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ABSTRACT

The concept of randomness has been unjustly neglected in recent philosophical liter-

ature, and when philosophers have thought about it, they have usually acquiesced in

views about the concept that are fundamentally flawed. After indicating the ways in

which these accounts are flawed, I propose that randomness is to be understood as a

special case of the epistemic concept of the unpredictability of a process. This proposal

arguably captures the intuitive desiderata for the concept of randomness; at least it

should suggest that the commonly accepted accounts cannot be the whole story and

more philosophical attention needs to be paid.
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[R]andomness . . . is going to be a concept which is relative to our body

of knowledge, which will somehow reflect what we know and what we

don’t know.

Henry E. Kyburg, Jr ([1974], p. 217)

Phenomena that we cannot predict must be judged random.

Patrick Suppes ([1984], p. 32)

The concept of randomness has been sadly neglected in the recent philo-

sophical literature. As with any topic of philosophical dispute, it would be

foolish to conclude from this neglect that the truth about randomness has

been established. Quite the contrary, the views about randomness in which

philosophers currently acquiesce are fundamentally mistaken about the

nature of the concept. Moreover, since randomness plays a significant role

in the foundations of a number of scientific theories and methodologies, the

consequences of this mistaken view are potentially quite serious. After I

briefly outline the scientific roles of randomness, I will survey the false

views that currently monopolize philosophical thinking about randomness.

I then make my own positive proposal, not merely as a contribution to the

correct understanding of the concept, but also hopefully prompting a renewal

of philosophical attention to randomness.

The view I defend, that randomness is unpredictability, is not entirely

without precedent in the philosophical literature. As can be seen from the

epigraphs I quoted at the beginning of this article, the connection between

the two concepts has made an appearance before.1 These quotations are no

more than suggestive, however; these authors were aware that there is some

kind of intuitive link but made no efforts to give any rigorous development

of either concept in order that we might see how and why randomness

and prediction are so closely related. Indeed, the Suppes quotation is quite

misleading: he adopts exactly the pernicious hypothesis I discuss below

(Section 3.2) and takes determinism to characterize predictability—so that

what he means by his apparently friendly quotation is exactly the mistaken

view I oppose! Correspondingly, the third objective I have in this article is

to give a plausible and defensible characterization of the concept of pre-

dictability, in order that we might give philosophical substance and content

to this intuition that randomness and predictability have something or other

to do with one another.2

1 Another example is more recent: ‘we say that an event is random if there is no way to predict its

occurrence with certainty’ (Frigg [2004], p. 430).
2 Thanks to Steven French for emphasizing the importance of these motivating remarks.
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1 Randomness in science

The concept of randomness occurs in a number of different scientific con-

texts. If we are to have any hope of giving a philosophical concept of ran-

domness that is adequate to the scientific uses, we must pay some attention to

the varied guises in which randomness comes.

All of the following examples are in some sense derivative from the most

central and crucial appearance of randomness in science—randomness as a

prerequisite for the applicability of probabilistic theories. Von Mises was well

aware of the centrality of this role; he made randomness part of his definition

of probability. This association of randomness with von Mises’ hypothetical

frequentism has unfortunately meant that interest in randomness has declined

with the fortunes of that interpretation of probability. As I mentioned,

this decline was hastened by the widespread belief that randomness can be

explained merely as indeterminism. Both of these factors have led to the

untimely neglect of randomness as a centrally important concept for under-

standing a number of issues, among them being the ontological force of prob-

abilistic theories, the criteria and grounds for acceptance of theories, and how

we might evaluate the strength of various proposals concerning statistical

inference. Especially when one considers the manifest inadequacies of ontic

accounts of randomness when dealing with these issues (Section 2), the neglect

of the concept of randomness seems to have left a significant gap in the founda-

tions of probability. We should, however, be wary of associating worries about

randomness too closely with issues in the foundations of probability—those are

only one aspect of the varied scientifically important uses of the concept. By

paying attention to the use of the concept, hopefully we can begin to construct

an adequate account that genuinely plays the role required by science.

1.1 Random systems

Many dynamical processes are modelled probabilistically. These are pro-

cesses that are modelled by probabilistic state transitions.3 Paradigmatic

examples include the way that present and future states of the weather are

related, state transitions in thermodynamics and between macroscopic

partitions of classical statistical mechanical systems, and many kinds of prob-

abilistic modelling. Examples from ‘chaos theory’ have been particularly

prominent recently (Smith [1998]).

For example, in ecohydrology (Rodriguez-Iturbe [2000]), the key concept

is the soil water balance at a point within the rooting depth of local plants.

The differential equations governing the dynamics of this water balance relate

3 This is unlike the random mating example (Section 1.2), where we have deterministic transitions

between probabilistically characterized states.
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the rates of rainfall, infiltration (depending on soil porosity and past soil

moisture content), evapotranspiration and leakage (Rodriguez-Iturbe et al.

[1999]; Laio et al. [2001]). The occurrence and amount of rainfall are random

inputs.4 The details are interesting, but for our purposes the point to remem-

ber is that the randomness of the rainfall input is important in explaining the

robust structure of the dynamics of soil moisture. Particular predictions of

particular soil moisture based on particular volumes of rainfall are not nearly

as important for this project as understanding the responses of soil types to a

wide range of rainfall regimes.

The robust probabilistic structures that emerge from low-level random

phenomena are crucial to the task of explaining and predicting how such

systems evolve over time and what consequences their structure has for the

systems that depend on soil moisture, for example plant communities.5

Similar dynamical models of other aspects of the natural world, including

convection currents in the atmosphere, the movement of leaves in the wind

and the complexities of human behaviour are also successfully modelled as

processes driven by random inputs. But the simplest examples are humble

gaming devices such as coins and dice. Such processes are random if anything

is: the sequence of outcomes of heads and tails of a tossed coin exhibits

disorder, and our best models of the behaviour of such phenomena are

very simple probabilistic models.

At the other extreme is the appearance of randomness in the outcomes of

systems of our most fundamental physics: quantum mechanical systems.

Almost all interpretations of quantum mechanics must confront the random-

ness of experimental outcomes with respect to macroscopic variables of inter-

est; many account for such randomness by positing a fundamental random

process. For instance, collapse theories propose a fundamental stochastic

collapse of the wave function onto a particular determinate measurement

state, whether mysteriously induced by an observer (Wigner [1961]) or as

part of a global indeterministic dynamics (Ghirardi et al. [1986]; Bell

[1987a]). Even no-collapse theories have to claim that the random outcomes

are not reducible to hidden variables.6

1.2 Random behaviour

The most basic model that population genetics provides for calculating the

distribution of genetic traits in an offspring generation from the distribution

4 These are modelled by a Poisson distribution over times between rainfall events and an

exponential probability density function over volumes of rainfall.
5 Strevens ([2003]) is a wonderful survey of the way that probabilistic order can emerge out of the

complexity of microscopic systems.
6 For details, see Hughes ([1989]) and Albert ([1992]).
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of such traits in the parent generation is the Hardy–Weinberg Law (Hartl

[2000], pp. 26–9).7 This law idealizes many aspects of reproduction. One cru-

cial assumption is that mating between members of the parent generation is

random; that is, whether mating occurs between arbitrarily selected members

of the parent population does not depend on the presence or absence of the

genetic traits in question in those members. Human mating, of course, is not

random with respect to many genetic traits: the presence of particular height

or skin colour, for example, does influence whether two human individuals

will mate. But even in humans, mating is random with respect to some traits,

for example blood group. In some organisms, for instance some corals

and fish, spawning is genuinely random: the parent population gathers in

one location and each individual simply ejects its sperm or eggs into the

ocean where they are left to collide and fertilize. Which two individuals end

up mating is a product of the random mixing of the ocean currents. The

randomness of mating is a prerequisite for the application of the simple

dynamics; there is no explicit presence of a random state transition, but

such behaviour is presupposed in the application of the theory.

Despite its many idealizations, the Hardy–Weinberg principle is explanat-

ory of the dynamics of genetic traits in a population. Complicating the law by

making its assumptions more realistic only serves to indicate how various

unusual features of actual population dynamics can be deftly explained as

a disturbance of the basic underlying dynamics encoded in the law. As we

have seen, for some populations, the assumptions are not even idealized.

Each mating event is random, but nevertheless the overall distribution of

mating is determined by the statistical features of the population as a whole.

Another good example of random behaviour occurs in game theory. In

many games where players have only incomplete information about each

other, a randomizing mixed strategy dominates any pure strategy (Suppes

[1984], pp. 210–2). Another application of the concept of randomness is to

agents involved in the evolution of conventions (Skyrms [1996], pp. 75–6).

For example, in the convention of stopping at lights that have two colours

but no guidance as to the intended meaning of each, or in the reading of

certain kinds of external indicators in a game of chicken (hawk–dove), the

idea is that the players in the game can look to an external source, perceived

as random, and take that as providing a way of breaking a symmetry and

escaping a non-optimal mixed equilibrium in favour of what Aumann calls a

correlated equilibrium. In this case, as in many others, the epistemic aspects of

randomness are most important for its role in scientific explanations.

7 The law relates genotype distribution in the offspring generation to allele distribution in the

parents.
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1.3 Random sampling

In many statistical contexts, experimenters have to select a representative

sample of a population. This is obviously important in cases where the stat-

istical properties of the whole population are of most interest. It is also

important when constructing other experiments, for instance in clinical or

agricultural trials, where the patients or fields selected should be independent

of the treatment given and representative of the population from which they

came with respect to treatment efficacy. The key assumption that classical

statistics makes in these cases is that the sample is random (Fisher [1935]).8

The idea here, again, is that we should expect no correlation between the

properties whose distribution the test is designed to uncover and the proper-

ties that decide whether or not a particular individual should be tested.

In Fisher’s famous thought experiment, we suppose a woman claims to be

able to taste whether milk was added to the empty cup or to the tea. We wish

to test her discriminatory powers; we present her with eight cups of tea,

exactly four of which had the milk added first. The outcome of a trial of this

experiment is a judgement by the woman of which cups of tea had milk added

first. The experimenter must strive to avoid correlation between the order in

which the cups are presented and whatever internal algorithm the woman

uses to decide which cups to classify as milk-first. That is, he must randomize

the cup order. If her internal algorithm is actually correlated with the pres-

ence of milk-first, the randomizing should only rule out those cases where it is

not, namely, those cases where she is faking it.

An important feature of this case is that it is important that the cup selec-

tion be random to the woman but not to the experimenters. The experi-

menters want a certain kind of patternlessness in the ordering of the cups,

a kind of disorder that is designed to disturb accidental correlations (Dembski

[1991]). The experimenters also wish themselves to know in what order

the cups are coming; the experiment would be uninterpretable without such

knowledge. Intuitively, this order would not be random for the experimenters:

they know which cup comes next, and they know the recipe by which they

computed in which order the cups should come.

1.4 Caprice, arbitrariness and noise

John Earman has argued that classical Newtonian mechanics is indetermin-

istic on the basis of a very special kind of case (Earman [1986], pp. 33–9).

8 See also Howson ([2000], pp. 48–51) and Mayo ([1996]). The question of whether Bayesian

statistics should also use randomization is addressed by Howson and Urbach ([1993],

pp. 260–74). One plausible idea is that if Bayesians have priors that rule out bizarre sources

of correlation, and randomizing rules out more homely sources of correlation, then the posterior

after the experiment has run is reliable.
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Because Newtonian physics imposes no upper bound on the velocity of a

point particle, it is nomologically possible in Newtonian mechanics to have

a particle whose velocity is finite but unbounded, which appears at spatial

infinity at some time t (this is the time reverse of an unboundedly accel-

erating particle that limits to an infinite velocity in a finite time). Prior to t

that particle had not been present in the universe; hence, the prior state does

not determine the future state, since such a ‘space invader’ particle is possible.

Of course, such a space invader is completely unexpected—it is plausible,

I think, to regard such an occurrence as completely and utterly random

and arbitrary. Randomness in this case does not capture some potentially

explanatory aspect of some process or phenomenon but rather serves to

mark our recognition of complete capriciousness in the event.

More earthly examples are not hard to find. Shannon noted that when

modelling signal transmission systems, it is inappropriate to think that the

only relevant factors are the information transmitted and the encoding of that

information (Shannon and Weaver [1949]). There are physical factors that

can corrupt the physical representation of that data (say, stray interference

with an electrical or radio signal). It is not appropriate or feasible to explicitly

incorporate such disturbances into the model, especially since they serve

a purely negative role and cannot be controlled for, only accommodated.

Therefore, these models include a random noise factor: random alterations

of the signal with a certain probability distribution. All the models that we

have mentioned include noise as a confounding factor, and it is a very general

technique for simulating the pattern of disturbances even in deterministic

systems with no other probabilistic aspect. The randomness of the noise is

crucial: if it were not random, it could be explicitly addressed and controlled

for. As it stands, noise in signalling systems is addressed by complex error-

checking protocols, which, if they work, rely crucially on the random and

unsystematic distribution of errors. A further example is provided by the

concept of random mutation in classical evolutionary theory. It may be

that, from a biochemical perspective, the alterations in DNA produced by

imperfect copying are deterministic. Nevertheless, these mutations are

random with respect to the genes they alter, and hence the differential fitness

they convey.9

2 Concepts of randomness

If we are to understand what randomness is, we must begin with the scien-

tifically acceptable uses of the concept. These form a rough picture of the

intuitions that scientists marshal when describing a phenomenon as random;

9 Thanks to Spencer Maughan for the example.
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our task is to systematize these intuitions as best we can into a rigorous

philosophical analysis of this intuitive conception.

Consider some of the competing demands on an analysis of randomness

that may be prompted by our examples.

1. Statistical testing. We need a concept of randomness adequate for use

in random sampling and randomized experiments. In particular, we need

to be able to produce random sequences on demand and ascertain whether

a given sequence is random.

2. Finite randomness. The concept of randomness must apply to the single

event, as in Earman’s example or a single instance of random mating. It

must at least apply to finite phenomena.

3. Explanation and confirmation. Attributions of randomness must be able

to be explanatorily effective, indicating why certain systems exhibit the

kinds of behaviour they do; to this end, the hypothesis that a system is

random must be amenable to incremental empirical confirmation or

disconfirmation.

4. Determinism. The existence of random processes must be compatible with

determinism; else we cannot explain the use of randomness to describe

processes in population genetics or chaotic dynamics.

Confronted with this variety of uses of randomness to describe such

varied phenomena, one may be tempted to despair: ‘Indeed, it seems highly

doubtful that there is anything like a unique notion of randomness there to

be explicated’ (Howson and Urbach [1993], p. 324). Even if one recognizes

that these demands are merely suggested by the examples and may not sur-

vive careful scrutiny, this temptation may grow stronger when one considers

how previous explications of randomness deal with the cases we described

above. This we shall now do with the two most prominent past attempts

to define randomness: the place selection/statistical test conception and the

complexity conception of randomness. Both do poorly in meeting our cri-

teria; poorly enough that if a better account were to be proposed, we should

reject them.

2.1 Von Mises/Church/Martin-Löf randomness

Definition 1 (von Mises (vM)-randomness) An infinite sequence S of outcomes

of types A1,. . ., An, is vM-random iff (i) every outcome type Ai has a well-

defined relative frequency relf s
i in S; and (ii) for every infinite subsequence

S* chosen by an admissible place selection, the relative frequency of Ai remains

the same as in the larger sequence: relf s
i ¼ relf s*

i .
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Immediately, the definition applies only to infinite sequences, and so fails

condition (2) of finiteness.

What is an admissible place selection? Von Mises ([1957]) himself says:

[T]he question whether or not a certain member of the original sequence

belongs to the selected partial sequence should be settled independently

of the result of the observation, i.e. before anything is known about the

result. (p. 25)

The intuition is that if we pick out subsequences independently of the

contents of the elements we pick (by paying attention only to their indices,

for example), and each of those has the same limit relative frequencies of

outcomes, then the sequence is random. If we could pick out a biased sub-

sequence, which would indicate that some set of indices had a greater than

chance probability of being occupied by some particular outcome, the intu-

ition is that such an occurrence would not be consistent with randomness.

Church ([1940]), attempting to make von Mises’ remarks precise, proposed

that admissible place selections are recursive functions that decide whether an

element si is to be included in a subsequence on input of the index number i

and the initial segment of the sequence up to si�1. For example, ‘select only

the odd numbered elements’ and ‘select any element that comes after the

subsequence 010’ are both admissible place selections. An immediate corol-

lary is that no random sequence can be recursively computable: else there

would be a recursive function that would choose all and only 1s from the

initial sequence, namely, the function that generates the sequence itself. But

if a random sequence cannot be effectively generated, we cannot produce

random sequences for use in statistical testing. Neither can we effectively

test, for some given sequence, whether it is random. For such a test would

involve exhaustively checking all recursive place selections to see whether they

produce a deviant subsequence, and this is not decidable in any finite time

(though for any non-random sequence, at some finite time the checking

machine will halt with a ‘no’ answer). If random sequences are neither pro-

ducible nor discernible, they are useless for statistical testing purposes, failing

the first demand. This point may be made more striking by noting that actual

statistical testing only ever involves finite sequences; and no finite sequence

can be vM-random at all.

Furthermore, it is perfectly possible that some genuinely vM-random infin-

ite sequence has an arbitrarily biased initial segment, even to the point where

all the outcomes of the sequence that actually occur during the life of the

universe are 1s. A theorem of Ville ([1939]) establishes a stronger result: given

any countable set of place selections {wi}, there is some infinite sequence S

such that the limit frequency of 1s in any subsequence of S* ¼ wj(S) selected

by some place selection is one-half, despite the fact that for every finite initial

segment of the sequence, the frequency of 1s is greater than or equal to
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one-half (van Lambalgen [1987], pp. 730–1, 745–8). That is, any initial seg-

ment of this sequence is not random with respect to the whole sequence or

any infinite selected subsequence. There seems to be no empirical constraint

that could lead us to postulate that such a sequence is genuinely vM-random.

Indeed, since any finite sequence is recursively computable, no finite segment

will ever provide enough evidence to justify claiming that the actual sequence

of outcomes of which it is a part is random. That our evidence is at best finite

means that the claim that an actual sequence is vM-random is empirically

underdetermined, and deserving of a arbitrarily low credence because any

finite sequence is better explained by some other hypothesis (e.g. that it is

produced by some pseudo-random function). vM-randomness is a profligate

hypothesis that we cannot be justified in adopting. Hence, it can play no role

in explanations of random phenomena in finite cases, where more empirically

tractable hypotheses will do far better.

One possible exception is in those cases where we have a rigorous

demonstration that the behaviour in question cannot be generated by a deter-

ministic system—in that case, the system may be genuinely vM-random. Even

granting the existence of such demonstrations, note that in this case we have

made essential appeal to a fact about the random process that produces

the sequence, and we have strictly gone beyond the content of the evidence

sequence in making that appeal. Here, we have simply abandoned the quest

to explain deterministic randomness. Random sequences may well exist for

infinite strings of quantum mechanical measurement outcomes, but we do not

think that random phenomena are confined to indeterministic phenomena

alone: vM-randomness fails demand (4).

Partly in response to these kinds of worries, a final modification of von

Mises’ suggestion was made by Martin-Löf ([1966], [1969], [1970]). His idea is

that biased sequences are possible but unlikely: non-random sequences,

including the types of sequences considered in Ville’s theorem, form a set

of measure zero in the set of all infinite binary sequences. Martin-Löf’s

idea is that truly random sequences satisfy all the probability 1 properties

of a certain canonical kind: recursive sequential significance tests—this

means (roughly) that a sequence is random with respect to some hypothesis

Hp about probability p of some outcome in that sequence if it does not

provide grounds for rejecting Hp at arbitrarily small levels of significance.10

Van Lambalgen ([1987]) shows that Martin-Löf (ML)-random sequences are,

10 Consider some statistical test such as the x2 test. The probability arising out of the test is the

probability that chance alone could account for the divergence between the observed results and

the hypothesis; namely, the probability that the divergence between the observed sequence and

the probability hypothesis (the infinite sequence) is not an indication that the classification is

incorrect. A random sequence is then one that, even given an arbitrarily small probability that

chance accounts for the divergence, we would not reject the hypothesis.
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with probability 1, vM-random sequences also—almost all strictly increasing

sets of integers (Wald place selections) select infinite subsequences of a

random sequence that preserve relative frequencies.

Finally, as Dembski ([1991], p. 75) points out, for the purposes of statistical

testing, ‘Randomness, properly to be randomness, must leave nothing to

chance.’ This is the idea that in constructing statistical tests and random

number generators, the first thing to be considered is the kinds of patterns

that one wants the random object to avoid instantiating. Then one considers

the kinds of objects that can be constructed to avoid matching these tests.

In this case, take the statistical tests you do not want your sequence to fail,

and make sure that the sequence is random with respect to these patterns.

Arbitrary segments of ML-random sequences cannot satisfy this requirement,

since they must leave up to chance exactly which entities come to constitute

the random selection.

2.2 KCS-randomness

One aspect of random sequences we have tangentially touched on is that

random sequences are intuitively complex and disordered. Random mating

is disorderly at the level of individuals; random rainfall inputs are complex to

describe. The other main historical candidate for an analysis of randomness,

suggested by the work of Kolmogorov, Chaitin and Solomonov (KCS),

begins with the idea that randomness is the (algorithmic) complexity of a

sequence.11

The complexity of a sequence is defined in terms of effective production of

that sequence.

Definition 2 (Complexity) The complexity KT(S) of sequence S is the length of

the shortest program C of some Turing machine T which produces S as output,

when given as input the length of S. (KT(S) is set to 1 if there does not exist a C

that produces S).

This definition is machine dependent; some Turing machines are able to

more compactly encode some sequences. Kolmogorov showed that there exist

universal Turing machines U such that for any sequence S,

8T9cT KU Sð Þ � KT Sð Þ þ cTð Þ; ð1Þ

where the constant cT does not depend on the length of the sequence and

hence can be made arbitrarily small as the length of the sequence increases.

11 A comprehensive survey of complexity and the complexity-based approach to randomness

is Li and Vitanyi ([1997]). See also Kolmogorov ([1963]), Chaitin ([1975]), Suppes ([1984],

pp. 25–33), Earman ([1986], chapter VIII), Kolmogorov and Uspensky ([1988]), van

Lambalgen ([1995]) and Batterman and White ([1996]), Smith ([1998], chapter 9).
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Such machines are known as asymptotically optimal machines. If we let the

complexity of a sequence be defined relative to such a machine, we get a

relatively machine-independent characterization of complexity.12 The upper

bound on complexity of a sequence of length l is approximately l—we can

always resort to hard-coding the sequence and an instruction to print it.

Definition 3 (KCS-randomness) A sequence S is KCS-random if its complexity

is approximately its length: K(S) � l(S).13

One natural way to apply this definition to physical processes is to regard

the sequence to be generated as a string of successive outcomes of some such

process. In dynamical systems, this would naturally be generated by examin-

ing trajectories in the system: sequences that list the successive cells (of some

partition of the state space) that are traversed by a system over time. KCS-

randomness is thus primarily a property of trajectories. This notion turns out

to be able to be connected with a number of other mathematical concepts that

measure some aspects of randomness in the context of dynamical systems.14

This definition fares markedly better with respect to some of our demands

than vM-randomness. First, there are finite sequences that are classified as

KCS-random. For each l, there are 2l binary sequences of length l. But the

non-KCS-random sequences among them are all generated by programs of

less than length l � k, for some k; hence there will be at most 2l�k programs

that generate non-KCS-random sequences. But the fraction 2l�k/2l ¼ 1/2k; so

the proportion of non-KCS-random sequences within all sequences of length l

(for all l) decreases exponentially with the degree of compressibility deman-

ded. Even for very modest compression in large sequences (say, k ¼ 20,

l ¼ 1000) less than 1 in a million sequences will be non-KCS-random. It

should, I think, trouble us that, by the same reasoning, longer sequences are

more KCS-random. This means that single element sequences are not KCS-

random, and so the single events they represent are not KCS-random either.15

12 Though problems remain. The mere fact that we can give results about the robustness of

complexity results (namely, that lots of universal machines will give roughly the same com-

plexity value to any given sequence) does not really get around the problem that any particular

machine may well be biased with respect to some particular sequence (Hellman [1978]; Smith

[1998]).
13 A related approach is the so-called time-complexity view of randomness, where it is not the

space occupied by the program but rather the time it takes to compute its output given its input.

Sequences are time random just in case the time taken to compute the algorithm and output the

sequence is greater than polynomial in the size of the input. Equivalently, a sequence is time

random just when all polynomial time algorithms fail to distinguish the putative random string

from a real random string (equivalent because a natural way of distinguishing random from

pseudo-random is by computing the function) (Dembski [1991], p. 84).
14 For instance, Brudno’s theorem establishes a connection between KCS-randomness and what

is known as Kolmogorov–Sinai entropy, which has very recently been given an important role

in detecting randomness in chaotic systems. See Frigg ([2004], p. 430).
15 There are also difficulties in extending the notion to infinite sequences, but I consider these far

less worrisome in application (Smith [1998], pp. 156–7).
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It should also disturb us that biased sequences are less KCS-random than

unbiased sequences (Earman [1986], pp. 143–5). A sequence of tosses of a

biased coin (e.g. Pr(H) > 0.5) can be expected to have more frequent runs of

consecutive Hs than an unbiased sequence; the biased sequence will be more

compressible. A single H interrupting a long sequence of Ts is even less KCS-

random. But in each of these cases, intuitively, the distribution of Hs in the

sequence can be as random as desired, to the point of satisfying all the statistical

significance tests for their probability value. This is important because stoch-

astic processes occur with arbitrary underlying probability distributions, and

randomness needs to apply to all of them: intuitively, random mating would

not be less random were the distribution over genotypes non-uniform.

What about statistical testing? Here, again, there are neither effective com-

putational tests for KCS-randomness nor any way of effectively producing a

KCS-random sequence.16 This prevents KCS-random sequences being effect-

ively useful in random sampling and randomization. Furthermore, the lack of

an effective test renders the hypothesis of KCS-randomness of some sequence

relatively immune to confirmation or disconfirmation.

One suggestion is that perhaps we were mistaken in thinking that KCS

complexity is an analysis of randomness; perhaps, as Earman ([1986]) sug-

gests, it actually is an analysis of disorder in a sequence, irrespective of the

provenance of that sequence. Be that as it may, the problems above seem to

disqualify KCS-randomness from being a good analysis of randomness.

(Though random phenomena typically exhibit disorderly behaviour, and

this may explain how these concepts became linked, this connection is neither

necessary nor sufficient.)

3 Randomness is unpredictability: preliminaries

Perhaps the foregoing survey of mathematical concepts of randomness has

convinced you that no rigorously clarified concept can meet every demand on

the concept of randomness that our scientific intuitions place on it. Adopting

a best candidate theory of content (Lewis [1984]), one may be drawn to the

conclusion that no concept perfectly fills the role delineated by our four

demands, and one may then settle on (for example) KCS-randomness as

the best partial filler of the randomness role.

Of course, this conclusion follows only if there is no better filler of the role.

I think there is. My hypothesis is that scientific randomness is best analysed

as a certain kind of unpredictability. I think this proposal can satisfy each of

16 There exists neither an algorithm which on input k yields a KCS-random sequence S as output

such that |S| ¼ k nor an algorithm which on input S yields output 1 iff that sequence is KCS-

random (van Lambalgen [1995], pp. 10–1). This result is a fairly immediate corollary of the

unsolvability of the halting problem for Turing machines.
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the demands that emerge from our quick survey of scientific applications of

randomness. Before I can state my analysis in full, some preliminaries need to

be addressed.

3.1 Process and product randomness

The mathematical accounts of randomness we addressed do not, on the sur-

face, make any claims about scientific randomness. Rather, these accounts

invite us to infer, from the randomness of some sequence, that the process

underlying that sequence was random (or that an event produced by that

process and part of that sequence was random). Our demands were all con-

straints on random processes, requiring that they might be used to randomize

experiments, to account for random behaviour, and that they might underlie

stochastic processes and be compatible with determinism. Our true concern,

therefore, is with process randomness, not product randomness (Earman

[1986], pp. 137–8). Our survey has shown that the inference from product to

process randomness failed: the class of processes that possess vM-random or

KCS-random outcome sequences fails to satisfy the intuitive constraints on

the class of random processes.17

Typically, appeals are made at this point to theorems which show that

‘almost all’ random processes produce random outcome sequences, and

vice versa (Frigg [2004], p. 431). These appeals are beside the point. First,

the theorems depend on quite specific mathematical details of the models

of the systems in question, and these details do not generalize to all the cir-

cumstances in which randomness is found, giving such theorems very limited

applicability. Second, even where these theorems can be established, there

remains a logical gap between process randomness and product randomness:

some random processes exhibit highly ordered outcomes. Such a possibility

surely contradicts any claim that product randomness and process random-

ness are ‘extensionally equivalent’ (Frigg [2004], p. 431).

What is true is that product randomness is a defeasible incentive to inquire

into the physical basis of the outcome sequence, and it provides at least a

prima facie reason to think that a process is random. Indeed, this presumptive

inference may explain much of the intuitive pull exercised by the von Mises

and KCS accounts of randomness. For, insofar as these accounts do capture

typical features of the outputs of random processes, they can appear to give

an analysis of randomness. But this presumptive inference can be defeated;

17 There is some psychological research which seems to indicate that humans judge the random-

ness of sequences by trying to assimilate them to representative outcomes of random processes.

Any product-first conception of randomness will have difficulty explaining this clearly deep-

rooted intuition (Griffiths and Tenenbaum [2001]).
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and even the evidential status of random products is less important than it

seems—on my account, far less stringent tests than von Mises or KCS can be

applied that genuinely do pick out the random processes.

3.2 Randomness is indeterminism?

The comparative neglect of the concept of randomness by philosophers

is in large part due, I think, to the pervasive belief in the pernicious

hypothesis that a physical process is random just when that process is

indeterministic. Hellman, while concurring with our conclusion that no math-

ematical definition of random sequences can adequately capture physical

randomness, claims that ‘physically random’ is ‘roughly interchangeable

with ‘‘indeterministic’’ ’ (Hellman [1978], p. 83).

Indeterminism here means that the complete and correct scientific theory of

the process is indeterministic. A scientific theory we take to be a class of

models (van Fraassen [1989], chapter 9). An individual model will be a par-

ticular history of the states that a system traverses (a specification of the

properties and changes in properties of the physical system over time): call

such a history a trajectory of the system. The class of all possible trajectories

is the scientific theory. Two types of constraints govern the trajectories: the

dynamical laws (like Newton’s laws of motion) and the boundary conditions

(like the Hamiltonian of a classical system restricts a given history to a certain

allowable energy surface) govern which states can be accessed from which

other states, while the laws of coexistence and boundary conditions determine

which properties can be combined to form an allowable state (for instance,

the ideal gas law PV ¼ nRT constrains which combinations of pressure and

volume can coexist in a state). This model of a scientific theory is supposed

to be very general: the states can be those of the phase space of classical

statistical mechanics or the states of soil moisture or of a particular genetic

distribution in a population, while the dynamics can include any mappings

between states.18

Definition 4 (Earman–Montague determinism) A scientific theory is determin-

istic iff any two trajectories in models of that system which overlap at one point

overlap at every point. A theory is indeterministic iff it is not deterministic;

equivalently, if two systems can be in the same state at one time and evolve

into distinct states. A system is (in)deterministic iff the theory which completely

and correctly describes it is (in)deterministic. (Montague [1974]; Earman

[1986])

18 Some complications are induced if one attempts to give this kind of account for relativistic

theories without a unique time ordering, but these are inessential for our purposes (van

Fraassen [1989]).
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Is it plausible that the catalogue of random phenomena we began with can

be simply unified by the assumption that randomness is indeterminism? It

seems not. Many of the phenomena we enumerated do not seem to depend

for their randomness on the fact that the world in which they are instantiated

is one where quantum indeterminism is the correct theory of the microphys-

ical realm. One can certainly imagine that Newton was right. In Newtonian

possible worlds, the kinds of random phenomena that chaotic dynamics gives

rise to are perfectly physically possible; so too with random mating, which

depends on a high-level probabilistic hypothesis about the structure of mating

interactions, not low-level indeterminism.19 Our definition of indeterminism

made no mention of the concept of probability; an adequate understanding

of randomness, however, must show how randomness and probability are

related—hence indeterminism cannot be randomness. Moreover, we must

at least allow for the possibility that quantum mechanics will turn out to

be deterministic, as on the Bohm theory (Bell [1987b]). Finally, it seems

wrong to say that coin tossing is indeterministic, or that creatures engage

in indeterministic mating: it would turn out to be something of a philosoph-

ical embarrassment if the only analysis our profession could provide made

these claims correct.

One response of behalf of the pernicious hypothesis is that, while classical

physics is deterministic, it is nevertheless, on occasion, a useful idealization to

pretend that a given process is indeterministic, and hence random.20 I think

that this response confuses the content of concepts deployed within a theory,

such as the concept of randomness, with the external factors that contribute

to the adoption of a theory, such as that theory being adequate for the task at

hand and therefore being a useful idealization. Classical statistical mechanics

does not say that it is a useful idealization that gas motion is random; the

theory is an idealization that says gas motion is random, simpliciter. Here,

I attempt to give a characterization of randomness that is uniform across all

theories, regardless of whether those theories are deployed as idealizations or

as perfectly accurate descriptions.

We must also be careful to explain why the hypothesis that randomness is

indeterminism seems plausible to the extent that it does. I think that the

historical connection of determinism with prediction in the Laplacean vision

can explain the intuitive pull of the idea that randomness is objective inde-

terminism. I believe that a historical mistake still governs our thinking in this

area, for when increasing conceptual sophistication enabled us to tease apart

19 There are also purported proofs of the compatibility of randomness and indeterminism

(Humphreys [1978]). I do not think that the analysis of randomness utilized in these formal

proofs is adequate, so I place little importance on these constructions.
20 John Burgess suggested the possibility of this response to me—and pointed out that some

remarks below (particularly Sections 4.3 and 6.3) might seem to support it.
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the concepts of determinism and predictability, randomness remained

connected to determinism, rather than with its rightful partner, predictability.

It is to the concept of predictability that we now turn.

4 Predictability

Laplace’s ([1951], p. 4) vision is that determinism is idealized predictability:

[A]n intelligence which could comprehend all the forces by which nature is

animated and the respective situation of all the [things which] compose

it—an intelligence sufficiently vast to submit these data to analysis—it

would embrace in the same formula the movements of the greatest bodies

in the universe and those of the lightest atom; for it, nothing would be

uncertain and the future, as well as the past, would be present to its eyes.

Definition 5 (Laplacean determinism) A system is Laplacean deterministic iff it

would be possible for an epistemic agent who knew precisely the instantaneous

state and could analyse the dynamics of that system to predict with certainty the

entire precise trajectory of the system.

A Laplacean deterministic system is one where the epistemic features of

some ideal agent cohere perfectly with the ontological features of that world.

Given that there are worlds where prediction and determinism mesh in this

way, it is easy to think that prediction and determinism are closely related

concepts.21

There are two main ways to make the features of this idealized epistemic

agent more realistic that would undermine this close connection. The first

way is to try to make the epistemic capacities of the agent to ascertain the

instantaneous state more realistic. The second way is to make the computa-

tional and analytic capacities of the agent more realistic. Weakening the epi-

stemic abilities of the ideal agent allows us to clearly see the separation of

predictability and determinism.22

4.1 Epistemic constraints on prediction

The first kind of constraint to note concerns our ability precisely to ascertain

the instantaneous state of a system. At best, we can establish that the system

was in a relatively small region of the state space over a relatively short

interval of time.

21 An infamous example of this is the bastardized notion of ‘epistemological determinism’, as used

by Popper ([1982]), which is no form of indeterminism at all. The unfortunately named dis-

tinction between ‘deterministic’ and ‘statistical’ hypotheses, actually a distinction concerning

the predictions made by theories, is another example of this persistent confusion (Howson

[2000], pp. 102–3).
22 For more on this, see Earman ([1986], chapter 1), Stone ([1989]), Schurz ([1995]) and Bishop

([2003]).
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There are several reasons for this. Most important, we humans are limited

in our epistemic capabilities. Our measurement apparatus is not capable of

arbitrary discrimination between different states and is typically able to dis-

tinguish only properties that correspond to quite coarse partitions of the state

space. In the case of the classical statistical mechanics of an ideal gas in a box,

the standard partition of the state space is into regions that are macro-

scopically distinguishable by means of standard mechanical and thermo-

dynamic properties: pressure, temperature and volume. We are simply not

capable of distinguishing states that can differ by arbitrarily little: one slight

shift of position in one particle in a mole of gas. In such cases, with even

one macrostate compatible with more than one indistinguishable microstate,

predictability for us and determinism do not match; our epistemic situation

is typically worse than this.23

There is an ‘in principle’ restriction too. Measurement involves interac-

tions: a system must be disturbed, ever so slightly, in order for it to affect

the system that is our measurement device. We are forced to meddle and

manipulate the natural world in ways that render uncertain the precise

state of the system. This has two consequences. First, measurement alters

the state of the system, meaning we are never able to know the precise pre-

measurement state (Bishop [2003], section 5). This is even more pressing if we

consider the limitations that quantum mechanics places on simultaneous

measurement of complementary quantities. Second, measurement introduces

errors into the specification of the state. Repetition does only so much to

counter these errors; physical magnitudes are always accompanied by their

experimental margin of error.

It would be a grave error to think that the in principle limitations are the

more significant restrictions on predictions. On the contrary, prediction is an

activity that arose primarily in the context of agency, where having reason-

able expectations about the future is essential for rational action. Creatures

who were not goal directed would have no use for predictions. As such, an

adequate account of predictability must make reference to the actual abilities

of the epistemic agents who are deploying the theories to make predictions.

An account of prediction which neglected these pragmatic constraints would

thereby leave out why the concept of prediction is important or interesting at

all (Schurz [1995], section 6).

23 Note that, frequently, specification of the past macroscopic history of a system together with its

present macrostate, will help to make its present microstate more precise. This is because the

past history can indicate something about the bundle of trajectories within which the system

might lie. These trajectories may not include every point compatible with the currently observed

state. In what follows, we consider the use of this historical constraint to operate to give a more

precise characterization of the current state, rather than explicitly considering it.
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A good example of the consequences of imprecise specification of initial

conditions is furnished by the phenomenon from chaotic dynamics known

as sensitive dependence on initial conditions, or ‘error inflation’ (Smith [1998],

pp. 15, 167–8). Consider some small bundle of initial states S, and some state

s0 2 S. Then, for some systems,

8"> 0 9d> 0 9s0* 2 S 9t > 0 js0 � s0*j< d ^ jst � st*j>"ð Þ: ð2Þ

That is, for some bundle of state space points that are within some arbitrary

distance d in the state space, there are at least two states whose subsequent

trajectories diverge by at least e after some time t. In fact, for typically chaotic

systems, all neighbouring trajectories within the bundle of states diverge

exponentially fast. Predictability fails; knowledge of initial macrostates, no

matter how fine-grained, can always leave us in a position where the traject-

ories traversing the microstates that compose that initial macrostate each end

up in a completely different macrostate, giving us no decisive prediction.

How well can we accommodate this behaviour? It turns out then that pre-

dictability in such cases is exponentially expensive in initial data; to predict

even one more stage in the time evolution of the system demands an expo-

nential increase in the accuracy of the initial state specification. Given limits

on the accuracy of such a specification, our ability to predict will run out in a

very short time for lots of systems of very moderate complexity of descrip-

tion, even if we have the computational abilities. However (and this will be

important in the sequel), we can predict global statistical behaviour of a

bundle of trajectories. This is typically because our theory yields probabilities

of state transitions from one macrostate into another.24 This combination of

global structure and local instability is an important conceptual ingredient in

randomness (Smith [1998], chapter 4). Bishop ([2003]) makes the plausible

claim that any error in initial measurement will eventually yield errors in pre-

diction, but exponential error inflation is a particularly spectacular example.

4.2 Computational constraints on prediction

There may also be constraints imposed by our inability to track the evolution

of a system along its trajectory. Humphreys’ ([1978]) purported counter-

examples to the thesis that randomness is indeterminism relied on the follow-

ing possibility: that the total history of a system may supervene on a single

state, hence the system is deterministic, while no computable sequence of

states is isomorphic to that history. Given the very plausible hypothesis

24 We can also use shadowing theorems (Smith [1998], pp. 58–60) and knowledge of chaotic

parameter values.
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that human predictors have at best the computation capacities of Turing

machines, this means that some state evolutions are not computable by pre-

dictors like us. This is especially pronounced when the dynamical equations

governing the system are not integrable and do not admit of a closed-form

solution (Stone [1989]). Predictions of future states when the dynamics are

based on open-form solutions are subject to ever-increasing complexity as the

timescale of the prediction increases.

There is a sense in which all deterministic systems are computable; each

system does effectively produce its own output sequence. If we were able

(per impossibile) arbitrarily to control the initial conditions, then we could

use the system itself as an ‘analogue computer’ that would simulate its own

future behaviour. This, it seems to me, would be prediction by cheating. What

we demand of a prediction is the making of some reasonable, theoretically

informed judgement about the unknown behaviour of a system—not remem-

bering how it behaved in the past. (Similarly, predicting by consulting a reli-

able oracle is not genuine prediction either.) I propose that, for our purposes,

we set prediction by cheating aside as irrelevant.

An important issue for computation of predictions is the internal discrete

representation of continuous physical magnitudes; this significant problem is

completely bypassed by analogue computation (Earman [1986], chapter VI).

This approach also neglects more mundane restrictions on computations: our

finite lifespan, resources, memory and patience!

4.3 Pragmatic constraints on prediction

There are also constraints placed on prediction by the structure of the theory

yielding the predictions. Consider thermodynamics. This theory gives per-

fectly adequate dynamical constraints on macroscopic state conditions. But

it does not suffice to predict a state that specifies the precise momentum and

position of each particle; those details are ‘invisible’ to the thermodynamic

state. Some features of the state are thus unpredictable because they are not

fixed by the theory’s description of the state.

This is only of importance because, on occasion, this is a desirable feature

of theory construction. A theory of population genetics might simply plug in

the proviso that mating happens unpredictably, where this is to be taken as

saying that for the purposes of the explanatory and predictive tasks at hand,

it can be effectively treated as such. It is more perspicuous not to attempt

to explain this higher-order stochastic phenomenon in terms of lower-level

theories. This is part of a general point about the explanatory significance of

higher-level theories, but it has particular force for unpredictability. Some

theories do not repay the effort required to make predictions using them,

even if those theories could, in principle, predict with certainty. Other theories
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are more simple and effective because various deterministic phenomena are

treated as absolutely unpredictable. A random aspect of the process is per-

haps to be seen as a qualitative factor in explanation of some quite different

phenomenon or as an ancillary feature not of central importance to the

theory; or it might simply be proposed as a central irreducible explanatory

hypothesis, whose legitimacy derives from the fruitfulness of assuming it.

Given that explanation and prediction are tasks performed by agents with

certain cognitive and practical goals in hand (van Fraassen [1980]), the utility

of some particular theory for such tasks will be a matter of the pragmatic

qualities of the theory.

4.4 Prediction defined

Given these various constraints, I will now give a general characterization of

the predictability of a process.

Definition 6 (Prediction) A prediction function CP,T(M,t) takes as input the

current state M of a system described by a theory T as discerned by a predictor

P, and an elapsed time parameter, and yields a temporally indexed probability

distribution Prt over the space of possible states of the system. A prediction is

a specific use of some prediction function by some predictor on some initial

state and elapsed time, who then adopts Prt as his posterior credence function

(conditional on the evidence and the theory). (If the elapsed time is negative,

the use is a retrodiction.)

Let us unpack this a little. Consider a particular system that has been

ascertained to be in some state M at some time. The states are supposed to

be distinguished by the epistemic capacities of the predictors, so that in

classical mechanics, for example, the states in question will be macrostates,

individuated by differences in observable parameters such as temperature or

pressure. A prediction is an attempt to establish what the probability is that

the system will be in some other state after some time t has elapsed.25 The way

such a question is answered, in my view, is by deploying a function of a kind

whose most general form is a prediction function. The agent P who wishes to

make the prediction has some epistemic and computational capabilities; these

delimit the fine-grainedness of the partition of which M is a member and the

class of possible functions. The theory T gives the basic ingredients for the

prediction function, establishing the physical relations between states of

the theory accepted by the agent. These are contextual features that are fixed

by the surroundings in which the prediction is made: the epistemic and

25 A perfect, deterministic prediction is the degenerate case where the probability distribution is

concentrated on a single state (or a single cell of a partition).
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computational limitations of the predictor and the theory being utilized are

presuppositions of the making of a prediction (Stalnaker [1984]). These con-

textual features fix a set of prediction functions that are available to potential

predictors in that context. The actual prediction, however, is the updating of

credences by the predictor, who conditions on observed evidence and accep-

ted theory, which jointly dictate the prediction functions that are available to

the predictor.

The notion of an available prediction function may need some explanation.

Clearly, the agent who updates by simply picking some future event and

giving it credence 1 is updating his beliefs in future outcomes in a way that

meets the definition of a prediction function. Nevertheless, this prediction

function is (most likely) inconsistent with the theory the agent takes to

describe most accurately the situation he is concerned to predict, unless

that agent adopts a very idiosyncratic theory. As such, it is accepted theory

and current evidence that are to be taken as basic; these fix some prediction

functions as reasonable for the agents who believe those theories and have

observed that evidence, and it is those reasonable prediction functions that

are available to the agent in the sense I have discussed here. Availability must

be a normative notion; it cannot be, for example, that a prediction function is

available if an agent could update his credences in accordance with its dic-

tates; it must also be reasonable for the agent to update in that way, given his

other beliefs.26

Graham Priest suggested to me that the set of prediction functions be all

recursive functions on the initial data, just to make the set of available pre-

dictions the same for all agents. But I do not think we need to react quite so

drastically, especially since to assume the availability of these functions is

simply to reject some of the plausible computational limitations on human

predictions.

This conception of prediction has its roots in consideration of classical

statistical mechanics, but the use of thermodynamic macrostates as a para-

digm for the input state M may skew the analysis with respect to other

theories.27 The input state M must include all the information we currently

possess concerning the system whose behaviour is to be predicted. This might

include the past history of the system, for example when we use trends in the

stock market as input to our predictive economic models. It must also include

some aspects of the microstate of the system, as in quantum mechanics,

where the uniform initial distribution over phase space in classical statistical

mechanics is unavailable, so all probabilities of macroscopic outcomes are

state dependent. Sometimes we must also include relevant knowledge or

26 I thank Adam Elga for discussion of this point.
27 As Hans Halvorson pointed out to me.
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assumptions about other potentially interacting systems. This holds not

only when we assume that a system is for all practical purposes closed or

isolated, but also in special relativity, where we can predict future events

only if we impose boundary conditions on regions that are space-like separ-

ated from us (for example, the condition that those regions are more or less

similar to our past light cone). So the input state must be broader than

just the current observations of the system, and it must include all

the ingredients necessary, whatever those might be, to fix on a posterior

probability function.

The relation of the dynamical equations of the theory to the available pre-

diction functions is an important issue. The aim of a predictive theory is to

yield useful predictions by means of a modified dynamics that is not too false

to the underlying dynamics. For some theories, the precise states will be ascer-

tainable and the dynamical equations solvable; the prediction functions in this

case will just be the dynamical equations used in the theory, and the probab-

ility distribution over final states will be concentrated on a point in the deter-

ministic case or given by the basic probabilistic rule in the indeterministic case

(say, Born’s rule in elementary quantum theory). Other cases are more com-

plicated. In classical statistical mechanics, we have to consider how the entire

family of trajectories that intersect M (i.e. overlap the microstates s that con-

stitute M) behave under the dynamical laws and whether tractable functions

that approximate this behaviour can be found. For instance, the very simple

prediction function for ergodic statistical mechanical systems is that the prob-

ability of finding a system in some state M after sufficient time has elapsed is

the proportion of the phase space that M occupies. This requires a great many

assumptions and simplifications, ergodicity prominent among them, and each

theory will have different requirements. The general constraints seem to be

those laid down in the preceding subsections, but no more detailed universal

recipe for producing prediction functions can be given. In any case, the par-

ticular form of prediction functions is a matter for physical theory; the logical

properties of such a function are those I have specified above.

Of course, whether any function that meets these formal requirements is a

useful or good prediction function is another matter. A given prediction func-

tion can yield a distribution that gives probability 1 to the whole state space

but no information about probabilities over any more fine-grained partition.

Such a function, while perfectly accurate, is pragmatically useless and should

be excluded by contextual factors. In particular, I presume that the predictor

wishes to have the most precise partition of states that is compatible with

accurate prediction. But the trade-off between accuracy and fine-grainedness

will depend on the situation in hand.

The ultimate goal, of course, is that the probability distribution given by

the prediction function will serve as normative for the credences of the agents
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making the prediction (van Fraassen [1989], p. 198). The probabilities are

matched with the credence by means of a probability coordination rule, of

which the Principal Principle is the best known example (Lewis [1980]).

This is essential in explaining how predictions give rise to action and is one

important reason why the outcomes of a prediction must be probabilistic.

Another is that we can easily convert a probability distribution over states

into an expectation value for the random variable that represents the

unknown state of the system. Prediction can then be described as yielding

expectation values for some system given an estimation of the current values

that characterize the system, which enables a large body of statistical meth-

odology to come to bear on the use and role of predictions.28

5 Unpredictability

With a characterization of predictability in hand, we are in a position to

characterize some of the ways that predictability can fail. Importantly, since

we have separated predictability from determinism, it turns out that being

indeterministic is one way, but not the only way, in which a phenomenon can

fail to be predictable.

Definition 7 (Unpredictability) An event E (at some temporal distance t) is

unpredictable for a predictor P iff P’s posterior credence in E after conditioning

on current evidence and the best prediction function available to P is not 1, that

is, if the prediction function yields a posterior probability distribution that does

not assign probability 1 to E.29

There is some worry that this definition is too inclusive—after all, there are

many future events that are intuitively predictable and yet we are not certain

that they will occur. This worry can be assuaged by attending to the following

two considerations. First, this definition captures the idea that an event is not

perfectly predictable. If the available well-confirmed prediction function

allows us to raise our posterior credence in the event considerably, we might

well be willing to credit it with significant predictive powers, even though it

does not convey certainty on the event. This indicates only that between

perfect predictability and the kind of unpredictability we shall call random-

ness (Section 6) there are greater or lesser degrees of unpredictability. Often,

in everyday circumstances, we are willing to collapse some of these finer

28 For a start, see Jeffrey ([2004]), especially chapter 4.
29 Note, in passing, that this definition does not make biased sequences any more predictable than

unbiased ones, just because some outcome turns up more often. Unpredictability has to do with

our expectations, and in cases of a biased coin we do expect more heads than tails, for example.

We still cannot tell what the next toss will be to any greater precision than the bias we might

have deduced; hence, it remains unpredictable.
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distinctions: we are willing, for example, to make little distinction between

certainty and very high non-unity credences. (This is at least partially because

the structure of rational preference tends to obscure these slight differences

that make no practical difference to the courses of action we adopt to achieve

our preferred outcomes.) It is, therefore, readily understood that common use

of the concept of unpredictability should diverge from the letter, but I suggest

not the spirit, of the definition given above. Second, we must recognize that

when we are prepared to use a theory to predict some event, and yet reserve

our assent from full certainty in the predictions made, what we express by

that is some degree of uncertainty regarding the theory. Our belief in and

acceptance of theories is a complicated business, and we frequently make use

of and accept theories that we do not believe to be true. Some of what I have

to say here about pragmatic factors involved in prediction reflects the com-

plexities of this matter. But regardless of our final opinion on acceptance and

use of theories, it remains true that our conditional credences concerning

events, conditional on the truth of those theories, capture the important cre-

dential states as far as predictability is concerned. So, many events are

predictable according to the definition above, because conditional credence

in the events is 1, conditional on the simple theories we use to predict them.

But we nevertheless refrain from full certainty because we are not certain of

the simple theory. The point is that prediction as I have defined it concerns

what our credences would be if we discharged the condition on those credences

by coming to believe the theory with certainty, and this obviously simplifies

the actual nature of our epistemic relationship with the theories we accept.

An illustration of the definition in action is afforded by the case of

indeterminism, the strongest form of unpredictability. If the correct theory

of some system is indeterministic, then we can imagine an epistemic agent of

perfect computational and discriminatory abilities for whom the contextually

salient partition on state space individuates single states, and who believes

the correct theory. An event is unpredictable for such an agent just in case

knowledge of the present state does not concentrate posterior credence only

upon states containing the event. If the theory is genuinely indeterministic

there exist lawful future evolutions of the system from the current state to

each of incompatible future states s and s*. If there is any event true in s

but not in s*, that event will be unpredictable. Indeed, if an indeterministic

theory countenances any events that are not instantiated everywhere in the

state space, then those events will be unpredictable.

It is important to note that predictability, while relative to a predictor, is a

theoretical property of an event. It is the available prediction functions for

some given theory that determine the predictions that can be made from the

perspective of that theory. It is the epistemic and computational features

of predictors that fix the appropriate theories for them to accept—namely,
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predictors accept theories that partition the state space at the right level of

resolution to fit their epistemic capacities and provide prediction functions

that are well matched to their computational abilities. In other words, the

level of resolution and the allowed computational expenditure are parameters

of predictability, and there will be different characteristic or typical para-

meters for creatures of different kinds, in different epistemic communities.

This situation provides another perspective on the continued appeal of the

thesis that randomness is indeterminism. Theories which describe unpredict-

able phenomena, on this account, treat those phenomena as indeterministic.

The way that the theory represents some situation s is the same way as the

theory represents some distinct situation s*, but the ways the theory repres-

ents the future evolutions of those states st and st* are distinct, so that within

the theory we have duplicate situations evolving into distinct situations.

It is easy to see how the features that separate prediction from determinism

also lead to failures of predictability. The limited capacities of epistemic

agents to detect differences between fundamental detailed states, and hence

their limitation to relatively coarse-grained partitions over the state space,

lead to the possibility of diverging trajectories from a single observed coarse

state even in deterministic systems. Then there will exist events that do not get

probability 1 and are hence unpredictable. Note that one and the same type

of event can be predicted at one temporal distance, and unpredictable at

another, if the diverging trajectories require some extended interval of time

to diverge from each other.

If the agent does not possess the computational capacities to utilize the

most accurate prediction functions, he may be forced to rely on simplified

or approximate methods. If these techniques do lead to predictions of par-

ticular events with certainty, then either (contra the assumption) the predic-

tion function is not a simplification or approximation at all or the predictions

will be incorrect, and the prediction functions should be rejected. To avoid

rejecting prediction functions that make incorrect but close predictions, those

functions should be made compatible with the observed outcomes by expli-

citly considering the margins of error on the approximate predictions. Then

the outputs of such functions can include the actual outcome, as well as

various small deviations from actuality—they avoid conclusive falsification

by predicting approximately which state will result. If such approximate

predictions can include at least a pair of mutually exclusive events, then we

have unpredictability with respect to those events.

Finally, if the agent accepts a theory for pragmatic reasons, then that may

induce a certain kind of failure of predictability, because the agent has restric-

ted the range of available prediction functions to those that are provided

by the theory subject to the agent’s epistemic and computational limitations.

An agent who uses thermodynamics as his predictive theory in a world where
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classical statistical mechanics is the correct story of the microphysics thereby

limits his ability to predict outcomes with perfect accuracy (since there are

thermodynamically indistinguishable states that can evolve into thermo-

dynamically distinguishable outcomes, if those initial states are statistical-

mechanically distinguishable). Theories also make certain partitions of the

real state space salient to predictors (the so-called level of description that

the theory operates at), and this can lead to failures of predictability in much

the same way as epistemic restrictions can (even though the agents might have

other, pragmatic, reasons for adopting those partitions as salient—for

instance, the explanatory value of robust macroscopic accounts).

6 Randomness is unpredictability

We are now in a position to discuss my proposed analysis. The views sugges-

ted by Suppes and Kyburg in the epigraphs to this article provide some sup-

port for this proposal—philosophical intuition obviously acknowledges some

epistemic constraints on legitimate judgements of randomness. I think that

these epistemic features, derived from pragmatic and objective constraints on

human knowledge, exhaust the concept of randomness.

As I discussed earlier, some events which satisfy my definition of unpre-

dictability are only mildly unpredictable. For instance, if the events are dis-

tinguished in a fine-grained way, and the prediction concentrates the posterior

probability over only two of those events, then we may have a very precise

and accurate prediction, even if not perfect. These failures of prediction do

not, intuitively, produce randomness. So what kind of unpredictability do

I think randomness is?

The following definition captures my proposal: randomness is maximal

unpredictability.

Definition 8 (Randomness) An event E is random for a predictor P using theory

T iff E is maximally unpredictable. An event E is maximally unpredictable for

P and T iff the posterior probability of E yielded by the prediction functions that

T makes available, conditional on current evidence, is equal to the prior prob-

ability of E. This also means that P’s posterior credence in E, conditional on

theory and current evidence (the current state of the system), must be equal to

P’s prior credence in E conditional only on theory.

We may call a process random, by extension, if each of the outcomes of

the process is random. So rainfall inputs constitute a random process because

the timing and magnitude of each rainfall event is random.30 That is, since the

30 To connect up with our previous discussions, a sequence of outcomes is random just in case

those outcomes are the outcomes of a random process. This is perfectly compatible with those

outcomes being a very regular sequence; it is merely unlikely to be such a sequence.
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outcomes of a process {E1, . . . , En} partition the event space, the posterior

probability distribution (conditional on theory and evidence) is identical to

the prior probability distribution.31

This definition and its extension immediately yield another, very illumin-

ating, way to characterize randomness: a random event is probabilistically

independent of the current and past states of the system, given the probabil-

ities supported by the theory (when those current and past states are in line

with the coarse-graining of the event space appropriate for the epistemic and

pragmatic features of the predictor). The characteristic random events, on

this construal, are the successive tosses of a coin: independent trials, identic-

ally distributed because the theory that governs each trial is the same, and

the current state is irrelevant to the next or subsequent trials—a so-called

Bernoulli process. But the idea of randomness as probabilistic independence

is of far wider application than just to these types of cases, since any useful

prediction method aims to uncover a significant correlation between future

outcomes and present evidence, which would give probabilistic dependence

between outcomes and input states. This connection between unpredictability

and probabilistic independence is in large part what allows our analysis to

give a satisfactory account of the statistical properties of random phenomena.

I regard it as a significant argument in favour of my account that it can

explain this close connection.

However, there are a number of processes for which a strict probabilistic

independence assumption fails. For example, though over long timescales the

weather is quite unpredictable, from day to day the weather is more stable: a

fine day is more likely to be followed by another fine day. Weather is not best

modelled by a Bernoulli process, but rather by a Markov process, that is, one

where the probability of an outcome on a trial is explicitly dependent on the

current state. Indeed, probably most natural processes are not composed of a

sequence of independent events. Independence of events in a system is likely

only to show itself over timescales where sensitive dependence on initial

conditions and simplified dynamics have time to compound errors to the

point where nothing whatsoever can be reliably inferred from the present

case to some quite distant future event.32 The use of ‘random’ to describe

31 At this point, it is worth addressing a putative counterexample raised by Andy Egan. A process

with only one possible outcome is random on my account: there is only one event (one cell in the

partition), which gets probability 1, which is the same as its unconditional probability. It also

counts as predictable because all of the probability measure is concentrated on the one possible

state. I am perfectly happy with accepting this as an obviously degenerate and unimportant case;

recall the discussion of the trivial prediction function above (Section 4.4). If a fix is nevertheless

thought to be necessary, I would opt simply to require two possible outcomes for random pro-

cesses; this does not seem ad hoc, and is explicitly included in the definition of unpredictability.
32 Compare the hierarchy of ergodic properties in statistical mechanics, where the increasing

strength of the ergodic, mixing and Bernoulli conditions serves to shorten the intervals after

which each type of system yields random future events given past events (Sklar [1993], pp. 235–40).
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those processes that may display some short-term predictability is quite in

order, once we recognize the further contextual parameter of the temporal

distance between input state and event (or random variable) to be predicted

and that for quite reasonable timescales these processes can become unpre-

dictable. (This also helps us decide not to classify as random those processes

that are unpredictable in the limit as t grows arbitrarily but that are remark-

ably regular and predictable at the timescales of human experimenters.) That

the commonsense notion of randomness includes such partially unpredictable

processes is a prima facie reason to take unpredictability, not independence,

to be the fundamental notion—though nothing should obscure the fact that

probabilistic independence is the most significant aspect of unpredictability

for our purposes.33

It is a central presupposition of my view that we can make robust statistical

predictions concerning any process, random or not.34 One of the hallmarks of

random processes is that these are the best reliable predictions we can make,

since the expectations of the variables whose values describe the character-

istics of the event are well defined even while the details of the particular

outcomes are obscure prior to their occurrence. This is crucial for the

many scientific applications of randomness: random selections are unpredict-

able with respect to the exact composition of a sample (the event), but the

overall distribution of properties over the individuals in that sample is sup-

posed to be representative of the frequencies in the population as a whole.

In random mating, the details of each mating pair are not predictable, but

the overall rates of mating between parents of like genotype are governed by

the frequency of that genotype in the population.35

33 Further evidence for this claim is provided by the fact that probabilistic independence is an all-

or-nothing matter, and taking this as the definition of randomness would have the unfortunate

effect of misclassifying partially unpredictable processes as not random.
34 Is there ever randomness without probabilistic order? Perhaps in Earman’s space invader case,

it is implausible to think that any prior probability for the space invasion is reasonable—not

even a zero prior. The event should be completely unexpected, and should not even be included

in models of the theory. This would correspond to the event in question not even being part of

the partition that the prediction function yields a distribution over. This, as it stands, would be

a counterexample to my analysis, since that analysis requires a probability distribution over

outcomes, and if there is no distribution, the event is trivially not random. I think we can amend

the definition so as to capture this case; add a clause to the definition of predictability requiring

there to be some prediction function that takes the event into consideration.
35 This illuminates the common ground my proposal shares with Martin-Löf’s statistical testing

view of randomness. If we take the patterns to be provided by some potentially predictive

theory, then failing statistical tests is equivalent to being unpredictable with respect to that

theory, for the theory provides no resources to reject the hypothesis that the only structure

governing the sequence is pure chance. But a potentially predictive theory will not have infin-

itely many concurrent predictions for a single predictor or group of predictors, so no theory can

provide the resources for full Martin-Löf-randomness and still remain predictive, except to

creatures with computational abilities quite unlike our own. Nevertheless, the spirit of the

statistical test proposal remains, yet relativized to a set of statistical tests that can be actually

applied to yield substantive information about the genesis and behaviour of a random process.
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I wish to emphasize again the role of theories. An event is random just if it

is unpredictable, that is, if the best theoretical representation of that event

relative to a given predictor leaves the probability of that event unchanged

when conditioned on the current state and the laws of the theory. We should

give a naturalized account of the best theory relative to a predictor: that

theory should be the one that maximizes fit between the epistemic and com-

putational capacities of the predictors and the demands on those capacities

made by the theory, where those capacities are perfectly objective features of

the predictors. An event is random, then, just in case these objective features

of the agents in question render that event unpredictable.36 This means, there-

fore, that while ascriptions of randomness are sensitive to the requirements of

the agents who are using the concept and making the ascriptions, they are

nevertheless objectively determined, by the theories it is (objectively) appro-

priate for those agents to utilize. Randomness is thus an extrinsic property

of events, dependent on properties of agents and the theories they use. This

observation will become important below (Section 6.3), when discussing

whether randomness as I have defined it is subjective.

6.1 Clarification of the definition of randomness

The definition of randomness might be further clarified by close examination

of a particularly good example that Tim Williamson proposed to me.

Williamson’s example was as follows: let us suppose that I regularly play

chess against an opponent who is far superior to me. Not only does he beat

me consistently, he beats me without my being aware at the time of his strat-

egy and without my being able to anticipate any but the most obvious of his

moves. I cannot predict what his moves will be. Prima facie, it may appear

that my proposal is committed to classifying his moves as random; if true,

that would pose a serious problem for the view.

Thankfully, there exist at least three lines of response to this example, each

of which illuminates the thesis that randomness is unpredictability. First, note

that unpredictability is theory relative. It is not only the statistical aspects

(i.e. actual frequencies of outcomes) of a phenomenon which dictate how it

will be represented by theory; if I am convinced that my opponent is an agent

who reasons and plans, no theory I will accept will have the consequence that

his chess-playing behaviour is entirely random. Indeed, we will never regard

these apparently probabilistic outcomes as indicative of genuine probabilistic

36 Of course, if agents know their epistemic limitations, they may know of deterministic theories

that can correctly account for the phenomena but whose use lies outside their capabilities. That

is just one additional reason why randomness can correctly be assigned even in cases of perfect

determinism.
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independence (since genuine probabilities have a modal aspect not exhausted

by the actual statistics). What we have in this case is not sufficient for

randomness because we will accept neither that the goal-directed activities

of a rational agent are genuinely unpredictable nor that those behaviours

are really probabilistically independent of preceding states: I certainly regard

my opponent as being in a position to predict his own behaviour, and to

predict it on the basis of the current state of play. Of course, in this situation,

the theories that are directly available to me are not sufficient to enable me to

predict that behaviour.

This leads to consideration of a second point. It is essential to note that

judgements of predictability will typically be made by an epistemic or scient-

ific community and not a particular individual. It is communities that accept

scientific theories, and the capabilities and expertise of each member of

the community contribute to its predictive powers. This is because the set

of available prediction functions in a given theory does not reflect merely

personal idiosyncrasies in understanding the theory, but instead reflects the

intersubjective consensus on the capabilities of that theory. Since the relevant

bearer of a predictive ability is an epistemic community, a phenomenon is

judged random with respect to a community of predictors, not an individual.

My chess-playing opponent and I are presumably members of the same sci-

entific community and the theories we jointly accept make his chess playing

predictable—he knows the theory while I accept his authority with respect to

knowing it and judge his play predictable, even if not by me. This serves to

reinforce the point that the ‘availability’ to me of a theory, or of a prediction

function, is not a matter of what is in my head but rather of what theories

count as normative for my judgements, given the kind of person I am and

the kind of community I inhabit. One could, of course, define a concept of

‘personal unpredictability’ to capture those uses of the term ‘unpredictable’

that reflect the ignorance and incapacity of a particular individual. But—and

this merely underscores the importance of the communitarian concept—such

a personal unpredictability would have little or no claim to capture the

central uses of the term ‘unpredictable’ nor any further useful application

in the analysis of randomness or other concepts.

A third response also undermines the claim that this chess player’s moves

are unpredictable. For this is exactly the kind of situation where one might be

frequently surprised by the moves that are made, but one can in retrospect

assimilate them to an account of the opponent’s strategy. That is, while play-

ing I operated with a theory that was not sufficient to make accurate pre-

dictions concerning my opponent’s behaviour; in retrospect, and upon due

consideration of his play, I can come to develop my understanding of that

play, and hence develop better accounts of the nature of his chess playing.

I can then realize that his behaviour was not random, though it may have
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appeared random at that time. Moreover, it may have been (internally) epi-

stemically acceptable for me at the time to judge his behaviour as random

(setting aside for the time being the preceding two responses), though in ret-

rospect I can see that I had no robust external warrant for that judgement.

This last response illustrates a point that may not have been clear from the

foregoing discussion: no mention was made, in the definition or its glosses, of

any temporal conditions on the appropriateness of predictive theories for

agents. That is, randomness is relative to the best theory of some phenom-

enon, where which theory counts as best is partially dictated by the cognitive

and pragmatic parameters appropriate for some community of agents. It does

not, therefore, depend on whether those agents are actually in possession of

that theory. Obviously, it would be inappropriate to criticize past predictors

on the grounds that they made internally warranted judgements of random-

ness that were false by the lights of theories we currently possess. On the other

hand, it is true that they would deserve censure had it been the case that they

were in possession of the best theory of some phenomenon and had made

judgements of predictability that were at variance with that theory. That is

the sense in which theory-relative judgements of predictability are supposed

to be normative for agents of the kind in question. As such, it is clear that

contingencies of ignorance should not lead us to count something as random;

it is a kind of (pragmatically/cognitively/theoretically) necessary lack of pre-

dictive power that makes an event random. To turn back to the post facto

analysis of my opponent’s play: while playing I made a (perhaps) warranted

judgement that it was random. But that judgement was at best preliminary

and defeasible, for it is clear that it would be in principle possible for me to

come to possess (or to defer to an expert’s possession of) a good predictive

theory of that play, and hence to recognize the sense behind what appeared

wrongly to be random play. By contrast, events that are genuinely random do

not contribute in this way further illumination of the process of which they

are outcomes: no after-the-fact analysis of a random event will make greater

predictive power available to me or my epistemic brethren. In one sense this is

a simple corollary of the fact that the Bernoulli process is the paradigm ran-

dom process, and outcomes in such a process are probabilistically, and hence

predictively, independent. But in another it provides an important illustration

of the application of the definition of randomness—judgements of random-

ness can be incorrect though warranted, and outcomes of such a process may

well serve as evidence undermining the warrant for the judgement.37

37 Williamson’s example does point to a difficulty, however. Consider the hypothesis that our

world is run by an omnipotent and completely rational deity, whose motives and reasons are

quite beyond our ken, and hence our world appears quite capricious and arbitrary. If we accept

such a theory, we must accept both that (i) the events in the world have reason and purpose
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6.2 Randomness and probability

One may be wondering what kind of interpretation of probability goes into

the definition.38 Obviously, credences play a central role in attributions of

randomness, as it is only by way of updating credences that theories yield

actual predictions. As such, as long as an agent has credences that could be

rationally updated in accordance with the best theory for the community of

which that agent is a member—that is, whose credence function is suitably

deferential to expert credence functions (van Fraassen [1989], sections 8.4

and 8.5)—we have the minimum necessary ingredients for potentially correct

judgements of randomness. Actual judgements of randomness approach

correctness as the actual updating of credences more closely approximates

the updating that would be licensed by possession of the best theory. How-

ever, there is a further question concerning whether there are other kinds of

objective probabilities (‘chances’) that are disclosed by the theories in ques-

tion and count as normative for the credences of the predictor, via something

like the Principal Principle (Lewis [1980]). I hope that the account is neutral

on this important issue, and I hope that no matter which account (if any)

turns out to be correct, it can simply be slotted into this interpretation of

randomness.

In fact, the only requirement that my account of randomness makes on an

interpretation of probability is that an account must be given of the content

of probabilistic models in scientific theories. That is, the interpretation must

explain what feature of objective probability allows it to influence credence

and to shape expectations concerning the way the world will turn out, given

that all the agent does is accept some theory which features probabilistic

models.39 Most naturally, it might be thought that an objective account of

probability could meet this demand, but subjectivist accounts must also be

able to do so, although perhaps less easily. Perhaps the only account that

the view is not compatible with is von Mises’ original frequency view: since

he includes randomness as part of the definition of probability, on pain of

behind them, being the outcomes of a process of rational deliberation by a reasonable agent,

and (ii) that the best theory of such events that we might ever possess will classify them as

random. This seems to me a genuine problem (though there is some question about its signi-

ficance). One way around it might be to simply add a condition to the definition that, if the event

in question is the outcome of some process of rational deliberation, it cannot be random,

no matter how unpredictable it is. This proposal seems to avoid the problem only by stipu-

lation. I prefer, therefore, to suggest that any event which can be rationalized (as the act of a

recognizably rational agent) will be predictable and that, therefore, if this deity’s actions are

genuinely unpredictable, they are not rationalizable, and I propose cannot be seen as purposive

in the way required for the example to have any force.
38 Dorothy Edgington urged me to address this concern.
39 Such a demand is tantamount to requiring that the interpretation of probability be able

to answer what van Fraassen ([1989], p. 81) calls the ‘fundamental question about chance’,

which I take to be an uncontroversial but difficult standard to meet.
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circularity he cannot use this definition of randomness, which already

mentions probability.

Von Mises’ discussion of randomness was motivated by his desire to find

firm grounds for the applicability of probability to empirical phenomena.

I completely agree: random phenomena are frequently characterized by the

fact that they can typically be given robust probabilistic explanations,

particularly in terms of the probabilistic independence of certain events and

certain initial data. But even if the grounds we have for applying probabilistic

theories lie in our own cognitive incapacities, that does not hold for the

probabilities postulated by those theories. Just because predictability is

partially epistemic, and hence randomness is partially epistemic, does not

mean that the probability governing the distribution of predictions is

epistemic. So our cognitive capacities and pragmatic demands lead to the

suitability of treating phenomena as random, that is, modelling them prob-

abilistically. Our epistemic account of randomness therefore provides a

robust and novel explanation of the applicability of probabilistic theories

even in deterministic cases, without having to mount the difficult argument

that there are objective chances in deterministic worlds, and without sacrifi-

cing the objectivity of genuine probability assignments by adopting a whole-

sale subjectivist approach to probability. Randomness then has important

metaphysical consequences for the understanding of chance, as well as

being internally important to the project of understanding scientific theories

that use the concept. Our epistemic stance mandates the use of probabilistic

theories; the connection between the probabilities in those theories and

the credences implicit in our epistemic states is by no means direct and

straightforward.

6.3 Subjectivity and context sensitivity of randomness

I have emphasized repeatedly that predictability is in part dependent on

the properties of predictors. What one epistemic agent can predict, another

with different capacities and different theories may not be able to predict.

Laplacean gods presumably have more powerful predictive abilities than we

do; perhaps for such gods, nothing is random. Or consider a fungus, with

quite limited representational capacities and hence limited predictive abilities.

Almost everything is random for the fungus; it evolved merely to respond to

external stimuli, rather than to predict and anticipate. It may appear, then,

that judgements of predictability, and hence of randomness, must be to some

extent subjective and context sensitive. There is a worry that this subjectivity

may seem counterintuitive. It may also seem quite worrying that a subjective

concept may play a role in successful scientific theorizing. I wish now to

defuse these worries.
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First, it is a consequence of my remarks in Section 6.1 that two epistemic

agents cannot reasonably differ merely over whether some process is unpre-

dictable or random. If they rationally disagree over the predictability of some

phenomenon, they must be members of different epistemic communities, in

virtue of adopting different theories or having different epistemic capacities

or pragmatic goals. It should be quite unexceptional that agents who differ in

their broader theoretical or practical orientation may differ also in their

judgements of the predictability of some particular process.

Second, there will be reasonably straightforward empirical tests of the

predictive powers of that predictor who claims the process is not random.

This disagreement will then be resolved if one takes these empirical results

to indicate which theory more correctly describes the world, and which,

therefore, deserves to be adopted as the best predictive theory.

Given these qualifications, it might seem misleading to label the present

account ‘subjective’.40 For, given values for the parameters of precision

of observations and required accuracy of computations, and given a back-

ground theory, whether a process is predictable or not follows immediately.

When we recognize that these parameter values do not vary freely and without

constraint from agent to agent but are subject to norms fixed by the commu-

nities of which agents are a part, it seems that rational agents cannot easily

disagree over randomness, and that purely personal and subjective features

of those agents do not play a significant role in judgements of randomness.

It does not seem quite right to call predictability ‘subjective’ simply because

agents with opposed epistemic abilities and commitments may reasonably

disagree over its applicability. And insofar as we remain content to classify

predictability as subjective, these observations make it clear that it is a quite

unusual form of subjectivity, for randomness and predictability are clearly

not applied on a purely personal basis, arbitrarily and without rational

constraint, and as such are capable of having further scientific significance.

But in this sense few concepts are truly subjective. Like other folk monadic

properties, randomness can be analysed as a relation with the other terms

fixed contextually. Consider so-called ‘subjective probability’, which can be

analysed either as a subjective property of events or as grounded in an object-

ive relation between an event and an agent with certain objective behavioural

dispositions. In the case of predictability and randomness, it is features and

capacities of the predictor that fill in the ‘missing’ places of the relation.

Given that, it is a matter of choice whether we decide to analyse the term

as a predicate with subjective aspects or as a relation. I would be inclined to

claim that randomness is a partially (inter-)subjective property, simply to

40 John Burgess made this point.
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make clear where my proposal might fall in a taxonomy of analyses of ran-

domness, but nothing of significance really turns on this. In a similar fashion

we typically use the standard subjective analysis of probability in order to

make the semantics go more smoothly and to make the connection with past

uses of the term clearer.

The context sensitivity of randomness is more intriguing. Here, the possib-

ility arises that in a given context the relevant theoretical possibilities

are delimited by a theory that in other contexts would be repudiated as

inadequate. There are, I have argued (Section 4.3), contexts where thermo-

dynamic reasoning is appropriate, even though that theory is false. In such

contexts, therefore, a judgement of randomness may be appropriate, even

though the phenomenon in question might be predictable using another the-

ory. Perhaps when stated so baldly the context sensitivity of randomness

might seem implausible. However, randomness and predictability are only

context sensitive in virtue of the fact that theory acceptance is very plausibly

context sensitive. As such, no special problem of context sensitivity arises

for randomness that is not shared with other theory-dependent concepts.

Furthermore, the natural alternative would be an invariantist account of

randomness. Such an account would not be adequate, primarily because

one would have to give a theory-independent account of randomness, and

this would be manifestly inadequate to explain how the concept is used in

diverse branches of scientific practice (Section 1).

For instance, in statistical testing we frequently wish to design random

sequences so that they pass a selected set of statistical tests. In effect, we

wish to use an effectively predictable phenomenon to produce sequences

that mimic natural unpredictability by being selective about which resources

(which statistical tests) we shall allow the predicting agents to use. Dembski

([1991]) sees a fundamental split here between a deterministic pseudo-

randomness and genuine randomness. I reject this split: accepting it would

involve a significant distortion of the conceptual continuity between random-

ness in deterministic theories and randomness in indeterministic theories. We

certainly wish to explicitly characterize some ordered and regular outcome

sequences as those a genuinely random process should avoid.

But in selectively excluding certain non-random sequences we do not

thereby adopt some new notion of ‘pseudo-randomness’ that applies to the

sequences that remain. Those remaining sequences play precisely the theor-

etical role that random sequences play; in particular, they license exactly

the same statistical inferences. Better, then, to recognize that the appropriate

theory for that phenomenon, in that theoretical context, classifies those

phenomena as genuinely random. Randomness by design, then, is random-

ness that arises from our adoption of empirically successful theories; which is

to say, randomness simpliciter.
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7 Evaluating the analysis

I think the preceding section has given an intuitively appealing characteriza-

tion of randomness. The best argument for the analysis, however, will be if it

is able to meet the demands we set down at the beginning of Section 2 and if it

is capable of bearing the weight of the scientific uses to which it will be put.

I maintain that unpredictability is perfectly able to support the explanatory

strategies we examined in Section 1. In indeterministic situations, phenomena

will be unpredictable at least partly in virtue of that indeterminism.

Randomness, therefore, shares in whatever explanatory power that indeterm-

inism demonstrates in those cases. In deterministic cases, our account of the

explanatory success of randomness must ultimately rest on something else,

such as the pragmatic or epistemic features of agents who accept the prob-

abilistic theories. Note that the proximate explanation of the explanatory

success of randomness, deriving from unpredictability, remains unified across

both the deterministic and indeterministic situations—a desirable feature of

my proposal. Our cognitive capacities are such that, in many cases, prediction

of some phenomenon can be achieved only by exceedingly subtle and devious

means. As such, these phenomena are best treated as a random input to the

system. The fact that these models are borne out empirically vindicates our

methodology; for example, we did not have to show that rainfall was genu-

inely completely ontically undetermined in order to do good science about

the phenomenon in question. This is similarly the case with random mating,

weather prediction, noise and error correction, and coin tossing. In random

sampling (and game theory), we merely need to use processes unpredic-

table by our opponents or by the experimental subjects to get the full benefits

of the statistical inference: if they are forced to treat the process as random,

then any skill they demonstrate in responding to that process must be due to

purely intrinsic features of the trials to which they are responding.

The defining feature of the scientific theories at which we looked in

Section 1 is the presence of exact and robust statistical information despite

ignorance about the precise constitution of the individual events. Rainfall

events have a definite probability distribution, but precisely when and

where it rains is random. If this is the hallmark of random phenomena,

then we can easily see why the particular probabilistic version of unpre-

dictability we used to define randomness is appropriate. Indeed, in paradigm

cases, unpredictability (and hence randomness) involves the probabilistic

independence of some predicted event and the events that constitute the

resources for the prediction. In such cases, one can easily see how the infer-

ential strategies we have identified are legitimate. With respect to random

sampling, it is the probabilistic independence of the choice of test subjects

from the choice of test regimes that allows for the application of significance
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tests on experimentally uncovered correlations. In the case of random mating,

the fact that mating partner choice is probabilistically independent of

the genetic endowment of that partner that allows the standard Hardy–

Weinberg law to apply. It is relaxation of this independence requirement

that makes for non-random mating. This probabilistic aspect of randomness

and unpredictability is crucial to understanding the typical form of random

processes and their role in understanding objective probability assignments

by theories.

How does our analysis of randomness as unpredictability do on our four

demands (Section 2)?

1. Statistical testing. Sequences that are unpredictable to an agent can be

effectively produced, since those sequences do not need to have some

known genuine indeterminacy in their means of production in order to

ground the statistical inferences we make using them. Subjecting the pro-

cess to a finite battery of statistical tests designed to weed out sequences

that are predictable by standard human subjects is, while difficult, never-

theless possible. Correlations between the test subjects and the random

sequence can still occur by chance, but since there can be no a priori

guarantee that could ever rule out accidental correlations even in the

case of genuinely indeterministic sequences, no account of randomness

should wish to eliminate the possibility. We should rule out only predict-

able sources of correlation other than the one we wish to investigate.

2. Finite randomness. Single events, as well as finite processes, can be

unpredictable.

3. Explanation and confirmation. A probabilistic theory that classifies

some process as random is, as a whole, amenable to incremental confirma-

tion (Howson and Urbach [1993], chapter 14). Moreover a particular stat-

istical hypothesis which states that the process has an unpredictable

character can also be incrementally confirmed or disconfirmed, as the

evidence is more or less characteristic of an unpredictable process. A spe-

cial case is when the phenomenon is predicted better than chance; this

would be strongly disconfirmatory of randomness. When confirmed,

there seems no reason why such theories or hypotheses cannot also possess

whatever features make for good explanations; they can surely form part

of excellent statistical explanations for why the processes exhibit the char-

acter they do. We have gone to some lengths above to show that unpre-

dictability can fill in quite adequately for randomness in typical uses;

there seems no reason why it could not effectively substitute in explana-

tions as well.

4. Determinism. Unpredictability occurs for many reasons independent of

indeterminism and is compatible with determinism. Thus, we can still
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have random sequences in deterministic situations, and as part of theories

that supervene on deterministic theories. The key to explaining why

randomness and indeterminism seem closely linked is that the theories

themselves should not be deterministic, even if they are acceptable

accounts of ontically deterministic situations.

Analysing randomness as unpredictability, I maintain, gives us the features

that the intuitive concept demands, without sacrificing its scientific applicab-

ility. It certainly does better than its rivals; even without them, it captures

enough of our intuitions to truly deserve the name. The final and most

demanding test would be to see how the account works in particular cases:

how, for example, to cash out the hypothesis that the mate of a female

Cambrian trilobite was chosen at random from among the male members

of her population.41 In outline, my proposal is that a correct account of

trilobite mating would show that there is no way for us to predict (retrodict)

better than chance which mate would be (was) chosen, when knowledge con-

cerning the male individuals is restricted to their heritable properties (which

of course are the significant ones in a genetic context). This entails that there

is no probabilistic dependence between possession of a certain phenotype and

success in mating. (Of course, given extra knowledge, such as the knowledge

concerning which male actually did succeed in mating with this individual, or

given facts about location or opportunity, we can predict better than chance

which male would be successful; these properties are not genetic and do not

conflict with the assumption of random mating.) This account of how to

apply the theory must remain a sketch, but I hope it is clear how the proposal

might apply to other cases.
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