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In this Chapter we show how general results in Chapters 3, 4 and 6 can
sometimes be strengthened when symmetry is present. Many of the ideas
are just simple observations. Since the topic has a “discrete math” flavor
our default convention is to work in discrete time, though as always the
continuous-time case is similar. Note that we use the word “symmetry” in
the sense of spatial symmetry (which is the customary use in mathematics
as a whole) and not as a synonym for time-reversibility. Note also our use
of “random flight” for what is usually called “random walk” on a group.

Biggs [6] contains an introductory account of symmetry properties for
graphs, but we use little more than the definitions. I have deliberately not
been overly fussy about giving weakest possible hypotheses. For instance
many results for symmetric reversible chains depend only of the symmetry
of mean hitting times (7), but I haven’t spelt this out. Otherwise one can
end up with more definitions than serious results! Instead, we focus on
three different strengths of symmetry condition. Starting with the weakest,
section 1 deals with symmetric reversible chains, a minor generalization
of what is usually called “symmetric random walk on a finite group”. In
the graph setting, this specializes to random walk on a Cayley or vertex-
transitive graph. Section 2 deals with random walk on an arc-transitive
graph, encompassing what is usually called “random walk on a finite group
with steps uniform on a conjugacy class”. Section 3 deals with random walk
on a distance-regular graph, which roughly corresponds to nearest-neighbor
isotropic random walk on a discrete Gelfand pair.

This book focuses on inequalities rather than exact calculations, and the



limitation of this approach is most apparent in this chapter. Group repre-
sentation theory, though of course developed for non-probabilistic reasons,
turns out to be very well adapted to the study of many questions concern-
ing random walks on groups. I lack the space (and, more importantly, the
knowledge) to give a worthwhile treatment here, and in any case an account
which is both introductory and gets to interesting results is available in Di-
aconis [12]. In many concrete examples, eigenvalues are known by group
representation theory, and so in particular our parameters 79 and 7y are
known. See e.g. section 2.1. In studying a particular example, after investi-
gating eigenvalues one can seek to study further properties of the chain by
either
(i) continuing with calculations specific to the example; or
(ii) using general inequalities relating other aspects of the chain to 7 and
T0-
The purpose of this Chapter is to develop option (ii). Of course, the more
highly-structured the example, the more likely one can get stronger explicit
results via (i). For this reason we devote more space to the weaker setting
of section 1 than to the stronger settings of sections 2 and 3.

xxx scattering of more sophisticated math in Chapter 10.

1 Symmetric reversible chains

1.1 Definitions

Consider an irreducible transition matrix P = (p;;) on a finite state space
I. A symmetryof Pisal—1map~v:I — I such that

P~(i)v() = Pij Tor all ¢, 7.

The set I' of symmetries forms a group under convolution, and in our (non-
standard) terminology a symmetric Markov transition matrix is one for
which I' acts transitively, i.e.

for all 4,5 € I there exists v € I' such that v(i) = j.

Such a chain need not be reversible; a symmetric reversible chain is just a
chain which is both symmetric and reversible. A natural setting is where [ is
itself a group under an operation (7,7) — ¢j which we write multiplicitively.
If p is a probability distribution on I and (Z;;¢ > 1) are i.i.d. [-valued with
distribution g then

)(t = $0Z122...Zt (1)



is the symmetric Markov chain with transition probabilities
pij = p(i~ * J)
started at xg. This chain is reversible iff

u(i) = pu(i~t) for all s. (2)

We have rather painted ourselves into a corner over terminology. The
usual terminology for the process (1) is “random walk on the group /” and
if (2) holds then it is a

“symmetric random walk on the group 1”7 . (3)

Unfortunately in this phrase, both “symmetric” and “walk” conflict with
our conventions, so we can’t use the phrase. Instead we will use “random
flight on the group I” for a process (1), and “reversible random flight on
the group I” when (2) also holds. Note that we always assume chains are
irreducible, which in the case of a random flight holds iff the support of u
generates the whole group /. Just keep in mind that the topic of this section,
symmetric reversible chains, forms a minor generalization of the processes
usually described by (3).

On an graph (V,¢&), a graph automorphism is a1l —1map v:V — V
such that

(v(w),v(v)) € Eiff (w,v) € €.

The graph is called vertez-transitive if the automorphism group acts tran-
sitively on vertices. Clearly, random walk on a (unweighted) graph is a
symmetric reversible chain iff the graph is vertex-transitive. We specialize
to this case in section 1.8. A further specialization is to random walk on
a Cayley graph. If G = (g¢;) is a set of generators of a group I, which we
always assume to satisfy

g € G implies g7 € G
then the associated Cayley graph has vertex-set I and edge-set

{(v,vg):v el geG}.

A Cayley graph is vertex-transitive.

Finally, recall from Chapter 3 yyy that we can identify a reversible chain
with a random walk on a weighted graph. With this identification, a sym-
metric reversible chain is one where the weighted graph is vertex-transitive,
in the natural sense.



1.2 This section goes into Chapter 3

Lemma 1 For an irreducible reversible chain, the following are equivalent.
(a) P(X;=14)=Pj(X:=j),4,5el,t>1
(b) PZ'(T]‘ =t)= Pj(TZ’ =t),i,j€l,t>1.

Proof. In either case the stationary distribution is uniform — under (a), by
letting ¢ — oo, and under (b) by taking ¢t = 1, implying p;; = pj;. So by
reversibility P(X; = j) = Pj(Xy = 1) for i # j and t > 1. But recall from
Chapter 2 Lemma yyy that the generating functions G;(z) = 32, Pi(X; =
§)z0 and Fy(2) = 3, PiTy = j)2’ satisfy

Fij = Gij/Gij- (4)
For i # j we have seen that GG;; = G;, and hence by (4)
Fij = F; iff Gj; = G,
which is the assertion of Lemma 1.

1.3 Elementary properties

Our standing assumption is that we have an irreducible symmetric reversible
n-state chain. The symmetry property implies that the stationary distribu-
tion 7 is uniform, and also implies

Pi(X;=1i)=Pj(X¢=7),i,jel,t> 1. (5)
But by Chapter 3 Lemma yyy, under reversibility (5) is equivalent to
Pi(T;=t)=Pj(T; =1t),i,j€I,t> 1. (6)
And clearly (6) implies
E;T; = E;T; for all i,j. (7)

We make frequent use of these properties. Incidently, (7)is in general strictly
weaker than (6): van Slijpe [36] p. 288 gives an example with a 3-state
reversible chain.

We also have, from the definition of symmetric, that F,T; is constant in

1, and hence
E.T;, =1y for all <. (8)



So by Chapter 4 yyy
™ < 47 (9)

The formula for F,T; in terms of the fundamental matrix (Chapter 2 yyy)
can be written as

To/n_l—l—z (X =1) —1/n). (10)

Approximating ¢ by the first few terms is what we call the local transience
heuristic. See Chapter xxx for rigorous discussion.
Lemma 2 (i) ET; > TP , JF# .

(i1) max; ; E;T; < 279

Proof. (i) This is a specialization of Chapter 6 xxx.
(ii) For any 14,7, k,

E’Z'Tj < FE; T + EkT]’ = FE, T, + Eka.

Averaging over k, the right side becomes 2.
Recall that a simple Cauchy-Schwartz argument (Chapter 3 yyy) shows
that, for any reversible chain whose stationary distribution is uniform,

Pi(Xyt = §) <\ Pi(Xae = i) Pi( Xt = 5).

So by (5), for a symmetric reversible chain, the most likely place to be after
2t steps is where you started:

Corollary 3 P;( X3 =j) < Pi(Xot = 1), foralli,j,e I,t> 1.

This type of result is nicer in continuous time, where the inequality holds
for all times.

1.4 Hitting times

Here is our first non-trivial result, from Aldous [3].

Theorem 4 Suppose a sequence of symmetric reversible chains salisfies
T9/T0 — 0. Then

(a) For the stationary chain, and for arbitrary j, we have T}/ LA £
and var (1;/19) — 1, where £ has exponential(1) distribution.

(b) max; ; E;T; /7 — 1.

(c) If (in, jn) are such that E; T; |19 — 1 then P; (T}, /70 € -) e



Note that, because 7, < 71 +1 and 79 > (n—1)?/n, the hypothesis “ry/m9 —
0” is weaker than either “r9/n — 0”7 or “ry /79 — 07.

Part (a) is a specialization of Chapter 3 Proposition yyy and its proof.
Parts (b) and (c) use refinements of the same technique. Part (b) implies

if /79 — 0 then 7* ~ 27.

Because this applies in many settings in this Chapter, we shall rarely need
to discuss 7* further.

xxX give proof

In connection with (b), note that

ET, < T1(2) + 19 (11)
by definition of 7'1(2) and vertex-transitivity. So (b) is obvious under the
slightly stronger hypothesis 7y /79 — 0.

Chapter 3 Proposition yyy actually gives information on hitting times
T4 to more general subsets A of vertices. Because (Chapter 3 yyy) E T4 >

2
%L, we get (in continuous time) a quantification of the fact that T4
has approximately exponential distribution when |A| < n/75 and when the
chain starts with the uniform distribution:

Ton

A -2
sup |Pr(Ta > t) —exp(—t/FE:Ta)| < — ( _ U) ]
t Al n

1.5 Cover times

Recall the cover time C' from Chapter 6. By symmetry, in our present setting
FE;C doesn’t depend on the starting place 7, so we can write FC'. In this
section we combine results on hitting times with various forms of Matthews
method to obtain asymptotics for cover times in the setting of a sequence of
symmetric reversible chains. Experience, and the informal argument above
(15), suggest the principle

EC ~ mplogn, except for chains resembling random walk on the n-cycle .

(12)
The results in this chapter concerning cover times go some way towards
formalizing this principle.

Corollary 5 For a sequence of symmetric reversible chains

(a) ll‘jﬁ) nlogn < EC < (24 o(1))rglog n, where p* = max;4; p; ;.




(b) If 9/10 — 0 then EC < (14 o(1))mlogn.
(c) If 79/T0 = O(n=P) for fized 0 < 3 < 1 then

EC > (8 —o0(1))mglogn.

Proof. Using the basic form of Matthews method (Chapter 2 yyy), (a)
follows from Lemma 2 and (b) from Theorem 4. To prove (c), fix a state j
and ¢ > 0. Using (11) and Markov’s inequality,

(2)
m{i: BET; <(1—¢)rp} < K M a, say.
ETo

So we can inductively choose [a™!] vertices 7 such that
E, T, >(1—¢e)re; 1<k<I< [a_lw.
By the extended form of Matthews method (Chapter 6 Corollary yyy)
EC > (1 -¢)rohpa-17-1-

From Chapter 4 yyy, 71 < m2(14logn) and so the hypothesis implies 7 /79 =
O(n*=P). So the asymptotic lower bound for EC becomes (1 — &)7o(3 —
¢)logn, and since ¢ is arbitrary the result follows.

Since the only natural examples with 71 /79 /4 0 are variations of random
walk on the n-cycle, for which EC = O(rg) without the “logn” term, we
expect a positive answer to

Open Problem 6 [n the setting of Corollary 5, is EC' < (14 o(1))mglogn
without further hypotheses?

Here is an artificial example to illustrate the bound in (c).
Example 7 Two time scales.

Take my = my(n),my = mg(n) such that my; ~ n' =P mimy ~ n. The
underlying idea is to take two continuous-time random walks on the complete
graphs K,,, and K,,,, but with the walks run on different time scales. To set
this up directly in discrete time, take state space {(z,y):1 <z <my,1 <
y < mgy} and transition probabilities

1
amq log mq

LY Fy

(z,y) — (2',y) chance (my —1)7" (1 —

— (ﬁ,y/) chance (mg - 1)_1m



where a = a(n) | oo slowly. It is not hard to formalize the following analy-
sis. Writing the chain as (X¢,Y;), the Y-component stays constant for time
O(amq log my), during which time every z-value is hit, because the cover
time for K,,, is ~ mj log m;. And mglog my jumps of the Y-component are
required to hit every y-value, so

EC ~ (mglogmgy) X (amq logmy) ~ an(log my)(logmy). (13)

Now 1 ~ amqlogmq, and because the mean number of returns to the
starting point before the first Y-jump is ~ alogm,; we can use the local
transience heuristic (10) to see 79 ~ (alogm) xn. So 13/ ~ my/n ~ 15,
and the lower bound from (c) is

(8 —o(1))(alogm)nlogn.

But this agrees with the exact limit (13), because my ~ n”.

We now turn to sharper distributional limits for C'. An (easy) back-
ground fact is that, for independent random variables (Z;) with exponential,
mean 7, distribution,

max(Z1,...,7%,) — Tlogn d

T

where 77 has the extreme value distribution
P(n<z)=-exp(—e™"), —00 < & < 0. (14)

Now the cover time C' = max; T; is the maz of the hitting times, and with
the uniform initial distribution the 7T;’s have mean 75. So if the T}’s have
approximately exponential distribution and are roughly independent of each
other then we anticipate the limit result

C -1yl

Y "To08n d (15)
To

Theorem 4 has already given us a condition for limit exponential distribu-

tions, and we shall build on this result to give (Theorem 9) conditions for

(15) to hold.

The extreme value distribution (14) has transform

Eexp(fn)=T(1-16), —co <8 < 1. (16)



Classical probability theory (see Notes) says that to prove (15) it is enough
to show that transforms converge, i.e. to show

Eexp(8C/79) ~ n7T(1 - 0), —0 < 0 < 1. (17)

But Matthews method, which previously we have used on expectations, can
just as well be applied to transforms. By essentially the same argument as
in Chapter 2 Theorem yyy, Matthews [29] obtained

Proposition 8 The cover time C in a not-necessarily-reversible Markov
chain with arbitrary initial distribution satisfies

I(n+ DI/ f(5)) I(n+ DI(/f(8))
I(n+1/£45)) I(n+1/1%(8))

< Eexp(BC) <

where

fH(B) = I?;ZXEZ' exp(B8T;)
f«(B) = r]n;gl E; exp(BT}).

Substituting into (17), and using the fact

I'(n+1)
I'n4+1-s,)

~n’asn— 0o, S, — 8

we see that to establish (15) it suffices to prove that for arbitrary j, # i,
and for each fixed —c0 < 6 < 1,
1

Theorem 9 For a sequence of symmetric reversible chains, if
(a) min;z; E;T; = 1o(1 — o(1))
(b) T2/T0 =0 (@)

then
C —mlogn 4

To

Proof. By hypothesis (a) and Theorem 4 (b,c), for arbitrary j, # i, we
have P; (Tj, /70 € +) % ¢, This implies (18) for # < 0, and also by Fatou’s



lemma implies liminf, E; exp(071;, /1) > llfefor 0 < 6 < 1. Thus it is
sufficient to prove

14 0(1)

_0,0<0<1. (19)

m;%x E;exp(01;/70) <
YE

The proof exploits some of our earlier general inequalities. Switch to contin-
uous time. Fix 8 > 0. By conditioning on the position at some fixed time
87

Eiexp(B(T; — 8)7) < max(nPi(X, = 7)) x E,exp(87T}).
By Corollary 3 the maz is attained by z = 7, and so
E;exp(0T;) < (nPy(X, = 1)e’*) x E,exp(6T;).

We now apply some general inequalities. Chapter 4 yyy says nP;(X; = 1) <
1+ nexp(—s/m). Writing «; for the quasistationary distribution on {j}°,
Chapter 3 (yyy) implies Pr(T; > t) < exp(—t/FE,,;T;) and hence

1

F, TH)< ———.
eXp(ﬁ ]) — 1_/@Ea]Tj

But Chapter 3 Theorem yyy implies £, T; < 79 4+ 2. So setting 3 = 6/,
these inequalities combine to give

1
1—0(1—|—T2/T0)'

E;exp(0T;/10) < (14 nexp(—s/12)) X exp(fs/19) x

But by hypothesis (b) we can choose s = o(1g) = Q(72logn) so that each
of the first two terms in the bound tends to 1, establishing (19). Finally,
the effect of continuization is to change C by at most O(v/EC), so the
asymptotics remain true in discrete time.

Remark. Presumably (c.f. Open Problem 6) the Theorem remains true
without hypothesis (b).

In view of Chapter 6 yyy it is surprising that there is no obvious example
to disprove

Open Problem 10 Let V denote the last state to be hit. In a sequence of
vertez-transitive graphs with n — oo, is it always true that V converges (in
variation distance, say) to the uniform distribution?

10



1.6 Product chains

In our collection of examples in Chapter 5 of random walks on graphs, the
examples with enough symmetry to fit into the present setting have in fact
extra symmetry, enough to fit into the arc-transitive setting of section 2. So
in a sense, working at the level of generality of symmetric reversible chains
merely serves to illustrate what properties of chains depend only on this
minimal level of symmetry. But let us point out a general construction.
Suppose we have symmetric reversible chains XM, ..., X4 on state spaces
1M .. 14, Fix constants aq,...,a; with each a¢; > 0 and with >oai =1
Then (c.f. Chapter 4 section yyy) we can define a “product chain” with
state-space I(1) x ... x I9) and transition probabilities
(z1,...,24) = (1,...,2%,...,24): probability aiP(Xl(Z) = :C’»|Xél) =z;).

This product chain is also symmetric reversible. But if the underlying chains
have extra symmetry properties, these extra properties are typically lost
when one passes to the product chain. Thus we have a general method of
constructing symmetric reversible chains which lack extra structure. Ex-
ample 14 below gives a case with distinct underlying components, and Ex-
ample 11 gives a case with a non-uniform product. In general, writing
(AS) 11 < u < |IV)]) for the continuous-time eigenvalues of X (), we have
(Chapter 4 yyy) that the continuous-time eigenvalues of the product chain
are

A= a A 4 g

ud

indexed by u = (ug,...,uq) € {1,...,[IM} x ...x {1,...,[ID[}. Soin
particular '
£
T = max
k3 ai

1

To =
u#(1,...,1) al/\g) + ...+ adA%)

and of course these parameters take the same values in discrete time.

Example 11 Coordinate-biased random walk on the d-cube.

Take I = {0,1}% and fix 0 < a; < a3 < ... < ag with 3;a; = 1. Then the
chain with transitions

(b1y...,b4) = (b1,...,1=b;,...,bg) : probability a;

11



is the weighted product of two-state chains. Most of the calculations for
simple symmetric random walk on the d-cube done in Chapter 5 Example
yyy extend to this example, with some increase of complexity. In particular,

T = —
2(11

1

LY

d o
2 uel,u#0 Ei:l Uiy

1

In continuout time we still get the product form for the distribution at time
t:

Py(X;=b)=274 H(l + niexp(—2a,t)) ; m; = 1if b = b;, = 0 if not.

k3

So in a sequence of continuous time chains with d — oo, the “separation”

(1)

parameter 7y ' of Chapter 3 section yyy is asymptotic to the solution ¢ of
Zexp(—Qaﬂf) = —log(1—e™").
7

More elaborate calculations can be done to study 71 and the discrete-time
version.

1.7 The cutoff phenomenon and the upper bound lemma

Chapter 2 yyy and Chapter 4 yyy discussed quantifications of notions of
“time to approach stationarity” using variation distance. The emphasis in
Chapter 4 yyy was on inequalities which hold up to universal constants.
In the present context of symmetric reversible chains, one can seek to do
sharper calculations. Thus for random walk on the d-cube (Chapter 5 Ex-
ample yyy), with chances 1/(d + 1) of making each possible step or staying
still, writing n = 2% and ¢, = %dlog d, we have (as n — o0) not only the
fact 71 ~ ¢, but also the stronger result

d((1+¢)cy,) — 0 and d((1 — €)ey,) — 1, for all € > 0. (20)

We call this the cutoff phenomenon, and when a sequence of chains satisfies
(20) we say the sequence has “variation cutoff at ¢,,”. As mentioned at xxx,

the general theory of Chapter 4 works smoothly using d(?), but in examples
it is more natural to use d(¢), which we shall do in this chapter. Clearly,

12



(20) implies the same result for d and implies 74 ~ ¢,. Also, our convention
in this chapter is to work in discrete time, whereas the Chapter 4 general
theory worked more smoothly in continuous time. (Clearly (20) in discrete
time implies the same result for the continuized chains, provided ¢,, — o).
Note that, in the context of symmetric reversible chains,

d(t) = di(t) = || P{(X¢ € -) — n(+)]| for each 1.

We also can discuss separation distance (Chapter 4 yyy) which in this context
is
s(t) =1 — nmin P;(X; = j) for each ¢,
i

and introduce the analogous notion of separation threshold.

It turns out that these cut-offs automatically appear in sequences of
chains defined by repeated products. An argument similar to the analysis
of the d-cube (see [4] for a slightly different version) shows

Lemma 12 Fiz an aperiodic symmetric reversible chain with m states and
with relazation time 9 = 1/(1— A3). Consider the d-fold product chain with
n = m? states and transition probabilities

o, 1
(z1,...,24) = (T1,. .-, Yir ..., yd) : probability 7 Poiie

As d — oo, this sequence of chains has variation cutoff %nglog d and sepa-
ration cut-off Todlogd.

xxx discuss upper bound lemma
xxx heuristics
xxx mention later examples

1.8 Vertex-transitive graphs and Cayley graphs

So far we have worked in the setting of symmetric reversible chains, and
haven’t used any graph theory. We now specialize to the case of random
walk on a vertex-transitive or Cayley graph (V, ). As usual, we won’t write
out all specializations of the previous results, but instead emphasize what
extra we get from graph-theoretic arguments. Let d be the degree of the
graph.

Lemma 13 For random walk on a vertex-transitive graph,
(i) BT, > nif (v,2) €&

(ii) 3 —d > BT, > % if (v,z) € €

13



Proof. The lower bounds are specializations of Lemma 2(i), i.e. of Chapter
6 xxx. For the upper bound in (ii),

n—1 = %%Eﬂx (21)
> 1 <EUTqu + (d — l)d—n) by the lower bound in (ii).
d d+1
Rearrange.

xxx mention general lower bound 79 > (1—o(1))nd/(d—2) via tree-cover.
It is known (xxx ref) that a Cayley graph of degree d is d-edge-connected,
and so Chapter 6 Proposition yyy gives

™ < n*(d)/d
where (d)/d = \/2/d.
Example 14 A Cayley graph where E,T,, is not the same for all edges
(v, w).

Consider Z,, X Zy with generators (1,0),(—1,0),(0,1). The figure illustrates
the case m = 4.

30 20

31 21

01 11

00 10
Let’s calculate FpgT1o using the resistance interpretation. Put unit volt-
age at 10 and zero voltage at 00, and let ¢; be the voltage at :0. By symmetry
the voltage at i1 is 1 — a;, so we get the equations

1 .
aizg(ai—1+ai+1‘|‘(1—ai))7 1<i<m-—1

with ag = a,, = 0. But this is just a linear difference equation, and a brief
calculation gives the solution
1 1 gm/2—1 + gi—m/2
a;=—-— =
2 2 gm/2 + g—m/2

14



where § = 2 — /3. The current flow is 1 4 2aq, so the effective resistance is
=(1+ 2a1)_1. The commute interpretation of resistance gives 2 FgoTp; =

3nr, and so
3n

2(1 4 2a,)

where n = 2m is the number of vertices. In particular,

EOOTOI =

EO0T01 — 7= as n — 0.

1+f

Using the averaging property (21)

3v3

n ! EgoTio— 7 = ————— as n — .

2(14+/3)

Turning from hitting times to mixing times, recall the Cheeger constant

T, = sup c¢(A)
A

where A is a proper subset of vertices and
T(A°)
PW(Xl € AC|X0 € A)

For random walk on a Cayley graph one can use simple “averaging” ideas
to bound ¢(A). This is Proposition 15 below. The result in fact extends to
vertex-transitive graphs by a covering graph argument - see xxx.

Consider a n-vertex Cayley graph with degree d and generators G =
{91,...,94}, where g € G implies g~! € G. Then

c(A) =

[4g\ Al

Pr(Xy € A% Xp € A)
(X1 € A% Xp € dz |A|

gEg

where Ag = {ag : @« € A}. Lower bounding the sum by its maximal term,
we get

d _ JA[ A7
n

A) < .
«(4) < max ¢ [Ag\ Al

(22)

Proposition 15 On a Cayley graph of degree d
(i) 7. < dA, where A is the diameter of the graph.
(ii) c(A) < 2dp(A) for all A with p(A) > 1, where

A) = mi d
p(A) mify max (v, w)

is the radius of A.

15



Note that sup 4 p(A) is bounded by A but not in general by A/2 (consider
the cycle), so that (ii) implies (i) with an extra factor of 2. Part (i) is from
Aldous [2] and (ii) is from Babai [5].

Proof. (i) Fix A. Because

1
~ > AN Av| = [APP/n

velV
there exists some v € V such that |4 N Av| < |A|?/n, implying
A0\ A] > |4 47 /. (23)

We can write v = g1g2 .. .gs for some sequence of generators (g;) and some
6 <A, and
§ §
[Av\ Al <Y [Agr . gi \ Agr .. gima| = D |Agi \ Al
=1 =1
So there exists g € G with |Ag\ A| > £ x |A]|A°|/n, and so (i) follows from
(22). For part (ii), fix A with |A| < n/2, write p = p(A) and suppose

1
max |Ag \ A| < —|A]|. 24
max| g\ 4] < 1] (24)

Fix v with max,e4 d(w,v) = p. Since |[Ag \ 4| < 41—p|A| and
A\ Azg C (A\ Ag)U (A\ Az)g

we have by induction
1
|A\ Az| < @|A|d(a@,v). (25)

Write B" = {vgy...g9:;1 < r,g9; € G} for the ball of radius r about ». Since
(2p+1)/(4p) < 1, inequality (25) shows that A N Az is non-empty for each
z € Bt and so B**! C A='A. But by definition of p we have A C B”,
implying B?°*! C B?, which in turn implies B? is the whole group. Now
(25) implies that for every z

A\ A < Sja) < A4

n

But this contradicts (23). So (24) is false, i.e.
1 1 |A|A°

max|Ag\ A| > 4] > = 44T

9€G 4p 2p n

By complementation the final inequality remains true when |A| > n/2, and
the result follows from (22).

16



1.9 Comparison arguments for eigenvalues

The “distinguished paths” method of bounding relaxation times (Chapter
4 yyy) can also be used to compare relaxation times of two random flights
on the same group, and hence to bound one “unknown” relaxation time
in terms of a second “known” relaxation time. This approach has been
developed in great depth in

xxx ref Diaconis Saloff-Coste papers.

Here we give only the simplest of their results, from [13].

Consider generators G of a group I, and consider a reversible random
flight with step-distribution u supported on G. Write d(z,id) for the distance
from z to the identity in the Cayley graph, i.e. the minimal length of a word

T=gi1g2...94; 9;: €G.

For each z choose some minimal-length word as above and define N(g,z)
to be the number of occurences of g in the word. Now consider a different
reversible random flight on I with some step-distribution f, not necessarily
supported on G. If we know 73, the next result allows us to bound 7.

Theorem 16

T2 L 1 . ~
— < K =max —— d(z,id)N(g,z)i(z).
2 <K = N

XXX give proof — tie up with L? discussion
Perhaps surprisingly, Theorem 16 gives information even when the com-
parison walk is the “trivial” walk whose step-distribution ji is uniform on the

group. In this case, both d(z,id) and N(g,z) are bounded by the diameter
A, giving

Corollary 17 For reversible flight with step-distribution p on a group I,
AQ
T ————,
min . p(g)

where G is the support of u and A is the diameter of the Cayley graph
associated with G.

When g is uniform on G and |G| = d, the Corollary gives the bound dA?,
which improves on the bound 8d?A? which follows from Proposition 15 and
Cheeger’s inequality (Chapter 4 yyy). The examples of the torus Zj'{, show
that A? enters naturally, but one could hope for the following variation.
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Open Problem 18 Write 7. = 7.(I,G) for the minimum of T, over all
symmetric random flights on I with step-distribution supported on G. Is it
true that 7. = O(A?%)?

2 Arc-transitivity

Example 14 shows that random walk on a Cayley graph does not necessarily
have the property that £, T, is the same for all edges (v, w). It is natural
to consider some stronger symmetry condition which does imply this prop-
erty. Call a graph arc-transitive if for each 4-tuple of vertices (vy, w1, v2, wz)
such that (v1,wy) and (vy,wq) are edges, there exists an automorphism
such that y(v1) = w1, 7(v2) = we. Arc-transitivity is stronger than vertex-
transitivity, and immediately implies that F,T), is constant over edges (v, w).

Lemma 19 On a n-vertex arc-transitive graph,
(i) E, T, =n—1 for each edge (v, w).
(ii) E,Ty > n -2+ d(v,w) for all w # v.

Proof. (i) follows from FE,T;} = n. For (ii), write N(w) for the set of
neighbors of w. Then

EUTw - EUTN(w) + (’I”L - 1)

and Ty () > d(v, N(w)) = d(v,w) — 1.

In particular, min,,, £,T,, = n — 1, which gives the following bounds
on mean cover time F(C. The first assertion uses Matthews method for
expectations (Chapter 2 yyy) and the second follows from Theorem 9.

Corollary 20 On a n-vertex arc-transitive graph, EC > (n —1)h,_1. And
if o/n — 1 and 72 = o(n/logn) then

— 7ol
C —1plogn a . (26)

7o
Note that the lower bound (n — 1)h,_1 is attained on the complete graph.
It is not known whether this exact lower bound remains true for vertex-
transitive graphs, but this would be a consequence of Chapter 6 Open Prob-
lem yyy. Note also that by xxx the hypothesis 79/n — 1 can only hold if
the degrees tend to infinity.
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Corollary 20 provides easily-checkable conditions for the distributional
limit for cover times, in examples with ample symmetry, such as the card-
shuffling examples in the next section. Note that

b 1 —nl —b
(26) and 70 = n <1 + I—I_TO()) imply ¢ —nlogn = bn 4 7.
ogn

n

Thus on the d-cube (Chapter 5 yyy) 7o = n (1 + 1+;&) =n (1 + %)

and so
C —nlogn —nlog2 4
—

n

2.1 Card-shuffling examples

These examples are formally random flights on the permutation group,
though we shall describe them informally as models for random shuffles
of a m-card deck. Write X, for the configuration of the deck after ¢ shuffles,
and write Y; = f1(X;) for the position of card 1 after ¢ shuffles. In most ex-
amples (and all those we discuss) Y; is itself a Markov chain on {1,2,...,m}.
Example 21, mentioned in Chapter 1 xxx, has become the prototype for use
of group representation methods.

Example 21 Card-shuffling via random transpositions.
The model is

Make two independent uniform choices of cards, and interchange
the positions of the two cards.

With chance 1/m the same card is chosen twice, so the “interchange” has no
effect. This model was studied by Diaconis and Shahshahani [14], and more
concisely in the book Diaconis [12] Chapter 3D. The chain Y; has transition
probabilities

i— j probability 2/m?, j#i
2(m—1)

it — 1 probability 1-— 5
m

This is essentially random walk on the complete m-graph (precisely: the

continuized chains are deterministic time-changes of each other) and it is
easy to deduce that (Y;) has relaxation time m/2. So by the contraction
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principle xxx the card-shuffling process has 73 > m/2, and group represen-
tation methods show
Ty = m/2. (27)

Since the chance of being in the initial state after 1 step is 1/m and after 2
steps in O(1/m?), the local transience heuristic (10) suggests

70 = m!(1+ 1/m+ O(1/m?)) (28)

which can be verified by group representation methods (see Flatto et al
[18]). The general bound on 7 in terms of 7 gives only 7 = O(m;logm!) =
O(m?logm). In fact group group representation methods ([12]) show

1
there is a variation cutoff at —m logm. (29)

Example 22 Card-shuffling via random adjacent transpositions.

The model is

With probability 1/(m + 1) do nothing. Otherwise, choose one
pair of adjacent cards (counting the top and bottom cards as ad-
jacent), with probability 1/(m+1) for each pair, and interchange
them.

The chain Y; has transition probabilities
i— i+1 probability 1/(m+ 1)

i— i—1 probability 1/(m+ 1)
i— 1 probability (m —1)/(m + 1)

with ¢ £ 1 counted modulo m. This chain is (in continuous time) just a
time-change of random walk on the m-cycle, so has relaxation time

m+1 1 m>
2 1—cos(2r/m) 4m?’

a(m) =

So by the contraction principle xxx the card-shuffling process has 7o > a(m),
and (xxx unpublished Diaconis work) in fact

Ty = a(m) ~ m®/4n?
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A coupling argument which we shall present in Chapter xxx gives an upper
bound 7, = O(m?®log m) and (xxx unpublished Diaconis work) in fact

71 = O(m>log m).
The local transience heuristic (10) again suggests
7o = mi(1 4+ 1/m + 0(1/m?))

but this has not been studied rigorously.

Many variants of these examples have been studied, and we will mention
a generalization of Examples 21 and 22 in Chapter xxx. Here is another
example, from Diaconis and Saloff-Coste [13], which illustrates the use of
comparison arguments.

Example 23 A slow card-shuffling scheme.

The model is: with probability 1/3 each, either

(i) interchange the top two cards

(ii) move the top card to the bottom

(iii) move the bottom card to the top.

This process is random walk on a certain Cayley graph, which (for m > 3)
is not arc-transitive. Writing d for distances in the graph and writing

f# = max(d(o,id) : o a transposition ),

it is easy to check that g < 3m. Comparing the present chain with the
“random transpositions” chain (Example 21), denoted by ~, Theorem 16
implies

2 <3
72
Since 7, = m/2 we get
27m?
) S .
2

2.2 Cover times for the d-dimensional torus Z%.

This is Example yyy from Chapter 5, with n = N? vertices, and is clearly
arc-transitive. Consider asymptotics as N — oo for d fixed. We studied
mean hitting times in this example in Chapter 5. Here 79/n 4 1, so we
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cannot apply Corollary 20. For d = 1 the graph is just the d-cycle, treated
in Chapter 6 yyy. For d > 3, Chapter 5 yyy gave

EgT; ~nRgas N — oo, |i] — o

where |i] is Euclidean distance on the torus, i.e.

d

(i1, - da)|* = D (min(iy, N = 4y))%

u=1

So EC has the asymptotic upper bound Rynlogn. Now if we apply the
subset form of Matthews method (Chapter 6 yyy) to the subset

then we get a lower bound for FC' asymptotic to
log |A] X nRg.

By taking m = m(n) | oo slowly, this agrees with the upper bound, so we

find
Corollary 24 On the d-dimensional torus with d > 3,
EC ~ Rgnlogn.

Perhaps surprisingly, the case d = 2 turns out to be the hardest of all
explicit graphs for the purposes of estimating cover times. (Recall this case
is the white screen problem Chapter 1 xxx.) Loosely, the difficulty is caused
by the fact that 7 = O(nlogn) — recall from Chapter 6 yyy that another
example with this property, the balanced tree, is also hard. Anyway, for the
case d = 2 the calculations in Chapter 5 yyy gave

2
EoT; ~n <— log |7] + O(l)) .
iy
This leads to the upper bound in Corollary 25 below. For the lower bound,
we repeat the d > 3 argument using a subset of the form (30) with m — oo,
and obtain a lower bound asymptotic to
2
Zlogm x log(n*/m?).
iy

The optimal choice is m ~ n'/2, leading to the lower bound below.
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Corollary 25 On the 2-dimensional torus Z%,

(4~ o)) wiog?n < £C < (L4 o(1)) nlog*n

47 T

Lawler [23] has improved the constant in the lower bound to 21—7r — see Notes.
It is widely believed that the upper bound is in fact the limit.

Open Problem 26 Prove that, on the 2-dimensional torus Z3,
1 2
EC ~ — nlog®n.
T

The usual distributional limit

C —1glogn 4
- - - @ =
7o

certainly fails in d = 1 (see Chapter 6 yyy). It has not been studied in d > 2,
but the natural conjecture it that it is true for d > 3 but false in d = 2.
Note that (by Chapter 6 yyy) the weaker concentration result

C/EC % 1

holds for all d > 2.

2.3 Bounds for the parameters

In Chapter 6 we discussed upper bounds on parameters 7 for regular graphs.
One can’t essentially improve these bounds by imposing symmetry condi-
tions, because the bounds are attained (up to constants) by the n-cycles.
But what if we exclude the n-cycles? Example 14 shows that one can invent
vertex-transitive graphs which mimic the n-cycle, but it is not clear whether
such arc-transitive graphs exist. So perhaps the next-worst arc-transitive
graph is Z2,.

Open Problem 27 Is it true that, over arc-transitive graphs excluding the
n-cycles, 7™ = O(nlogn), , = O(n) and % =1+0(1)7
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2.4 Group-theory set-up

Recall that the Cayley graph associated with a set G of generators of a group
I has edges
{(v,v9);ve g€ G}

where we assume G satisfies
(i) g € G implies g~ € G.
To ensure that the graph is arc-transitive, it is sufficient to add the condition

(ii) for each pair ¢1,¢2 in G, there exists a group automorphism ~ such
that y(id) = id and v(g1) = g2.

In words, “the stabilizer acts transitively on G”. This is essentially the
general case: see [8] Prop. A.3.1.

As a related concept, recall that elements z, y of a group I are conjugate
if z = g~'yg for some group element g. This is an equivalence relation which
therefore defines conjugacy classes. 1t is easy to check that a conjugacy class
must satisfy condition (ii). Given a conjugacy class C' one can consider the
uniform distribution pc on C and then consider the random flight with step
distribution pc. Such random flights fit into the framework of section 2, and
Example 21 and the torus Zj'{, are of this form. On the other hand, Example
22 satisfies (i) and (ii) but are not random flights with steps uniform on a
conjugacy class.

3 Distance-regular graphs

A graph is called distance-transitive if for each 4-tuple vy, wy,v9, we with
d(vi,wy) = d(vg,wy) there exists an automorphism v such that vy(v;) =
wy,¥(v2) = wy. Associated with such a graph of diameter A are the inter-
section numbers (a;,b;,c;;0 < i < A) defined as follows. For each ¢ choose
(v, w) with d(v, w) = ¢, and define

¢; = number of neighbors of w at distance :—1 from v

a; = number of neighbors of w at distance 7 from v

b; = number of neighbors of w at distance ¢+ 1 from v.

The distance-transitive property ensures that (a;,b;,¢;) does not depend
on the choice of (v, w). A graph for which such intersection numbers ex-
ist is called distance-regular, and distance-regularity turns out to be strictly
weaker than distance-transitivity. An encyclopedic treatment of such graphs
has been given by Brouwer et al [8]. The bottom line is that there is almost
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a complete characterization (i.e. list of families and sporadic examples) of
distance-regular graphs. Anticipating a future completion of the character-
ization, one could seek to prove inequalities for random walks on distance-
regular graphs by simply doing explicit calculations with all the examples,
but (to quote Biggs [7]) “this would certainly not find a place in The Erdos
Book of ideal proofs”. Instead, we shall just mention some properties of
random walk which follow easily from the definitions.

Consider random walk (X;) on a distance-regular graph started at v,
and define D; = d(vg, X¢). Then (D) is itself a Markov chain on states
{0,1,..., A}, and is in fact the birth-and-death chain with transition prob-
abilities

Pii—1 = Ci[T, Pii = a;/T, Diit1 = bi/7.
xxxX b-and-d with holds

Finding exact t-step transition probabilities is tantamount to finding
the orthogonal polynomials associated with the distance-regular graph —
references to the latter topic can be found in [8], but we shall not pursue it.

3.1 Exact formulas

A large number of exact formulas can be derived by combining the standard
results for birth-and-death chains in Chapter 5 section yyy with the standard
renewal-theoretic identities of Chapter 2 section yyy. We present only the
basic ones.

Fix a state 0 in a distance-regular graph. Let n; be the number of states
at distance ¢ from 0. The number of edges with one end at distance ¢ and
the other at distance 7 + 1 is n;b; = n;y1¢;41, leading to the formula

by .
ni:H]—; 0 <1 <A,

j=1 ©
The chain D; has stationary distribution
pi=ni/n=n""T] L= 0<i<A.
j:l Cj

Switching to the notation of Chapter 5 yyy, the chain D; is random walk on
a weighted linear graph, where the weight w; on edge (7 — 1,1%) is
ni—1bi—1 _ nig

w; = = , 1 <1 <A
2n 2n
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and total weight w = 1. This graph may have self-loops, but they don’t

affect the formulas. Clearly hitting times on the graph are related to hitting
times of (D) by

E,T, = h(d(v,z)) , where h(i) = E;T; (31)

and where we write ~ to refer to expectations for D;. Clearly h(-) is strictly
increasing. Chapter 5 yyy gives the formula

7 A
h(i)=i+2) > ww;'. (32)

J=li=j+1

And Chapter 5 yyy gives the last equality in

A
~ 1 _
10 = E,Tg = E, Ty = §§ w; 1(§ pi)?. (33)
i=1 i>i

Finally, Chapter 5 yyy gives

A
EOTA + EATO = Z 1/w2 (34)

=1

Thus if the graph has the property that there exists a unique vertex 0* at
distance A from 0, then we can pull back to the graph to get

A
T 1
5 = rg;inxTv = EoTo = 3 2_; 1/w;. (35)

If the graph lacks that property, we can use (31) to calculate A(A).
The general identities of Chapter 3 yyy can now be used to give formulas
for quantities such as Py(7, < T,) or E, (number of visits to y before T}).

3.2 Examples

Many treatments of random walk on sporadic examples such as regular
polyhedra have been given, e.g. [26, 27, 31, 34, 35, 36, 37], so I shall not
repeat them here. Of infinite families, the complete graph was discussed in
Chapter 5 yyy, and the complete bipartite graph is very similar. The d-cube
also was treated in Chapter 5. Closely related to the d-cube is a model
arising in several contexts under different names,
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Example 28 c-subsets of a d-set.

The model has parameters (¢,d), where 1 < ¢ < d — 1. Formally, we
have random walk on the distance-transitive graph whose vertices are the
ﬁ c-element subsets A C {1,2,...,d}, and where (A, A’) is an edge iff
|[AAA'| = 2. More vividly, d balls {1,2,...,d} are distributed between a left
urn and a right urn, with ¢ balls in the left urn, and at each stage one ball is
picked at random from each urn, and the two picked balls are interchanged.
The induced birth-and-death chain is often called the Bernouilli-Laplace dif-
fusion model. The analysis is very similar to that of the d-cube. See [15, 16]
and [12] Chapter 3F for details on convergence to equilibrium and [11] for
hitting and cover times.

3.3 Monotonicity properties

The one result about random walk on distance-regular graphs we wish to
highlight is the monotonicity property given in Proposition 29 below. Part
(ii) can be viewed as a strengthening of the monotonicity property for mean
hitting times (by integrating over time and using the formula relating mean
hitting times to the fundamental matrix).

Proposition 29 For random walk (X;) on a distance-reqular graph in con-
tinuous time, P,(X; = w) = q(t,d(v,w)), where the function d — q(t,d)
satisfies

(i) d — q(t,d) in non-increasing, for fized 1.

(7i) q(t,d)/q(t,0) in non-decreasing in t, for fired d.

xxx proof — coupling — defer to coupling Chapter ??

Proposition 29 is a simple example of what I call a “geometric” result
about a random walk. Corollary 3 gave a much weaker result in a more
general setting. It’s natural to ask for intermediate results, e.g.

Open Problem 30 Does random walk on an arc-transitive graph have some
monotonicity property stronger than that of Corollary 3¢

3.4 Extremal distance-regular graphs

Any brief look at examples suggests

Open Problem 31 Prove that, over distance-regular graphs excluding the
n-cycles, 1o = O(n).
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Of course this would imply 7* = O(n) and EC = O(nlogn). As mentioned

earlier, one can try to tackle problems like this by using the list of known

distance-regular graphs in [8]. Biggs [7] considered the essentially equiva-

lent problem of the maximum value of max; ; ;7;/(n — 1), and found the

value 195/101 taken on the cubic graph with 102 vertices, and outlined an

argument that this may be the maz over known distance-regular graphs.
xxx in same setting is 75 = O(logn)?

3.5 Gelfand pairs and isotropic flights

On a distance-regular graph, a natural generalization of our nearest-neighbor
random walks is to isotropic random flight on the graph. Here one specifies a
probability distribution (sg, s1,...,sa) for the step-length 5, and each step
moves to a random vertex at distance .5 from the previous vertex. Precisely,
it is the chain with transition probabilities

Sd(v,w)

p(v,w) = : (36)

Nd(v,w)

The notion of isotropic random flight also makes sense in continuous
space. For an isotropic random flight in R?, the steps have some arbitrary
specified random length S and a direction # which is uniform and indepen-
dent of 5. A similar definition can be made on the d-dimensional sphere.
The abstract notion which captures distance-regular graphs and their con-
tinuous analogs is a Gelfand pair. Isotropic random flights on Gelfand pairs
can be studied in great detail by analytic methods. Brief accounts can be
found in Letac [24, 25] and Diaconis [12] Chapter 3F, which contains an
extensive annotated bibliography.

4 Notes on Chapter 7

Diaconis [12] Chapter 3 discusses random walks on groups, emphasizing use
of the upper bound lemma to establish bounds on 7 and d(#), and contain-
ing extensive references to previous work using group-theoretic methods. We
have only mentioned reversible examples, but many natural non-reversible
examples can also be handled by group representation methods. Also, in Ex-
ample 21 and related examples, group representation methods give stronger
information about d(t) then we have quoted.
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Elementary properties of hitting and cover times on graphs with sym-
metry structure have been noted by many authors, a particularly compre-
hensive treatment being given in the Ph.D. thesis Sbihi [33]. Less extensive
treatments and specific elementary results can be found in many of the pa-
pers cited later, plus [30, 36, 37]

Section 1. The phrase “random flight” is classically used for R%. T have
used it (as did Takacs [34, 35]) in place of “random walk’ to emphasize it is
not necessarily a nearest-neighbor random walk.

Section 1.3. Other elementary facts about symmetric reversible chains
are "

E7r min(Ti,Tj) = §(Zn + Zij)-

Pi(Xot =)+ Pi( X2t =7) > 2/n.

Chapter 6 yyy showed that on any regular graph, max; ; £;7; < 3n%. On
a vertex-transitive graph the constant “3” can be improved to “2”, by an
unpublished argument of the author, but this is still far from the natural
conjecture of 1/4.

Section 1.4. Another curious result from [3]is that for a symmetric re-
versible chain the first passage time cannot be concentrated around its mean:

var ;1 S e—2 1
(EZ'T]‘)2 T e—1 EZ'T]"

Section 1.5. Before Matthews method was available, a result like Corol-
lary 5 (c) required a lot of work — see Aldous [1] for a result in the setting of
non-reversible random flight on a group. The present version of Corollary 5
(c) is a slight polishing of ideas in Zuckerman [38] section 6.

The fact that (17) implies (15) is a slight variation of the usual text-
book forms of the continuity theorem ([17] 2.3.4 and 2.3.11) for Fourier and
Laplace transforms. By the same argument as therein, it is enough for the
limit transform to be continuous at # = 0, which holds in our setting.

Matthews [28, 29] introduced Proposition 8 and used it to obtain the
limiting cover time distribution for the d-cube and for card-shuffling exam-
ples. Devroye and Sbihi [11] applied it to generalized hypercubes and to
Example 28. Our implementation in Theorem 9 and Corollary 20 reduces
the need for ad hoc calculations in particular examples.

Section 1.6. Example 11 has been studied in the reliability literature
(e.g. [22]) from the viewpoint of the exponential approximation for hitting
times.
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Section 1.7. The factor of 2 difference between the variation and separa-
tion cutoffs which appears in Lemma 12 is the largest possible — see Aldous
and Diaconis [4].

Section 1.8. xxx walk-regular example — McKay paper.

Section 1.9. Diaconis and Saloff-Coste [13] give many other applications
of Theorem 16. We mention some elsewhere; others include

xxx list.

Section 2. The name “arc-transitive” isn’t standard: Biggs [6] writes
“symmetric” and Brouwer et al [8] write “flag-transitive”. Arc-transitivity
is not necessary for the property “F,T, is constant over edges”. For in-
stance, a graph which is vertex-transitive and edge-transitive (in the sense
of undirected edges) has the property, but is not necessarily arc-transitive
[20]. Gobel and Jagers [19] observed that the property

ETy+ E,T, =2(n—1) for all edges (v, w)

(equivalently: the effective resistance across each edge is constant) holds for
arc-transitive graphs and for trees.

Section 2.2. Sbihi [33] and Zuckerman [38] noted that the subset version
of Matthews method could be applied to the d-torus to give Corollaries 24
and 25.

The related topic of the time taken by random walk on the infinite lattice
7% to cover a ball centered at the origin has been studied independently — see
Revesz [32] Chapter 22 and Lawler [23], who observed that similar arguments
could be applied to the d-torus, improving the lower bound in Corollary 25.
It is easy to see an informal argument suggesting that, for random walk on
the 2-torus, when n* vertices are unvisited the set of unvisited vertices has
some kind of fractal structure. No rigorous results are known, but heuristics
are given in Brummelhuis and Hilhorst [9].

Section 3.1. Deriving these exact formulas is scarcely more than un-
dergraduate mathematics, so I am amazed to see that research papers have
continued to be published in the 1980s and 1990s claiming various special
or general cases as new or noteworthy.

Section 3.5. In the setting of isotropic random flight (36) with step-
length distribution ¢, it is natural to ask what conditions on ¢ and ¢’ imply
that 7(¢) > 7(¢) for our parameters 7. For certain distributions on the d-
cube, detailed explicit calculations by Karlin et al [21] establish an ordering
of the entire eigenvalue sequences, which in particular implies this inequality
for 75 and 19. Establishing results of this type for general Gelfand pairs seems
an interesting project.
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Miscellaneous. On a finite field, such as Z, for prime p, one can consider

“random walks” with steps of the form z — axz 4+ §, with a specified joint
distribution for («, #). Chung et al [10] treat one example in detail.
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