates both these
effects in the quantification of regularization.

In Subsection 3.1, where the goal was to recover all the clusters, the regu-
larization 7, = yx—1,, Was chosen since

prr < pro for 7 Syx_in

In other words, the eigen gap at 7, is the same order of magnitude as that at
7 = 0. Consequently, the regularization parameter 7,, increases the performance
of clustering since the sample Laplacian L., is better concentrated around its
population version at 7 = 7,. Our proof technique also shows that for any
alternative larger choice of regularization parameter, say 7,,, with 7, = o(7}),
the eigen gap pk -/ goes to zero for larger n. For the two block model it can
even be shown that such a choice would lead to worse bounds. Consequently,
this also hints that for the regularization in [7], [24], the regularizer set as the
average degree, as conjecture in [24], is not the best choice, especially when
there is large variability in the degrees. However, when the degrees are more or
less equal we believe that the average degree should work well since it is close
to YK —1,n-

More importantly, in Section 4 we show that regularization can help in situa-
tions where not all nodes belong to well defined clusters. In such situations, the
improvements via regularization are due to two reasons. The first, as mentioned
above, is due to better stability of sample Laplacian around its corresponding
population counterpart. The second, as demonstrated in Lemma 9, is through
the creation of a gap between the top few eigenvalues and the remaining. In
this regard, we considered two different regimes depending on the size of the
set of nodes belonging to the weak clusters. We also demonstrate in Subsection
4.1 and 4.2, that the top few population eigenvectors are able to distinguish
between the nodes of the strong clusters with regularization. This need not be
the case without regularization, as illustrated in Figure 3. We also demonstrate
this on the political blogs data set.

As remarked in Section 4, if the rank of B, given by (15), is K then the
model encompasses specific degree-corrected stochastic block models (D-SBM)
[16]. In particular, consider a K-block D-SBM, with degree weight parameter
for node i to be 6;, where 0 < 0; < 1. Assume that 6; = 1 for a large number
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of nodes. Take the nodes in the strong clusters to be those with 8; = 1. The
nodes in the strong clusters are associated to one of K clusters depending on the
cluster they belong to in the D-SBM. The remaining nodes are taken to be in
the weak clusters. Assumptions (16), (17) and (18) puts constraints on the 6;’s
which allows one to distinguish between the strong clusters via regularization.

From the results of Section 4, a high value of regularization parameter re-
duces the influence of the less well defined clusters. We conjecture that these
results also extend to situations where there is a hierarchy of clusters. In this
case, the less well defined clusters would correspond to those lower down in the
hierarchy. An natural way of going about this is to cluster in a hierarchical
fashion, using larger values of 7 for clusters higher up in the hierarchy. In this
regard, there seems to be parallels between this approach and the clustering of
points using the level-set approach [13]. We hope to investigate this in a future
work.

We provide a data dependent technique for choosing the regularization pa-
rameter 7, and compare it the scheme that uses the Girvan-Newman modularity.
Since the DK-est technique compares the perturbation of the sample Laplacian
to the population Laplacian of a stochastic block model, chosen based on the
selected clusters, the procedure is similar in spirit to modularity based methods
such as Girvan-Newman modularity. From our simulations, our method is seen
to perform better than the Girvan-Newman scheme. For the application to the
political blogs data set our scheme performs well. However, the scheme that
uses the Girvan-Newman modularity outperforms our scheme, most likely due
to the large variance in the degrees of the nodes for this dataset. We believe
that one can obtain a degree-corrected version of our scheme which performs
better in such situations. We leave this for a future work.
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A Bounds On Eigenvectors Differences

In this section we provide deterministic bounds on the difference of eigenvectors
from two arbitrary Laplacians matrices. This will be used to provide high
probability bounds on the perturbation of eigenvectors. In particular, consider
any two Laplacian matrices,

L=D12Ap"1/2

L =9 V2pg1/2
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where A, D are the adjacency matrices and the diagonal matrix of degrees
corresponding to L. By adjacency matrix we refer to any symmetric matrix
with entries in [0, 1]. Similarly P, 2 are the analogous quantities for .Z.
Denote,
9 = diag(dy,...,d,) and dpi, = mind;.
K3

Let V, ¥ be the nx K’ eigenvector matrices corresponding to top (in absolute
value) K’ eigenvalues of L, .Z respectively. As mentioned in Subsection 2.2,
since there are multiple choices for V' and ¥/, for a given choice of V', we take
¥ as the eigenvector matrix of . that is closest to V in spectral norm. We
also denote by p1 k- and ps g+ the K'-th smallest eigenvalue (in magnitude) of
L and & respectively.

Denote the i-th row of the above eigenvector matrices as V; and ¥;. In this
section we provide deterministic bounds on ||AV;||, where

AV, =V, = 7.

In general, we use the symbol A to denote the difference of two quantities. For
example AA=A— P and AV =V — 7. We also use the the subscript ix to
denote the i-th row of a matrix. The following inequality will be use frequently
in the analysis: For matrices Hy, Ho

[ H1 Hol| < ([ Hu|[| 2]l (34)

The lemma below provides deterministic bounds on the £ norm of each row
of AV, given by AV;. Our proof technique involves generalization of perturba-
tion bounds obtained in [3] for eigenvectors of the unnormalized Laplacian, to
that of the normalized Laplacians.

Lemma 14. The following bound holds:

||AV|| < bl,i _,'_b?,i”AVH + b3,i
e P1,K’ P1,K’ 1K

where,
bii = R |- L | [ARY || + [AR;| || 7]

n (RZ- |AAL| |ARY || + R; AAZ-*@‘W“I/‘D I dind; (36)

R|| | AA;.
bai = | %l (1 + R; |AR|| + |AR;|) + w

bsi = || 7il[[|AL]|. (38)

Here R = diag(Ry, ..., R,) is (2/D)"?. Further, AR = diag(ARy,...,AR,),
where AR =R — 1.
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Proof. Let My = diag(\q, ..., Ak/) denote the diagonal matrix of eigenvectors of
L, where |A1]| > ... > |\g/|. Notice that p1 x» = Ag+. Let M3 be the analogous
diagonal matrix of eigenvalues of .. Now,

AV =LVM;' -
=LV +AV)M -7 (39)
The first equality follows from noticing that LV = V My, since the columns of

V' are eigen vectors
Correspondingly, from (39) one gets that AV is the sum of three terms given

by,
AV = [Z+ ALY M + [£ + AL AVM; =7 (40)

Notice that £¥ = ¥ M,. Consequently, from (40) one gets the AV} is the sum
of three 1 x K’ row vectors Jp, Jo, J3, where

AV; = ALV M7+ [ L + ALGJAV M 4 %5(My — My) Mt (41)

J1 J2 J3

Below, we provide bounds on the ¢5 norm each of the above three separately.

These would correspond to the three terms appearing in the right side of (35).

Before this, we describe how we handle the AL;, term appearing in (41).
Notice that,

AL =R Y2A9 2R - ¥

=RYR—- L +R2'V?AA9P'/?R (42)
AL! AL?

By subtracting and adding R.Z, write AL' = AL 4+ AL'2, where
ALY = RZAR (43)
AL = ARY (44)
Similarly AL? = AL?' + AL?2, where
AL = R77V2AA97V2AR
AL?> = R9~Y2PANA 9~ 1/?

We now bound the ¢y-norm of the three terms in (41). We first bound the
lo-norm of J;. Notice that,

1AL Y M| < Rill Zill| AR ||| M|

and
IALEZY M| < |AR||| 7] Mo M|,

3

where for the above we use that Z¥ = ¥ M,. Similarly,
IALZ Y MY < Ridy 2d 302 | A | ARY |14

min
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and
|ALZY M| < Rid; 2 il 2| A A2~ 2 || M|
The expression for by ; results from using | M; || = 1/p1 x and |[Ma M| <

1/p1x.
Similarly for 5 norm of Js, notice that it is bounded by

(1ol + I ALz |l) [AV[1]| A1)
We need to bound ||AL;,||. From the above one sees that,

IALL < RillZilIAR]

JALE| < |AR: |2

IALZ N < B A Asl/ v/ didimin
The claim for the /5 norm of J3 follows from using the fact that

[My — My || < [|AL],

which follows from Weyl’s inequality [5]. O

In equation (35), one needs to provide an upper bound on ||AV|| in (35).
This is achieved using the Davis-Kahan theorem (see, for example, [5]), a version
of which we state below. Recall that ps g+ denoted the K’-th smallest eigenvalue
of . Similarly, denote as p2 g+1 the K41 smallest eigenvalue (in magnitude)
of .Z. We remark that if .Z corresponds to the population Laplacian of K’ block
SBM, then ps k741 = 0. However, here we made no such assumption on .Z.

Theorem 15 (Davis-Kahan with spectral norm). Let ||AL|| < (p2,x'—p2,x/+1)/2-
Then

AL
IAV] <2 IAL . (45)
P2,K" — P2,K'+1
The following is an immediate corollary of the above and Lemma 14.
Corollary 16. If |AL| < (p2,x’ — p2,k7+1)/2 then
2by 4bo ;||AL 2bs ;
lav < 2y AbeaBHL___, 26 (16)

P2, K’ p2,K’(P2,K’ - P2,K'+1) P2, K’
Here by ;, bz and bs; are as in Lemma 14.

Proof. Notice that |p2 k' — p1, x| < ||AL|| using Weyl’s inequality (see for ex-
ample [5]). Consequently, p1 g+ > po.r/2 since ||AL|| < p2 k+/2. The proof is
completed using Theorem 15. O
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B Proof of Theorem 3

We apply the results of Appendix A, in particular Corollary 16, to prove a more
general version of Theorem 3, which we describe below. This will be required
in the proof of Theorem 13.

Consider a K block SBM as in Section 3. In Theorem 17 we use Corollary 16
to bound the perturbation of the first K’ eigenvectors of the sample Laplacian
matrix. Taking K’ = K leads to Theorem 3.

In the theorem below we use the notation Appendix A with L = L, and .Z =
%,. We take V, ¥ in Appendix A to be the eigenvector matrices corresponding
to the first K’ eigenvectors, where K/ < K, of L, £ respectively. In this case
p2.x = pr'r and po gr41 = fki41,,. We also require the following more
general version of Assumption 2, which given the size of the eigen gap as a
function of 7.

Assumption 3 (Eigen gap).

Viogn

Tmin

P2,k — P2,k +1 > 20

Notice that with K’ = K, Assumption 3 is the same as Assumption 2 since
p2,x'+1 = 0 for the K block SBM. Then we have the following:

Theorem 17. Let Assumptions 1 and 3 hold. Then, with probability at least
1—(2K'+5)/n,

57,71

max [|V; — %] < (47)
g P2,K’ (pz,K/ - P2,K/+1)
where )
~ V1 V1 K'\/1
5y =203 Y081 | 31 VIOBTL | 1ot V0BT (48)

Tmin V Tmin 7‘3/2

min
Proof of Theorem 3. Take K’ = K in Theorem 17. As mentioned before, in this
case Assumption 3 is the same as Assumption 2 since ps x'41 = pr+1,- = 0.

Further, || 7|| = 1/4/[C| from Lemma 22. O
We now prove Theorem 17. Notice that D = diag(cilj, ce d,”) and
2 = diag(di,r, ..., dnr). Let Tpin = max(7, dpmin) satisfy the condition in

Assumption 1. In other words, recall that
Timin = Kn logn,
where k, > ¢ = 32. Further, let
7; = max{T,d;}. (49)

We prove Theorem 17 by appealing to Corollary 16. To do this, the follow-
ing deterministic as well as high probability bounds that are derived in the
Subsections D.1 and D.2 in Appendix D would prove to be useful.
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Deterministic bounds: With . = %, one has
||P2*H S V di,‘r and ”z*H S 1/\/7—min'

High Probability bounds: We assume that ¢, is a positive number satisfying

62/\/E< 1.

Let
c1=.5c3/(1+ca/v/e). and c3=ca/\/1—ca/ Ve

From Subsection D.2, the following holds with probability at least 1 — (2K’ +
3)/n1~L: For eachi=1,...,n,

1.
Jlogn
IAR;| < e3 ;5” (50)
Ti
2.
I

I1AALT Y| < e\ =22 (51)

3.

||AA1*H2 Sdiﬁ—kcm/nlogn (52)

Notice that (50) implies that R; < 1+ ¢3/+/c, using clogn < ;. Further, (52)
implies that
[AAL]? < (1+ 2/ Ve)dsr,

using 7;, as well as clogn, are at most d; -.

For convenience we take ¢ = 32, co = 24/2. Then one has ¢; > 2, c3 = 4:/2.
The following lemma shows that the condition of Corollary 16 is satisfied with
high probability.

Lemma 18. Let Assumption 1 be satisfied and let ¢, ca be chosen as above.
Then with probability at least 1 —2/n* =1 the following hold

I
IAL|| < ry ) =2

Tmin

Here k = \/2¢1 + c2(2 + c2/+/¢) < 10.
Consequently, if Assumption 3 also holds then the condition in Corollary 16

is satisfied with probability at least 1 — 2/n1 1,

The above is proved in Appendix D.3. Using the above deterministic and
high probability bounds, one gets that with probability at least 1 — (2K +

3)/n,
by . < Viogn Viogn K'\/logn
i Swit + wio —m

Tmin vV Tmin ;
min

17 + wis
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by < 2
’ vV Tmin
Vdiogn

bz < sl %]| S
man

where
wit = ¢z (1+ c3/Ve) <1+\/1+62/\ﬁ>, wiz =c3, wiz = (1+c3/Ve) e
Wy = 1—&-\% (2—&-03/\&) + (1+C3/\ﬁ) \/1-5-02/\@.

Using the values of ¢, ca, c3 given before, one gets w11 < 26, wis < 6, wiz <
6, wy < 7 and k < 1/10. Substituting these in bound (46), and using ps g+ —
p2.k'+1 < p2. K, gives the desired expression.

C Proof of Results in Section 4

The following lemma demonstrates that the population Laplacian matrices £,
and %, are close with 7, = vk ,,. Here ., is as in Subsection 7.2. In the
lemma below, we take L = %, and . = %, , where L = D='/24D~1/2 and
% =927 12P9~1/2 The quantities AA and AR are as in Appendix A.

Lemma 19. Let L = %, and £ =%, so that AL =%, — %, . Then, with
Tn = YK .n, the following bounds hold

1.
ARy| £ T
"YK,n
2.
[AAill S VK10 and (L]l S 1/ KR
3. .
laL) £ ==
TK.n
Proof. Recall iy, ., for K = 1,...,n, are the magnitude of the eigenvalues of

&L = jﬂl arranged in decreasing order. We write the D, Z in Appendix A as
diag(di r,,---,dn,,) and diag(di -, ...,dy, -, ) respectively. Correspondingly,

‘di‘r _diT |
|AR;| < 2, )2 )3
A2 (@2 + )
< TYTK+1,n
~ YK ,n

5 ’YK-‘Fl,’ﬂ uSIHg (17) and d~7;;7—n’ diﬂ—n >

The last relation follows since |d; ,, —d; -,
YK,n @S Tn, = YK,n- Lhis proves 1.
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Further,

[AALl =0 (\/’YK+1,n)
||=%*|| < ]-/ Ji,'rn =0 (1/\/7K,n)

The first relation follows from using the |AA;.||? < (n—|Ck41|)02, +|Cr 11|02,
the right side of which is at most yx41,,. The second relation in the above

follows from using the same argument as in Lemma 23. This proves 2.
We need to bound ||ALJ|. One sees that

IAL|F < ALY + ALY + AL,

where the matrices on the right are defined in (42) - (44). Consequently, using
(34), one gets that
VYK +1,
ALl S ——
n
In bounding ||AL?||, where AL? as in (42), we use that ||AA|| < k41, since
—AA corresponds to an adjacency matrix with degree at most Yx 41 5. O

C.1 Proof of Lemma 9

We first prove Claim 1. We first show that the non-zero eigenvalues of the Z,.
are bounded away from zero. Since .Z;, is close to .Z; from Lemma 19, this
will lead to the claim regarding the eigenvalues of .Z .

From Appendix C.4, the non-zero and non-unitary eigenvalues of jm are
given by

YEn T Tn ' '
Ay = ICr+1](bw + 70 /1) _ |Cr+1|(bsw + Tn /1)
VYK+1 + Tn YK+ Tn

The eigenvalue A; has multiplicity K — 1. Notice that the numerator of A;
above is (1 — k)|Ck|pk,n, where k is as in (18). Further, vk, =< |Ck|pk n,
using |Cr 41| < n, bsw < by, and Y41, = 0(Vk,n). Thus the numerator of A\
is < vk n. Consequently, with 7, = vk, the eigenvalue A\; is bounded away
from zero.

Next, we show that Ao is bounded away from zero. With b,,, < b,, one has,

1 1
A > |C bw + Tn/n —
22 (Ol +ruf) (= L)

= |Cr41|(by + Tn/n)/'VK}n'

The last inequality follows from using 7, = vx » and yx4+1,n = 0(vk,n). Further,
using |Cx41|7n/n X YK n, One gets that g is also bounded away from zero.
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We need to show that pg 41,5, is bounded away from zero, while o -,
goes to zero. To see this, notice that

LK +1,70 2 K417, = [RE 41,7 — BE41,7, |
> IELK“FlaTn - ||ALH’

The second inequality follows from Weyl’s inequality [5]. Thus, as ||AL|| = o(1)
from Lemma 19, one gets that g 11,7, is bounded away from zero. Similarly,

PE42,7, < fik42,7, + |[AL].

The right side of the above is at most || AL|| since fig 127, =0, as .%,, has rank
K + 1. Thus px42,r, goes to zero as ||AL|| = o(1). This proves Claim 1.

Next, we prove Claim 2. Notice that A; is bounded away from zero even
if |Cx41| = o(n). We show that Aa goes to zero if Cxy1 = o(n). To see this
notice that

‘CK+1|(bw +Tn/n)

Az <
YK + Tn
e (Y410 + [Cri1|vrn/1)
o TK,n

The right side goes to zero since Yixt1.n/71,n = 0(1) and |Cki1]/n = o(1).
Thus, as above, using ||AL|| = o(1) and Weyl’s inequality, one proves Claim 2.

C.2 Proof of Theorem 13

We first prove (32). We use Corollary 16 with L = .2, and £ = ... Further,
take K/ = K +1and AV =V — ¥, where V =%, and ¥ = ¥, . Notice that
with the above choice of ¥, one has

171l < 1/v/n,

using Lemma 22 and since the clusters have sizes < n. Using the bounds in
Lemma 19, along with inequality (34), one gets

1 7K+1,n

vV TKn VTK,n
1

bi; S

by = .
VIKn

To bound bs; we use the bound of ||AL|| given above.

Further, from the proof of Lemma 9, one gets that ps kv = jix41,r, iS
bounded away from zero with the choice of 7,,. This, combined with the fact
that pa xr41 = 0 and ||AL|| = o(1), implies that the condition in Corollary 16
is satisfied for large n. This proves (32).

We now prove (33). To do this we apply Theorem 17 with L = L, and
Z =%, . Further, take K’ = K + 1.We first need to show that Assumption
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3 is satisfied for large n. Notice that ps g = pxy1.+, and p2 x41 = LK 41,7, -
Consequently, as log(n)/vYx+1,n = o(1), and pa /41 — p2,x’ bounded away
from zero from Lemma 9, one gets that Assumption 3 is satisfied for large n.
Consequently, Theorem 17 can be applied.

Further, note that from (32)

~ YK+1,n
1l < N ¥ir ++O< 3/2 )

rYK,n

1 VK41 n>
=——4+0 d
VICrs)l < “Yi}/,i

1 YK+1,n }
< max { :
~ i 3/2
\/ﬁ ’VK,n
Here the second statement follows from Lemma 22, while the third statement

follows since |Cj ;)| < n. The proof is completed by noting that 7, > 7, =
VK-

C.3 Proof of Theorem 12

The proof of Theorem 12 is quite similar to that of Theorem 10. We provide
here the key steps in the proof. Analogous to Subsection 7.2.1, let U, , %;,
be the n x K matrices corresponding to the first K eigenvectors of L, , £,
respectively. Similarly, let %, be top K eigenvectors of .Z, .

Since there may be ambiguity in the choice of U,, %, and %, this situation
is dealt with as in Subsection 7.2.1 for V., ¥, and .. Theorem 20 below, gives
the analogue of Theorem 13.

Theorem 20. For the regularization parameter T, = Yi n, we have

~ 1 K+1
max |, — s, || S e LD (53)
i¢CK 41 VIKn YKn

Further, if logn/vk n = o(1) then,

Vlogn
max (Uir, = %, | S 2
i¢Cr 41 YK,n

with probability tending to one for large n.

Proof of Theorem 12. As fZZTn are the top K eigenvectors of a K +1 SBM, there
are K distinct values of % ., for i ¢ Ck1. Denote these by centf ... cent£.
These correspond to each of the K strong clusters. Further, from Lemma 21
one has for 4,7’ ¢ Ck 41

| r = Ui 2| = [ Vir = Vir I
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This follows from the claim that the eigenvector corresponding to Ao is constant
for i ¢ Cy1. Thus (24) follows from applying Lemma 1 for a K +1 block SBM.
Further, (25) is proved by noting that

||Ui;7—n - %;77—71 H S ||Ui77—n - %;TnH + ||%77—n - %;77—71 H'
U

Proof of Theorem 20. This proof is similar to the of Theorem 13. Note, as with
the proof Theorem 13, we use Corollary 16 for proving (53). In particular, we
take K' = K, L =.%, and . = %, . As before, from the proof of Lemma 9 the
K-th eigenvalue of an is bounded away from zero, while its K + 1-th smallest
eigenvalue goes to zero. Consequently, using ||AL|| = o(1), the condition in
Corollary 16 is satisfied for large n.

The bounds for by ;, by ; and bs; are as in the proof of Theorem 13. Bound
(53) follows from noting that for ¢ ¢ Ck 1, one has

1%, || = O(1/v/n)
a5 || %, | < 1 Yir, |l = 1/+/ICki) |

The claim (54), as with (33), follows from an application of Theorem 17,
with K/ = K. 0

C.4 Eigen Analysis Of A K + 1 block SBM

We investigate the eigenvalues of the K + 1 community stochastic block model
with block probability matrix

» 3 Bs bsw]-
b= ( bewl'l b,
As in the paper, the community assignment is given by the set C1,...,Ck1.

Denote the corresponding population Laplacian by . Then we have the fol-
lowing,

Lemma 21. If |Cy] = |Cy| = ... = |Ck|, then the non-zero eigenvalues of £
are 1, A1 and \q, where
C
p= e — g (55)
VK
C bw C bsw
)\2 — | K+1| _ | K+1| < , (56)
TK+1 VK

where A1 has multiplicity K — 1. Further, the eigenvector corresponding to Ao
is constant across nodes not in Cg 1.

Proof. Recall that from Subsection D.4 the non-zero eigenvalues of . are the
same as that of 3
Beiy = (Z'RZ)Y*B(Z'RZ)/?
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Now,

C C C
Z'RZdiag(| xl 1O ] K+1|>
TK TK  TYK+1
Consequently,
Cxl g 1oxlicrnl )2y
~ YK s TKYK+1 sw
Beig: ’
1/2
1CkICr 41| / [Crt1]
( VEVK+1 ) bswl YE+1 bw

One sees that

vi = (V|CxvKs -y VICK VK, VICK+117E+1)

is an eigenvector of Beig with eigenvalue 1. Next, consider a vector vy = (v}, 0)’.
Here v91 is a K x 1 dimensional vector that is orthogonal to the constant vector.
We claim that v, so defined is also an eigenvector of B.;;. To see this notice
that

- C Bgv
Beig Vg = M . ;
TK 0

Here we use the fact that 1’ve; = 0 as vog is orthogonal to 1. Next, notice that

Bs = ((pK,n - CIs,n)I + qs,nlll)

Consequently,
Bgvg = (ps,n - QS,n)U21

The above implies that vy is an eigenvector of Beig with eigenvalue A1, given by
55.

Notice that from the above construction can construct K — 1 orthogonal
eigenvectors vy, for k = 2,..., K, such that v;’s are also orthgonal to v;. Es-
sentially, for k& > 2, each vy, = (v};,0)’, where v;;1 = 0. There are K — 1
orthogonal choices of the vg’s.

Given that 1 and \; are eigenvalues of Beig, with the latter having multi-
plicity K — 1, the remaining eigenvalue is given by,

Ao = trace(Beg) — 1 — (K — 1)\

C n C C buw
:| K|PK, +(K—1)| K‘qs,nJr' K+1] -1
YK YK VK41
_ |CK+1‘bw N ‘CK+1|bsw
VK +1 VK

The claim regarding the eigenvector corresponding to Ao follows from seeing
that this should be the case since it is orthogonal to eigenvectors vy, ..., vk
defined above. O
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D Analysis of SBM with K blocks

Throughout this section we assume that we have samples from a K block SBM.
Denote the sample and population regularized Laplacian as L., %, respectively.
For ease of notation, we remove the subscript 7 from the various matrices such
as L,, %, A, D,, .. We also remove the subscript 7 in the dAi’T, d;,’s and
denote these as Ji, d; respectively. However, in some situations we may need to
refer to these quantities at 7 = 0. In such cases, we make this clear by writing
them as cii707 fori=1,...,nand d;p fori=1,...,n.

We divide the bounds into two types, viz. deterministics bounds and high
probability bounds.

D.1 Deterministic bounds

The following are bounds on the deterministic quantities in the above expression.

Lemma 22. 1

VICko

here Crs) is the cluster containing node i, and |.| denotes its size.

17ill = (57)

Proof. This follows from facts about the eigenvector of the symmetric Laplacian
for the stochastic block model. See Appendix D.4 for the proof. O

Lemma 23. The following bounds hold.

1Pisll < V/ds (58)
Lol < 1/3/Tmin (59)

Proof. To see (58), notice that

n
1Pl = vl
j=1
n
< Zpij =d;
j=1

Further, (59) follows from noting that %, = d;1/2Pi*9_1/2. Then one has

—1/2 _
1Ll < d 2P| 272
—1/2d;/2T—1/2 _ —1/2

i % min ~ 'min

<d
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D.2 High probability bounds

We need probabilistic bounds on the weigthed sum of Bernoulli random vari-
ables. The following lemma is proved in [15].

Lemma 24. Let W;, 1 < j < N be N independent Bernoulli(r;) random
variables. Furthermore, let aj, 1 < 7 < N be non-negative weights that sum to
1 and let No = 1/max; ;. Then the weighted sum © = 3, a;Wj, which has
mean given by r* = Zj o1y, satisfies the following large deviation inequalities.
For any r with 0 <r <7r*,

P(F < 1) < exp {~NaD(rl|r")) (60)
and for any T with r* <7 < 1,
P(# > 7) < exp {—NaD(F||r*)} (61)

where D(r||r*) denotes the relative entropy between Bernoulli random variables
of success parameters r and r*.

The following is an immediate corollary of the above.

Corollary 25. Let W; be as in Lemma 24. Let B;, for j =1,...,N be non-
negative weights, and let

N
W=>"BW,.
j=1
Then, g
1 1)
P(W —E(W) >6) < exp {_ 2max; B; (E(W) +6) } -
and

P(W —E(W) < =6) < exp {—mlxjgj E?W) } o

Proof. Here we use the fact that
D(r|[r*) = (r—1%)?/(2r), (64)

for any 0 < 7, r* < 1. We prove (62). The proof of (63) is similar. The event
under consideration may be written as

{F—=r"> 5},

where 7 =W/ 3. B;, r*=EW)/3; B and 6=26/ >_; Bj. Correspondingly,
using Lemma 24 and (64), one gets that

P(W —E(W)>9) Sexp{—

Zj Bj 52
max; 3; 2(r* + 5) .

Substituting the values of § and r* results in bound (62). O
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The following lemma provides high probability bounds on the degree.

Lemma 26. On a set Ey of probability at most 1 —2/n*~1 one has

|dir = dir| < c2y/Tilogn for cachi=1,...,n.,
where ¢; = .5¢3/(1 + c2//c).

Proof. Use the fact that ciiﬁ —d;; = cim —d; 0, and
P(|Czi)0 — di70| S Co/ T; logn Vl) S Z P(|Czi)0 — di70| S Co\/ T; logn)
i=1

Notice that Ji,O = Z?:l A” Apply COI‘OH&I‘y 25 with ,8]' =1 and Wj = Aij;
and § = co/Tmin logn to bound each term in the sum of the right side of the
above equation.

The error exponent can be bounded by,

1 52
Znexp{—QW}. (65)
We claim that,
E(W)+3 < (1+co/ Vo). (66)

Substituting the above bound in the error exponent (65) will complete the proof.
To see the claim, notice that E(W) = d; 0. Now, consider the case d; o > 7.
In this case, 7; = d; o and logn < d; ¢/c. Correspondingly, E(W) + 4 is at most

d170(1 + CQ/\/E).
Next, consider the case do; < 7. In this case 7; = Ty, Which is at least
clogn from Assumption 1. Consequently,

E(W) +6 < clogn + c2y/clogn.

The right side of the above can be bounded by (1 + ¢2/+/c)7. This proves the
claim. 0

The following is an immediate consequence of the above lemma.

Corollary 27. On the set Ey of Lemma 26, one has

1
[AR;| < c3 oen

foreachi=1,...,n,

-

%

where recall that

()
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Proof. From Lemma 26 one gets that with probability at least 1 —2/n 1, the
following two events hold for each i = 1,...,n.

|d; — di| < can/7ilogn (67)

d; > max {7’, d; (1 - 02\/\1;)?) } (68)

Now use the fact that 7; is at least clogn to get that d; is at least (1 —co/v/€)7;.
Now, notice that

and

qv/? _ i/
3 (jl/z ?

?

AR; =

. di—d;
622/2((2}/2 + dl/Q)

7 [

Correspondingly, with high probability,

cov/Tilogn
\/ 1-— CQ/\/ETZ'.

This leads to completion of the proof. O

|AR;| <

In the lemma below we bound the quantity [[AA;.||.

Lemma 28. On a set Ey of probability at least 1 —1/n1~1

|AAL|? < di +co/Tilogn  fori=1,...,n.
Here c; = .5c3/(1 + ca/\/c).
Proof. Recall that

IAALIP = (Aij = pig)*-
j=1

For the time being, assume that p;; < 1/2. The random variable (A;; — p;;)?
may be expressed as,

(Aij — pi)? = Wi (1= pi)* + (1 — Wij)pi;,

where W;; is a Bernoulli random variable with success probability p;;. Simpli-
fying, one sees that

(Aij — pi)® = (1 = 2pij)Wij + pj;.
If p;; > 1/2, take W;; to be Bernoulli(1 — p;;), to get that

(Aij — pij)? = (2pi; — D)Wy + (1 — piy)*.

44



Correspondingly,

(Aij — pij)? = Bi;Wij + min(pi;, 1 — p;)?,
where 5;; = max(1 — 2p;;,2p;; — 1), and W;; is Bernoulli(min(p;;, 1 — p;j;))-
Notice that 0 < ;; < 1. Consequently,

IAA;P =" Bi;Wij + > min(pij, 1 - pi;)? (69)
j=1 i=1

Now use the fact that max; 3;; < 1 and Z?Zl Bi; E(W;;) < do; in Corollary
25, along with arguments similar to Lemma 26, to get that with probability
1—1/n“~1 for each i = 1,...,n, one has

n
ZBUWU < CoN\/ T; logn.

Jj=1

Now, use

n n
> min(pij, 1 —pi;)* <Y p
=1 i=1
d;

IN

in (69) to prove the lemma. O
The next lemma will require Hoeffding’s inequality, which we state below

Lemma 29 (Hoeffding’s inequality). If W; be Bernoulli(p;), and let 5; be real
numbers. Then,

N —t2
P |;5j(wj —E(W))|>t] < Qexp{—m}.

We use the above to bound ||A;, 2~ /27||.

Lemma 30. On a set E3 of probability at least 1 — 2K /n1~1

IAAL D127 | < ey, | 28T

fori=1,...,n.
min

Here ¢y = .5c3/(1+ /ca/c).
Proof. We prove that for each k,

K1 ,
P <|AAi*@_1/2%k| > ca4/ ogn fori:17...,n> <2/pa7h (70)
Tmin
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Applying the union bound over k will complete the proof. To see the above, use
Lemma 29 with §; = d; '/>¥;), and W; = A;;. Notice that,

> 8= 4
j=1 j=1

<Y a5
j=1

= trace(¥T 271

S K/Tmzn

The inequality uses that the columns of ¥ are orthogonal and d; > 7y, for
each j. Substituting the above in the Hoeffding’s bound of Lemma 29 and using
c3/2 > ¢y, one gets (70). Consequently, taking a union bound over k completes
the proof of the Lemma. O

D.3 Concentration of Laplacian

Below we provide the proof of Lemma 18.

Proof of Lemma 18. For completeness, we give the outline of the proof in [23],
adapted to our case. Write L = 2~ /2A9~1/2, Then,

IL -2l <L~ LIl + 1L - 2]

We first bound ||L — L||. Let F = DY/29~'/2. Then L = FLF. Correspond-
ingly,

IL LIl < ||IL - FL| + | FL - L|
<= FIILL -+ E LA = )

As in [23], we use the fact that 1+ 2z — 1 <z for = € [-3/4,3/4]. Notice that
F-I=(I+(AD)2 H'/2 I
From Lemma 26, notice that

|Ad;|/d; < cav/Tilogn/d;

with probability at least 1 — n'=¢t. The right side of the above is at most 1/2
(which is less than 3/4) by choosing ¢ and ¢; as in the theorem. Correspondingly,

|IF —I|| < comax+/7;logn/d;
K3
with high probability. Use 7; < d; and d; > Tin to get that

|F —I|| < cav/1ogn/\/Tmin.-
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Use the fact that, ||L|| <1 to get that,

~ logn logn
IL—L|| < eay [ 2 <2+cz,/ & )
Tmin Tmin

with probability at least 1 —1/n "',
Next, we bound ||L — £Z||. Notice that,

1<j

where Y;; = @_1/2Xij9_1/2, with
[P T weel), i
T (A = Py)eief if i = j

as in [23]. Here e; is the i-th column of the n x n identity matrix. In our case

one has,
1Yij | < 1/+/did; < 1/Timin.

Further, let 02 = || doi<; E(Y;3)|l, which at most 1/7yn from the above. Then,
applying Corollary 4.2 in [19], one gets

P (||[~/ -Z| > t) < ne~t/20°,

Consequently, with probability at least 1 — 1/n*~! one has,

HE*ZH < [2¢c1 logn
o Tmin '

Thus with probability at least 1 — 2/n“1~! one has that |L — .| is bounded
by
logn

(V2¢1 + c2(2 4 e2/V0))

where we use the fact that logn /7, < 1/¢, since Ty > clogn. O

Tmin

D.4 Proof of Lemmas 1 and 22

Notice that the population regularized Laplacian £, corresponds to the popu-
lation Laplacian of an ordinary stochastic block model with block probability
matrix

B, =B+,

where v = (y/7/n)1. Correspondingly, we can use the following facts of the
population eigenvectors and eigenvalues given for a SBM.

Let Z be the community membership matrix, that is, the n x K matrix with
entry (i, k) being 1 if node 7 belongs to cluster C. Then, the following is proved
in [25].

47



1. Let R = 2. Then, the non-zero eigen values of %, are the same as that
of
B.iy = B.(Z'RZ), (71)

or equivalently, By = (Z'RZ)"/?B,(Z'RZ)"/?.
2. Define = RY2Z(Z'RZ)~Y/2. Let,
Beig = HAHT,
where the right side of the above gives the singular value decomposition
of the matrix on the right. Then, the eigenvectors of .Z; are given by uH.

Further, since in the stochastic block model the expected node degrees are the
same for all nodes in a particular cluster, one can write R'/2Z = ZQ, where
Q2% is the K x K diagonal matrix of population degrees of nodes in a particular
community. Consequently, one sees that

pH = 2Z(z¥2)"1/?H.
Lemmas 1 and 22 follows from noting that
pH(pH) = 2(z72) 12T
and the fact that (Z72)~! = diag(1/|C4],...,1/|Cxk]).

E Proof of results in Subsection 3.1

Here we prove results of Subsection 3.1. The proof of both lemmas use (9).
With 7,, as in the lemmas, one sees that 7,,;, = 7,. Thus, Lemma 5 follows
from (12).

E.1 Proof of Lemma 5

We first prove (12). For convenience we remove the subscript n from the various
quantities. Further, at the risk of ambiguity of notation, we introduce the
subscript 7 whenever the quantities depend upon 7. Recall, pi, po are the
within community probability and ¢ the between community probability.

B:<P1 Q>
q P2

Let pi1,-, p2,r and g, be equal to 7/n added to pi, p2 and g respectively.
Then the elements of the 2 x 2 matrix B, given in (71), are given by,

~ C ~ C
By = 71’T| 4 Bip = CIT‘ i
71,7’ ’71,7’
- C . C!
By = ¢, | 2| Bgy = DP2,r ‘ 2|
72,7' '72,7'
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Here 71,7, 2, are the degrees of the two communities after regularization, that
is, v1,r = v1 + 7 and ¥2,r = 72 + 7, where recall that,

71 = p1|Ci| + q|Cs|
Y2 = q|C1| + p2|Cs|
Using the fact that 1 is an eigenvalue of B4, the smallest eigenvalue can be
computed easily. One sees that,
Mg 0
YT Yo+ T

M2, r = 5

where a; = p1,,|C1| — ¢-|C2| and as = pa.+|Ca| — ¢-|Cy]. In the case of equal
community size, that is |C1| = |Cy| = C, one has that a; = (p1 — ¢)C and
as = (p2 — q)C. In other words, a; and as do not depend upon 7. It is then
seen that po ; is a decreasing function of 7 and (12) holds. Substituting 7 = 71,
it is seen that po . is atleast pg o/4.

Further, from the assumption of Lemma 5, one gets Assumption 1 and 2
holds for large n. The proof of the lemma is completed by using (9)

E.2 Proof of Lemma 7

We first prove that pg -, is bounded away from zero for 7, = yx_1 5. Consider
the stochastic block model with K communities, where K is fixed. The matrix
B is given by (14). We first consider the case that g, = 0, that is, there is no
interaction between the clusters. Once again, we remove the subscript n from
the various quantities, and introduce 7 in the subscript whenever the quantities
depend on 7.

Recall that from (71), Be;y = (B+vv')F, wherev = y/7/nl and F = Z'RZ.
We need to find the K-th smallest eigenvalue of B.;4. This is also the inverse
of the largest eigenvalue of B;é

Consequently, we now show that the maximum eigenvalue of Bgi; is bounded
from above. Use the fact that since K is fixed,

)‘max(B 1) = tT‘ClC@(B_l).

etg etg

Correspondingly, we now proceed to calculate the trace of B&; and show that
it is bounded from above. Notice,

B l=F Y B+w) 1,

etg

where

_ . Y1+ T YK + T
Fl=4d
Zag( C b b C )7

where C' denotes the size of the communities, which are assumed to be equal.
Here, for convenience, we remove the subscript n and denote ; ,, by simply ;.
Using Sherman-Morrison formula

(B~'v)(B~ 1)’

B /71:8717
(B +vv') 1+v B~y
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One sees that,
B ' =+/7/n(1/p1,...,1/pK)
Correspondingly,
IB—l — Z 1 —
v U= Z /p1=Tma,

(3

where m; = (1/K) Y, 1/, using 7% = ppC and n = KC. Further, the
diagonal entries of the matrix (B~1v)(B~1v)’ can be written as

T .
Edwg(l/pi . 1/p%).

We need the trace of Be_i;. Using the above, one sees that this is the same as

3 T (T/n) 3 (e +1)/(CpR)
Yk

1+7'm1

)

k

using v, = prC. Consequently,

2
trace(B.;}) = Z Ve TT _ T A TImy
A Vi

€9 14+ 71my

where my = (1/K) >", /vi. Thus we have,

2
™ T m
tT’aC@(BQ;) = KTml - ﬁ
1

The above is leads to,

Krmy + Km2m2 — tmq — 72
1

trace(Be_i:‘]) = m2

1+7mm
(K —-1rm; (K —1)m2m? — 720
14+7my 14+7my
(K —1)rmy o o [(K—1) —cf]
= F 7'M
]. +’7'm1 1 +Tm1

(72)

Here v =1/K " ,(1/v; —m1)? and ¢, = \/v/m is the associated coefficient of
variation. We claim that (K — 1) — ¢, < vk /7K —1. To see this, notice that,

K
Zk:1 1/7}3

5 — L.
(Zi 1)

v/m? =K

One sees that,
K
_ Dkt 1/713-

<ZkK:1 1/%>2 = YK /YK -1-
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Further, since the first term in (72) is bounded, one gets that,

) < TQW%VK/’YKA
~ 1+7my '
- v/ 7x)

~ L+7/vk

trace(B_;}

etg

where for the last relation we use the fact that m; =< 1/yx. Consequently, one
gets that if 7 = yx_1 then trace(B;-;) = 1. This implies that pug . is bounded
below from zero.

As a consequence, Assumption 2 is satisfied for large n if logn/vx_1 = o(1).
We remark that the above results also holds if 7, < yx—1, as well. This
completes the proof of the lemma for ¢, = 0.

Now consider the K block model with off-diagonal elements of B equal to q.
Notice that

B. = By +9(v)",

where By = diag(p1 — q,...,px — ¢) and © = /7/nl, where 7 = 7 + ng.
Thus applying the above result for the diagonal block model one gets that if
7 = C(px—1— q), the quantity ux . is bounded away from 0. With 7 as above,
one has 7 < yx_1, as ng = o(yx—_1) since ¢ = o(pr—1)-
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