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The elementary theory of general finite Markov chains (cf. Chapter 2)
focuses on exact formulas and limit theorems. My view is that, to the extent
there is any intermediate-level mathematical theory of reversible chains, it is
a theory of inequalities. Some of these were already seen in Chapter 3. This
chapter is my attempt to impose some order on the subject of inequalities.
We will study the following five parameters of a chain. Recall our standing
assumption that chains are finite, irreducible and reversible, with stationary
distribution 7.

(i) The maximal mean commute time

T = maX(EZ'T]' + E’]‘TZ’)
tJ

(ii) The average hitting time
To = Z Z m;m kT
g

(iii) The variation threshold time
o =inf{t > 0:d(t) <e '}
where as in Chapter 2 section yyy

d(t) = IIIZ?XHPi(Xt €)= Pi(X; €|



(iv) The relaxation time 73, i.e. the time constant in the asymptotic rate
of convergence to the stationary distribution.
(v) A “flow” parameter
m(A)m(A°) m(A°)

Te = Sup = sup
A YiearjeacTiDij a4 Pr(X1 € A°[Xo € A)

in discrete time, and

T(A)T(A°) T(A°) dt
T, = sup = sup -
A YieAdjeacTitij A Pr(Xa € A°|Xo € A)

in continuous time.
The following table may be helpful. “Average-case” is intended to indi-
cate essential use of the stationary distribution.
worst-case average-case

hitting times T* To
mixing times T T
flow Te

The table suggests there should be a sixth parameter, but I don’t have a
candidate.
The ultimate point of this study, as will seen in following chapters, is

e For many questions about reversible Markov chains, the way in which
the answer depends on the chain is related to one of these parameters

e so it is useful to have methods for estimating these parameters for
particular chains.

This Chapter deals with relationships between these parameters, simple il-
lustrations of properties of chains which are closely connected to the pa-
rameters, and methods of bounding the parameters. To give a preview,
it turns out that these parameters are essentially decreasing in the order
(7*, 70, T1, T2, T:): precisely,

1*
57 >To 2> T2 2 Te

667’0 Z 1 Z )

and perhaps the constant 66 can be reduced to 1. There are no general
reverse inequalities, but reverse bounds involving extra quantities provide a
rich and sometimes challenging source of problems.



The reader may find it helpful to read this chapter in parallel with the list
of examples of random walks on unweighted graphs in Chapter 5. As another
preview, we point out that on regular n-vertex graphs each parameter may
be as large as @(n?) but no larger; and 7*, 7 may be as small as O(n) and
the other parameters as small as ©(1), but no smaller. The property (for a
sequence of chains) “rg = O(n)” is an analog of the property “transience”
for a single infinite-state chain, and the property “rm, = O(poly(logn))” is
an analog of the “non-trivial boundary” property for a single infinite-state
chain. These analogies are pursued in Chapter yyy.

The next five sections discuss the parameters in turn, the relationship
between two different parameters being discussed in the latter’s section.
Except for 7, the numerical values of the parameters are unchanged by
continuizing a discrete-time chain. And the results of this Chapter not
involving 7 hold for either discrete or continuous-time chains.

1 The maximal mean commute time 7*
We start by repeating the definition

™ = IHZ,?X(EZ'TJ' + E;T;) (1)
and recalling what we already know. Obviously

max F;T; < 7 < 2max E;T;
27 L]

and by Chapter 3 Lemma yyy

max £, T; <7 < 4max E,T;. (2)
j j

Arguably we could have used max;; F;T; as the “named” parameter, but
the virtue of 7* is the resistance interpretation of Chapter 3 Corollary yyy.

Lemma 1 For random walk on a weighted graph,

" = wmaxr;;
ij

where 1;; is the effective resistance between i and j.



In Chapter 3 Proposition yyy we proved lower bounds for any n-state
discrete-time reversible chain:
™ >2(n-1)
max F;T; >n —1
i
which are attained by random walk on the complete graph. Upper bounds
will be discussed extensively in Chapter 6, but let’s mention two simple
ideas here. Consider a path ¢ = ig,21,...,%,, = 7, and let’s call this path
¥:; (because we’ve run out of symbols whose names begin with “p”!) This
path, considered in isolation, has “resistance”

r(vij) = Y 1/we
e€ij
which by the Monotonicity Law is at least the effective resistance r;;. Thus
trivially
" <wmax min 7(7;;). (3)
&7 paths ~;
A more interesting idea is to combine the max-flow min-cut theorem (see
e.g. [12] sec. 5.4) with Thompson’s principle (Chapter 3 Corollary yyy).
Given a weighted graph, define
¢ = min Wi; 4
J %:4]; i (4)
the min over proper subsets A. The max-flow min-cut theorem implies that
for any pair a, b there exists a flow f from a to b of size ¢ such that | f;;| < w;;
for all edges (i, 7). So there is a unit flow from a to b such that | f.| < ¢~ 'w,
for all edges e. It is clear that by deleting any flows around cycles we may
assume that the flow through any vertex ¢ is at most unity, and so

Z|fij|§2f0rall 1, and = 1 for 7 = a, b. (5)
J
So
f2
T+ BT, < w Z =% by Thompson’s principle
e We
w
< ; E |fe|
< = (n—1)by (5).

and we have proved



Proposition 2 For random walk on an n-vertex weighted graph,

< w(n—1)

Cc

for ¢ defined at (}).

Lemma 1 and the Monotonicity Law also make clear a one-sided bound
on the effect of changing edge-weights monotonically.

Corollary 3 Let w, > w, be edge-weights and let 7* and 7 be the corre-
sponding parameters for the random walks. Then
EZ'T]‘ + E]‘TZ' w L
— < — l
EZ'T]‘ + E]‘TZ' T w for alli, j
and so
7/ < w/w.

In the case of unweighted graphs the bound in Corollary 3 is |€|/|€|. Exam-
ple yyy of Chapter 3 shows there can be no lower bound of this type, since

in that example @/w = 1+ O(1/n) but (by straightforward calculations)
/7% = O(1/n).

2 The average hitting time 7

As usual we start by repeating the definition
0 = Z Z 7w BT (6)
v

and recalling what we already know. We know (a result not using reversibil-
ity: Chapter 2 Corollary yyy) the random target lemma

Zﬂ']‘EZ'T]‘ = 719 for all ¢ (7)
J

and we know the eigentime identity (Chapter 3 yyy)

0 = Z (1 = A,)~"in discrete time (8)
m>2
o= »_ A;'in continuous time (9)
m>2



In Chapter 3 yyy we proved a lower bound for n-state discrete-time chains:

(n—1)%

T0>

which is attained by random walk on the complete graph.

We can give a flow characterization by averaging over the characteriza-
tion in Chapter 3 yyy. For each vertex a let f*~7" = ( "
a to m of volume 7,, that is a unit flow scaled by 7,. Then

a—T\2
To = w min %;;;M

) be a flow from

TqWij;
the min being over families of flows £~ described above.
By writing

1 1
To = 5 ZZﬂiﬂj(EiTj + E]‘TZ') < 5 IHZ?LX(EZ'TJ' + E]‘TZ')

? J

we see that 75 < %T*. It may happen that 7* is substantially larger than 7.
A fundamental example is the M /M/1/n queue (xxx) where 7 is linear in
n but 7* grows exponentially. A simple example is the two-state chain with

p01:€,p10:1—5, 71'021—5,’/1'1:5

for which 79 = 1 but 7 = %—}— 11: This example shows that (without extra
assumptions) we can’t improve much on the bound

2 T0

T < —
min; 7;

(10)

which follows from the observation E;1; < /7.

One can invent examples of random walks on regular graphs in which
also 7* is substantially larger than 7. Under symmetry conditions (vertex-
transitivity, Chapter 7) we know a priori that E.T; is the same for all 7 and
hence by (2) 7* < 47y. In practice we find that 7p and 7* have the same
order of magnitude in most “naturally-arising” graphs, but I don’t know
any satisfactory formalization of this idea.

The analog of Corollary 3 clearly holds, by averaging over ¢ and j.

Corollary 4 Let . > w. be edge-weights and let 7o and 1o be the corre-
sponding parameters for the random walks. Then

7~'0/T0 S ’IIJ/’UJ



In one sense this is mysterious, because in the eigentime identity the largest
term in the sum is the first term, the relaxation time 79, and Example yyy
of Chapter 3 shows that there is no such upper bound for 7.

3 The variation threshold 7.

3.1 Definitions

Recall from Chapter 2 yyy that || || denotes variation distance and
d(t) = max [[P(X¢ € -) = 7(-)]]

d(t) = max || Fi(Xy € -) = Pj(X: € )|

d(t) < d(t) < 2d(t)
(s +1t) < d(s

d(t)

IN

S~—

We define the parameter
71 = min{t:d(t) < e '}, (11)

The choice of constant e, and of using d(t) instead of d(t), are rather
arbitrary, but this choice makes the numerical constants work out nicely (in
particular, makes 7, < 7 — see section 4). Submultiplicativity gives

Lemma 5 d(t) < d(t) <exp(—[t/m]) <exp(l—1t/m), t > 0.

The point of parameter 71 is to formalize the idea of “time to approach
stationarity, from worst starting-place”. The fact that variation distance is
just one of several distances one could use may make 71 seem a very arbitrary
choice, but Theorem 6 below says that three other possible quantifications
of this idea are equivalent. Here equivalent has a technical meaning: pa-
rameters 7, and 7, are equivalent if their ratio is bounded above and below
by numerical constants not depending on the chain. (Thus (2) says 7 and
max; E,T; are equivalent parameters). More surprisingly, 7 is also equiva-
lent to two more parameters involving mean hitting times. We now define
all these parameters.

xxx Warning. Parameters T1(4), T1(5) in this draft were parameters T1(3), T1(4)
in the previous draft.



The first idea is to measure distance from stationarity by using ratios of
probabilities. Define separation from stationarity to be

s(t) = min{s : p;;(t) > (1 — s)m; for all ¢, 7}.

Then s(-) is submultiplicative, so we naturally define the separation thresh-
old time to be
7'1(1) = min{t:s(t) < e '}.

The second idea is to consider minimal random times at which the chain has
exactly the stationary distribution. Let
Tl(z) = max min F;U;
( f
where the min is over stopping times U; such that P;(X(U;) € -) = 7(+). Asa
variation on this idea, let us temporarily write, for a probability distribution
1t on the state space,
() = max min F;U;
7 U;
where the min is over stopping times U; such that P;(X(U;) € ) = p(+).
Then define
o

n = min T(p).

Turning to the parameters involving mean hitting times, we define

T1(4) = HZI%XZ ﬂleiT]‘ — Eijl = HZIE}CXZ |Zij — Zk]‘| (12)
? ] ? ]

where the equality involves the fundamental matrix Z and holds by the mean
(4)

hitting time formula. Parameter 7; ’/ measures variability of mean hitting
times as the starting place varies. The final parameter is

T1(5) = max T(A)ETy.
Zy

Here we can regard the right side as the ratio of F,;T4, the Markov chain
mean hitting time on A, to 1/7(A), the mean hitting time under independent
sampling from the stationary distribution.

The definitions above make sense in either discrete or continuous time,
but the following notational convention turns out to be convenient. For
a discrete-time chain we define 7 to be the value obtained by applying

d

the definition (11) to the continuized chain, and write 7 I8¢ for the value



(1) 1 dlSC

obtained for the discrete-time chain itself. Define similarly "’ and 7,

(2) (5)

But the other parameters 7"/ — 7,7’ are defined directly in terms of the
discrete-time chain. We now state the equivalence theorem, from Aldous

[1].

Theorem 6 (a) In either discrete or continuous time, the parameters

(1) _(2) () _(4) (5)

T, Ty Ty Ty Ty and Ty

(b) In discrete time, Tldz'sc

are equivalent.
1,disc (2) A1 disc

and T, are equivalent, and 737 <
i 1 = e T

This will be (partially) proved in section 3.2, but let us first give a few

remarks and examples. The parameter 71 and total variation distance are

closely related to the notion of coupling of Markov chains, discussed in Chap-

ter 14. Analogously (see the Notes), the separation s(¢) and the parameter
(1)

7, ' are closely related to the notion of strong stationary times V; for which
P(X(V;)e-|Vi=t)=m(-)forall t. (13)

Under our standing assumption of reversibility there is a close connection
between separation and variation distance, indicated by the next lemma.

Lemma 7 (a) d(t) < s(t).
(b) s(2t) < 1—(1—d(t))>.

Proof. Part (a) is immediate from the definitions. For (b),

pi(2t) sz’j(t)l?jk(t)

T - T

i (1) e (1 o
Z Wj% by reversibility

1/2, 1 1/2 2
(qu” ¢ )? ¢ )) by EZ > (EZ'/?)?

>
> (me pij(1), prj(t )))

= (1-[|P(X; €)= Pu(X; € )]])?
> (1-dt)? o



Note also that the definition of s(¢) involves lower bounds in the convergence

% — 1. One can make a definition involving upper bounds
; i (1 it
d(t)EmaX])]—()—lzmaXp—()—lz() (14)
2,7 71']' [3 ﬂ-i

where the equality (Chapter 3 Lemma yyy) requires in discrete time that
t be even. This yields the following one-sided inequalities, but Example 9
shows there can be no such reverse inequality.

Lemma 8 (a) 4||P;(X; € -) — x()|]2 < 22C0 1 ¢ >0,

(b) d(1) < 3/d(2t), 1 >0

Proof. Part (b) follows from part (a) and the definitions. Part (a) is essen-
tially just the “|| ||1 < || ||2” inequality, but let’s write it out bare-hands.

(Z pij(t) — le)

2

_ 1/2 pij(t) — m;

— (E 7 %)
T

J Uy

Al|P(Xy € ) = x()II?

Z (Pij(tzrf ;)

2
by Cauchy-Schwarz

I

i (21
= -1+ M by Chapter 3 Lemma yyy.

k3

Example 9 Consider a continuous-time 3-state chain with transition rates

1 1
€ 1
Here 7, = 25?, Ty = Ty = 21? It is easy to check that 71 is bounded as

e — 0. But p,u(t) — e " as ¢ — 0, and so by considering state a we have
d(t) — oo as ¢ — 0 for any fixed t.

10



Remark. In the nice examples discussed in Chapter 5 we can usually
find a pair of states (7o, jo) such that

d(t) = || Pg( Xt € 1) — Pjy(X¢ € +)]| for all t.

The next example shows this is false in general.

Example 10 Consider random walk on the weighted graph

for suitably small . As ¢t — 0 we have 1 — d(t) ~ c.t?, the maz attained by
pairs (0,2) or (1,3). But as ¢ — oo we have d(t) ~ a.exp(—t/72(g)) where
T2(e) = O(1/¢e) and where the maz is attained by pairs (i,%). O

As a final comment, on? 1)rnight wonder whether the min(ir;qizing(; )distribu—
3 3 2
1

tion p in the definition of 7;"’ were always 7, i.e. whether 7"/ = 7"/ always.
But a counter-example is provided by random walk on the n-star (Chapter

5 yyy) where 71(3) =1 (by taking u to be concentrated on the center vertex)
but 712 — 3/2
1 .

3.2 Proof of Theorem 6

We will prove

Lemma 11 7 < 7'1(1) <4n

Lemma 12 Tl(s) < T1(2) < eflrl(l).

Lemma 13 T1(4) < 47'1(3)

Lemma 14 7'1(5) < 7'1(4)

(1)

These lemmas hold in discrete and continuous time, interpreting tau;, 7y

as Tldisc’ Tll’dlsc is discrete time. Incidentally, Lemmas 12, 13 and 14 do not

11



depend on reversibility. To complete the proof of Theorem 6 in continuous
time we would need to show

m < ](7'1(5) in continuous time (15)

for some absolute constant K. The proof I know is too lengthy to repeat
here — see [1]. Note that (from its definition) 71(2) < 79, so that (15) and the
lemmas above imply 71 < 2K 7 in continuous time. We shall instead give a
direct proof of a result weaker than (15):

Lemma 15 71 < 667.

Turning to the assertions of Theorem 6 is discrete time, (b) is given by the
discrete-time versions of Lemmas 11 and 12. To prove (a), it is enough to

(2) (5)

show that the numerical values of the parameters 7,/ — —7;"/ are unchanged
by continuizing the discrete-time chain. For T1(5) and T1(4) this is clear, be-
cause continuization doesn’t affect mean hitting times. For 71(3) and T1(2) it

reduces to the following lemma.

Lemma 16 Let X; be a discrete-time chain and Y; be its continuization,
both started with the same distribution. Let T be a randomized stopping
time for Y. Then there exists a randomized stopping time T for X such

that P(X(T) e )= P(Y(T) € ) and ET = ET.

Proof of Lemma 11. The left inequality is immediate from Lemma 7(a),
and the right inequality holds because

s(41) < 1—(1-d(27))* by Lemma 7(b)
< 1—=(1-¢"%)?by Lemma 5
< e~ L.

Proof of Lemma 12. The left inequality is immediate from the definitions.

(1)

For the right inequality, fix 7. Write u = 7,7, so that
pix(u) > (1 — e 1)my for all j, k.
We can construct a stopping time U; € {u, 2u, 3u, ...} such that
Pi(Xy, € Ui=u)=(1—e )m(:)
and then by induction on m such that

P(Xp, € Ui =mu) = e~ ™ D1 —e (), m > 1.

12



Then P;(Xy, € -) = n(+) and E;U; = u(1—e"')"1. So 71(2) < (1—6_1)_17'1(1).
Remark. What the argument shows is that we can construct a strong
stationary time V; (in the sense of (13)) such that

EVi=(1-e)7'r . (16)

Proof of Lemma 13. Consider the probability distribution p attaining
(3)

the min in the definition of 7;™’, and the associated stopping times U;. Fix

i. Since P;(X(U;) € -) = p(+),
ET; < EU; + E,T; < 4+ E,T;.
The random target lemma (7) says 3, E;T;m; = -, F,/Tjw; and so

3
S mIET - BTyl = 23 ni( BTy - BT < 2n)”.

J J

Writing b(¢) for the left sum, the definition of T1(4) and the triangle inequality

give T1(4) < max; ,(b(¢) + b(k)), and the Lemma follows.

Proof of Lemma 14. Fix a subset A and a starting state ¢ ¢ A. Then for
any j € A,
EZ'T]' = F, T4+ EPT]‘

where p is the hitting place distribution P;(X7, € -). So

T(A)VETs =Y miETs= > ni(ET; — E)T))
JjEA JjEA
< maXZ (BT — EyT;) < 7'1(4).
k Jj€A
Proof of Lemma 15. For small § > 0 to be specified later, define

A=Aj: E;T; <T19/6}.

Note that Markov’s inequality and the definition of 7y give

YimiE Ty o
T0/6 o T0/6 o

T(A%) =7n{j: E;T; > 19/} < 0. (17)

13



Next, for any j
ET;, = / (M — 1) ds by Chapter 2 Lemma yyy
0 m;

t(pj]—(t) — 1) for any ¢

T

v

by monotonicity of p;;(¢). Thus for j € A we have

piit) | o BTy 7o

g -t _E

and applying Chapter 3 Lemma yyy (b)

(T
pf’“()z1—T—O, j ke A.
TL ot

Now let ¢ be arbitrary and let £ € A. For any 0 < s < u,

Pi(Xuyt = kT4 = s) > min Pi(Xuyi—s = ) >1-— S >1- o
Tk JEA Tk d(utt—s) b1
and so ( ) +
Piklu + 1 ( TO)
== 2> (1-=—= P;(T4 < u). 18
- > 51 ( A S u) ( )
Now (5)
EiTy T
BT < < .
(T4 >u) < u — un(A)

(4)

using Markov’s inequality and the definition of TI(S). And T1(5) <7y’ <21,
the first inequality being Lemma 14 and the second being an easy conse-
quence of the definitions. Combining (18) and the subsequent inequalities
shows that, for k£ € A and arbitrary ¢

pir(u +1) < T0)+ ( 219 )+
PRl T V) 5 (170} (4 = .
Tk - ot um(A) T say

Applying this to arbitrary ¢ and j we get

dlu4+t)<1—nr(A)<1- <1_%)+<W(A)—?ﬂ)+

14



+ +

T0 27’0
<l—-1(1—— 1-6—-— — by (17).
< ( 615) < u) y (17)

Putting ¢t = 4979, u = 1779, 6 = 1/7 makes the bound = % <e L

Remark. The ingredients of the proof above are complete monotonicity
and conditioning on carefully chosen hitting times. The proof of (15) in
[1] uses these ingredients, plus the minimal hitting time construction in the
recurrent balayage theorem (Chapter 2 yyy).

Outline proof of Lemma 16. The observant reader will have noticed
(Chapter 2 yyy) that we avoided writing down a careful definition of stopping
times in the continuous setting. The definition involves measure-theoretic is-
sues which I don’t intend to engage, and giving a rigorous proof of the lemma
is a challenging exercise in the measure-theoretic formulation of continuous-
time chains. However, the underlying idea is very simple. Regard the
chain Y; as constructed from the chain (Xg, X1, X2,...) and exponential(1)
holds (¢;). Define 7' = N(T'), where N(#) is the Poisson counting process
N(t) = max{m : & +...4&n < t}. Then X(T) = Y (T) by construction and
ET = ET by the optional sampling theorem for the martingale N(¢)—¢. O

3.3 7 in discrete time, and algorithmic issues

Of course for period-2 chains we don’t have convergence to stationarity in
: : i 1,disc
discrete time, so we regard Tldlsc =7’

walks on bipartite weighted graphs — include several simple examples of

= o00. Such chains — random

unweighted graphs we will discuss in Chapter 5 (e.g. the n-path and n-cycle
for even n, and the d-cube) and Chapter 7 (e.g. card-shuffling by random
transpositions, if we insist on transposing distinct cards).

As mentioned in Chapter 1 xxx, a topic of much recent interest has
been “Markov Chain Monte Carlo”, where one constructs a discrete-time
reversible chain with specified stationary distribution = and we wish to use
the chain to sample from 7. We defer systematic discussion to xxx, but a few
comments are appropriate here. We have to start a simulation somewhere.
In practice one might use as initial distribution some distribution which is
feasible to simulate and which looks intuitively “close” to m, but this idea
is hard to formalize and so in theoretical analysis we seek results which
hold regardless of the initial distribution, i.e. “worst-case start” results. In

(2)

this setting 7"’ is, by definition, the minimum expected time to generate a
(2)

sample with distribution 7. But the definition of 7"/ merely says a stopping
time exists, and doesn’t tell us how to implement it algorithmically. For

15



algorithmic purposes we want rules which don’t involve detailed structure
of the chain. The most natural idea — stopping at a deterministic time —
requires one to worry unnecessarily about near-periodicity. One way to avoid
this worry is to introduce holds into the discrete-time chain, i.e. simulate
(P+1)/2instead of P. As an alternative, the distribution of the continuized
chain at time ¢ can be obtained by simply running the discrete-time chain
for a Poisson(t) number of steps. “In practice” there is little difference
between these alternatives. But the continuization method, as well as being
mathematically less artificial, allows us to avoid the occasional messiness
of discrete-time theory (see e.g. Proposition 29 below). In this sense our
use of 7 for discrete-time chains as the value for continuous-time chains is
indeed sensible: it measures the accuracy of a natural algorithmic procedure
applied to a discrete-time chain.

Returning to technical matters, the fact that a periodic (reversible, by
our standing assumption) chain can only have period 2 suggests that the
discrete-time periodicity effect could be eliminated by averaging over times
t and ¢ + 1 only, as follows.

Open Problem 17 Show there exist y(z) | 0 as | 0 and ¢(t) ~ t as
t — oo such that, for any discrete-time chain,

PZ'(Xt € ) + Pi(Xt-l—l S )
2

-7 < vtatet), 1=o01.2,.

k3

where d(-) refers to the continuized chain.

See the Notes for some comments on this problem.
If one does wish to study distributions of discrete-time chains at deter-
ministic times, then in place of 7 one needs to use

B = max(|A,

12 <m < n)=max(Ay, —Ap). (19)
The spectral representation then implies

|Pi(X;=1)—m| <p5 t=0,1,2,.... (20)

3.4 7 and mean hitting times

In general 71 may be much smaller than 7 or 7p. For instance, random walk
on the complete graph has 79 ~ n while 77 — 1. So we cannot (without
extra assumptions) hope to improve much on the following result.

16



Lemma 18 For an n-state chain, in discrete or continuous time,

(2)

To < 07y

2

N 27'1( )
T < .
min; 7;

Lemmas 24 and 25 later are essentially stronger, giving corresponding upper
bounds in terms of 75 instead of 71. But a proof of Lemma 18 is interesting
for comparison with the cat-and-mouse game below.

Proof of Lemma 18. By definition of T1(2), for the chain started at 79 we
can find stopping times Uy, Us, . .. such that

E(Ussr — Uy Xy u < U,) < 77
(X(Us);s > 1) are independent with distribution 7.
So S; = min{s: X(Us) = j} has E;.S; = 1/7;, and so
BT, < ByUs, < T
il < By Us; < ﬂ_—]

where the second inequality is justified below. The second assertion of the
lemma is now clear, and the first holds by averaging over j.

The second inequality is justified by the following martingale result,
which is a simple application of the optional sampling theorem. The “equal-
ity” assertion is sometimes called Wald’s equation for martingales.

Lemma 19 Let 0 =Yy <Y; <Y;... be such that
E(Yiq1 = YilY;,5<i)<e, 020
for a constant c¢. Then for any stopping time T,
EYr < cET.
If in the hypothesis we replace “< ¢” by “= ¢”, then EYr = cET.

Cat-and-Mouse Game. Here is another variation on the type of game
described in Chapter 3 section yyy. Fix a graph. The cat starts at some
vertex v, and follows a continuous-time simple random walk. The mouse
starts at some vertex v, and is allowed an arbitrary strategy. Recall the

17



mouse can’t see the cat, so it must use a deterministic strategy, or a random
strategy independent of the cat’s moves. The mouse seeks to maximize
EM, the time until meeting. Write m* for the sup of EM over all starting
positions v., v, and all strategies for the mouse. So m* just depends on the
graph. Clearly m* > max; ; £;T;, since the mouse can just stand still.

Open Problem 20 Does m* = max; ; F;T;7 In other words, is it never
better to run than to hide?

Here’s a much weaker upper bound on m*. Consider for simplicity a regular
n-vertex graph. Then
(1)
ent;
T e—-1
Because as remarked at (16), we can construct a strong stationary time V'

such that EV =
such that

*

(21)

6’7’1
e—

T = ¢, say. So we can construct 0 = Vo < Vi < V5.

E(Vip = VilV;,j<i)<e, 120
(X(V;i),i > 1) are independent with the uniform distribution =
(X(V;i),i > 1) are independent of (V;,7 > 1).

So regardless of the mouse’s strategy, the cat has chance 1/n to meet the
mouse at time V;, independently as ¢ varies, so the meeting time M satisfies
M < Vi where T is a stopping time with mean n, and (21) follows from
Lemma 19. This topic will be pursued in Chapter 6 yyy.

3.5 7 and flows

Since discrete-time chains can be identified with random walks on weighted
graphs, relating properties of the chain to properties of “flows” on the graph
is a recurring theme. Thompson’s principle (Chapter 3 yyy) identified mean
commute times and mean hitting times from stationarity as infs over flows
of certain quantities. Sinclair [32] noticed that 71 could be related to “mul-
ticommodity flow” issues, and we give a streamlined version of his result
(essentially Corollary 22) here. Recall from Chapter 3 section yyy the gen-
eral notation of a unit flow from a to 7, and the special flow f*—7
by the Markov chain.

induced
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Lemma 21 Consider a family f = (f(a)), where, for each state a, £(%) is a
unit flow from a to the stationary distribution ©. Define

i w0
edges (1,5) 5 TiPij

in discrete time, and substitute q;; for p;; in continuous time. Let £*77 be
the special flow induced by the chain. Then

,%b(fa—wr) S 7_1(4) S A’l/)(faﬁw)
where A is the diameter of the transition graph.

Proof. We work in discrete time (the continuous case is similar). By Chapter

3 yyy U,—VI\' Z Z
¥ _ a — ja

T Pij Ty

and so |fa_m
>

a

E |Zm - ]a

Thus
P(f*77) = max Z|Zm— al

edge 7]

The result now follows because by (12)
= maXZ | Zia — Zkal

where ¢ and k£ are not required to be neighbors. O

(4)

Using Lemmas 11 - 13 to relate 7’ to 7, we can deduce a lower bound
on 7 in terms of flows.

Corollary 22 r > <21 infg ¢(f).

Unfortunately it seems hard to get analogous upper bounds. In particular,
it is not true that

=0 <A iIflf @b(f)) .

To see why, consider first random walk on the n-cycle (Chapter 5 Example
yyy). Here 7 = ©(n?) and #(f*=™) = ©(n), so the upper bound in Lemma
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21 is the right order of magnitude, since A = ©(n). Now modify the chain by
allowing transitions between arbitrary pairs (i, ) with equal chance o(n™2).
The new chain will still have 71 = ©(n?), and by considering the special
flow in the original chain we have infg ¢ (f) = O(n), but now the diameter

A=1.

4 The relaxation time 7

The parameter 75 is the relaxation time, defined in terms of the eigenvalue
Az (Chapter 3 section yyy) as

T2 (1 —Xy)~ ! in discrete time

= A; Lin continuous time.

In Chapter 3 yyy we proved a lower bound for an n-state discrete-time chain:

1
TQZl—E

which is attained by random walk on the complete graph. We saw in Chapter
3 Theorem yyy the extremal characterization

2 = sup{[|gl13/£(g,9) : 3 mig(i) = 0}. (22)

The next three lemmas give inequalities between 7 and the parameters
studied earlier in this chapter. Write 7, = min; ;.

Lemma 23 In continuous time,

In discrete time,

Lemma 24 7, <719 < (n— 1)72.

27y

Lemma 25 7™ < —
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Proof of Lemma 23. Consider first the continuous time case. By the spectral
representation, as ¢ — oo we have p;;(t) — m; ~ ¢;exp(—t/my) with some
¢; # 0. But by Lemma 5 we have |p;;(t) — m;| = O(exp(—t/7y)). This shows
79 < 71. For the right inequality, the spectral representation gives

pii(t) — m < e, (23)
Recalling the definition (14) of d,

d(t) < 2d(t)

< y/d(2t) by Lemma 8(b)

e—?t/’)’g
< {/max by (14) and (23)
k3 ’/TZ'
7r*—1/2€—t/72

(

and the result follows. The upper bound on 712) holds in continuous time
by Lemmas 11 and 12, and so holds in discrete time because T1(2) and 7y are
unaffected by continuization.

Proof of Lemma 24. 179 < 79 because 75 is the first term in the eigen-
time identity for 9. For the other bound, Chapter 3 Lemma yyy gives the

inequality in

To = Zﬂ'jEﬂ-Tj < Z(l — 7)) = (n—1)m,.

J J

Proof of Lemma 25. Fix states a,b such that £, Ty + FyT, = 7 and
fix a function 0 < g < 1 attaining the sup in the extremal characterization
(Chapter 3 Theorem yyy), so that

"= ) g(a) =0,9(b) = 1.

Write ¢ = 37, m;g(7). Applying the extremal characterization of m, to the

k3
centered function g — ¢,

o g —cg—clf _ var ng(X0)

> = = 7" var r¢g(Xop).
E(g—c,9—c) £(9,9) (%o)

But

var rg(Xo) > T,e0 + (1 — 0)2
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> inf (may? 4+ m(1 - y)?)

0<y<1
TaTh
Comat
> 3 min(m,, Ts)
> w2

establishing the lemma. O

Simple examples show that the bounds in these Lemmas cannot be much
improved in general. Specifically
(a) on the complete graph (Chapter 5 Example yyy) 2 = (n — 1)79 and

x _ 271y
)

(b) O;{*the barbell (Chapter 5 Example yyy), 72,71 and 7o are asymptotic
to each other.
(c) In the M/M/1/n queue, /73 = O(log1/7,) as n — co. O

In the context of Lemma 23, if we want to relate Tldisc itself to eigenvalues
in discrete time we need to take almost-periodicity into account and use

8 = max(Ag, —A,) in place of 5. Rephrasing the proof of Lemma 23 gives

Lemma 26 In discrete time,

L pdisc o Lt 5logl/m.
log 1/ log 1/

Regarding a discrete-time chain as random walk on a weighted graph, let A
be the diameter of the graph. By considering the definition of the variation

[

distance d(¢) and initial vertices ¢, j at distance A, it is obvious that d(¢) = 1

for t < A/2,and hence Tldisc > [A/2]. Combining with the upper bound in
Lemma 26 leads to a relationship between the diameter and the eigenvalues
of a weighted graph.

Corollary 27

log 1 < 2+ log(1/my)
J&; A

This topic will be discussed further in Chapter yyy.
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4.1 Correlations and variances for the stationary chain

Perhaps the most natural probabilistic interpretation of 75 is as follows.
Recall that the correlation between random variables Y, Z is

EYZ)—-(EY)EZ)
Vvar Y var Z '

For a stationary Markov chain define the mazimal correlation function

cor(Y,Z) =

p(t) = max cor(h(Xo), g(X1))

h.g

This makes sense for general chains (see Notes for further comments), but
under our standing assumption of reversibility we have

Lemma 28 In continuous time,

p(t) = exp(—t/m2), t > 0.
In discrete time,
p(t) = B t>0
where § = max(Ag, —A,).
This is a translation of the Rayleigh-Ritz characterization of eigenvalues
(Chapter 3 yyy) — we leave the details to the reader.

Now consider a function g with F,g(Xo) = 0 and ||g||2 = E.¢*(Xo) > 0.
Write

St
St

Jig(Xs)ds  in continuous time
S 9(X,) in discrete time.

Recall from Chapter 2 yyy that for general chains there is a limit variance
0% = lim;_., t~'var S;. Reversibility gives extra qualitative and quantita-
tive information. The first result refers to the stationary chain.

Proposition 29 In continuous time, t~'var S; | o2, where
0 < o2 < 2m||gl|3-

And A(t/7p)to? < var .5y < to?, where

A(U)E/(;u (1—i)e_5d$:1—u_1(1—e_“)T1asuToo.

U
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In discrete time,
t~var 18, — o2 < 2m||9]3

2
o2 (1 _ %) < var 15 < ot + ||gll2

and so in particular

1
var 9 < t||g||%(27’2 + ;) (24)

Proof. Consider first the continuous time case. A brief calculation using the
spectral representation (Chapter 3 yyy) gives

Erg(Xo)g(Xe) = ) gre (25)

where g, = 3; 7r2»1/2uimg(i). So
t ot
t~lvar ,9; = t_l/ / Erg(Xu)g(Xs) dsdu
0 Jo
¢
— ! / (1 — 8)Erg(Xo)g(X,)ds
0

2/0t <1 - ;) S gl s ds (26)

m>2

= 2> i—%A(/\mt) (27)

m>2 "~

by change of variables in the integral defining A(u). The right side increases
with ¢ to
=2 Z 92 /A, (28)
m>2
and the sum here is at most 3", 5,92 /A2 = ||g||372. On the other hand,
A(-) is increasing, so -

2
lvar (5)>2 Y %A(/\Qt) = o2 A(t/ 7).

m>2 "™

In discrete time the arguments are messier, and we will omit details of
calculations. The analog of (26) becomes

t—1 .
|7l

t~'var ;8; = Z (1 - 7) Z gi s .

s=—(t—1) m>2
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In place of the change of variables argument for (27), one needs an elemen-

tary calculation to get

2

_ g
t~lvar 9, =2 " B(Ap,t
var 9% n;l—/\m ( )

T+X  A(1-=2A)
2 H(1-A)°

where B(\, 1) =

This shows

o T+ A
"1 Am

t~var .S — 0% = E g
m>2

and the sum is bounded above by

T+ X = 5 1+
ng_1—,\2

Next, rewrite (29) as

ot
var ;8¢ — 0%t = =2 Z g2 M

m>2
Then the upper bound for var ;5; follows by checking

_ O\t
. 2U=A) L
-1<A<1 (1= A)? 2

For the lower bound, one has to verify

2A(1 — M)
su -_—
L, =N+

where in the sequel we may assume Ay > 0. Then

BQmJ)thrmﬂ—%ﬂﬂ,mZQ
and so
t~var .8 > o (1 - C/t).
But

c 2X5(1 = A 2

— = < :27—2/t

t (1= 2)(1+ X)) = t(1—=2Xy)

25

llgll3 < 272||g]13-

= AR

is attained at Ay (and equals C, say)
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giving the lower bound. O

Note that even in discrete time it is 7, that matters in Proposition 29.
Eigenvalues near —1 are irrelevant, except that for a periodic chain we have
o = 0 for one particular function ¢ (which?).

Continuing the study of S; = [; g(X;)ds or its discrete analog for a
stationary chain, standardize to the case where E,g(Xo) = 0, E,¢*(Xo) = 1.
Proposition 29 provides finite-time bounds for the asymptotic approximation
of variance. One would like a similar finite-time bound for the asymptotic
Normal approximation of the distribution of 5;.

Open Problem 30 Is there some explicit function (b,s) — 0 as s — oo,
not depending on the chain, such that for standardized g and continuous-
time chains,

< P([lgllocs t/72)

St
sgp ‘PW <m < $) - P(Z <x)
where ||g||sc = max; |g(7)| and Z has Normal(0, 1) distribution?

See the Notes for further comments. For the analogous result about large
deviations see Chapter yyy.

4.2 Algorithmic issues

Suppose we want to estimate the average g = >, m;g(¢) of a function ¢
defined on state space. If we could sample i.i.d. from 7 we would need order
€72 samples to get an estimator with error about ey/var rg. Now consider
the setting where we cannot directly sample from 7 but instead use the
“Markov Chain Monte Carlo” method of setting up a reversible chain with
stationary distribution 7. How many steps of the chain do we need to get the
same accuracy? As in section 3.3, because we typically can’t quantify the
closeness to 7 of a feasible initial distribution, we consider bounds which hold
for arbitrary initial states. In assessing the number of steps required, there
are two opposite traps to avoid. The first is to say (cf. Proposition 29) that
¢7 21, steps suffice. This is wrong because the relaxation time bounds apply
to the stationary chain and cannot be directly applied to a non-stationary
chain. The second trap is to say that because it take ©(7) steps to obtain
one sample from the stationary distribution, we therefore need order e =27
steps in order to get £~2 independent samples. This is wrong because we
don’t need independent samples. The correct answer is order (11 + £7%7)

steps. The conceptual idea (cf. the definition of 71(2)) is to find a stopping
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time achieving distribution 7 and use it as an initial state for simulating the
stationary chain. More feasible to implement is the following algorithm.
Algorithm. For a specified real number #; > 0 and an integer mq > 1,
generate M (¢y) with Poisson(t;) distribution. Simulate the chain X; from
arbitrary initial distribution for M(#;) + mgy — 1 steps and calculate

Ag,t1,ma) =
Corollary 31

P([A(g,t1,m2) = g > ellgll2) < s(t1) +
where s(t) is separation (recall section 3.1) for the continuized chain.

To make the right side approximately § we may take

4T
t =i [log(2/6)]; ma = [5].

Since the mean number of steps is t; + mo — 1, this formalizes the idea that
we can estimate § to within ¢||g||, in order (1 + e727,) steps.

xxx if don’t know tau‘s

Proof. We may suppose g = 0. Since Xpy(;,) has the distribution of the
continuized chain at time ¢;, we may use the definition of s(#1) to write

P(Xpmy €)= =s(ti))m +s(t)p

for some probability distribution p. It follows that

m2—1

Z Q(Xt)

t=0

P(|A(g,t1,m2)| > 5||g||2) < S(tl) + Pr (

> 6||g||2)

1
mgy
1 m2—1
<s(t) + —5——— var » ( g(Xt)> .
TP PP

Apply (24).
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4.3 7, and distinguished paths

The extremal characterization (22) can be used to get lower bounds on 7, by
considering a tractable test function g. (xxx list examples). As mentioned in
Chapter 3, it is an open problem to give an extremal characterization of 7 as
exactly an inf over flows or similar constructs. As an alternative, Theorem
32 gives a non-exact upper bound on 75 involving quantities derived from
arbitrary choices of paths between states. An elegant exposition of this idea,
expressed by the first inequality in Theorem 32, was given by Diaconis and
Stroock [16], and Sinclair [32] noted the second inequality. We copy their
proofs.

We first state the result in the setting of random walk on a weighted
graph. As in section 1, consider a path =z = 1g,%1,...,%,, = y, and call this
path 7,,. This path has length |y,,| = m and has “resistance”

T(FyIZ/) = Z 1/we
SEme

where here and below e denotes a directed edge.

Theorem 32 For each ordered pair (z,y) of vertices in a weighted graph,
let vy be a path from z to y. Then for discrete-time random walk,

S wmax )Y momyr(Yoy)l(cers,)
Ty

1
T2 S wmax - DD Ty Yoyl L eensy)-
e r y

Note that the two inequalities coincide on an unweighted graph.

Proof. Yor an edge e = (i,7) write Ag(e) = g(j) — g(¢). The first
equality below is the fact 2 var (Y;) = E(Y; — Y3)? for i.i.d. Y'’s, and the
first inequality is Cauchy-Schwarz.

2gll; = D°D memy(g(y) — g(x))?

xr

= EZ’}TIﬂ'y ( E Ag(e))

1

= Zﬂ:zﬂ'xﬂ'yr(’Yry) ( Ez: \/m\/w_eAg(e)) (30)
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< DY memyr(my) Y we(Ag(e))? (31)
r oy e€Yzy

= YD mmyr(Tay) D we(Ag(€)) ey

< nZwe(Ag(e))z =k 2wé&(g,9) (32)

where k is the max in the first inequality in the statement of the Theorem.
The first inequality now follows from the extremal characterization (22). The
second inequality makes a simpler use of the Cauchy-Schwarz inequality, in
which we replace (30,31,32) by

= %:Zﬂﬂry ( Z 1-Ag(e))

e€Vzy

Zzﬂ—ﬂﬁﬂthl Z (Ag(e))? (33)

e€Vzy

< K'Y we(Agle)? = K 20E(g, g)

IN

where x’ is the maz in the second inequality in the statement of the Theorem.

Remarks. (a) Theorem 32 applies to continuous-time (reversible) chains
by setting w;; = m;q;;.

(b) One can replace the deterministic choice of paths v;, by random
paths I'y, of the form = Vi, V4,..., Vs = y of random length M = |I',|.
The second inequality extends in the natural way, by taking expectations in
(33) to give

<D memy E ( Toyll(eers,) Z(Agw) ,

e

and the conclusion is
Corollary 33

Ty < wmax —

1
e ‘we

Z E Ty E |Fl’-y|1(e€1}y)'
Yy

xr

(c) Inequalities in the style of Theorem 32 are often called Poincaré
inequalities because, to quote [16], they are “the discrete analog of the clas-
sical method of Poincaré for estimating the spectral gap of the Laplacian
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on a domain (see e.g. Bandle [9])”. I prefer the descriptive name the dis-
tinguished path method. This method has the same spirit as the coupling
method for bounding 7 (see Chapter yyy), in that we get to use our skill
and judgement in making wise choices of paths in specific examples. xxx
list examples. Though its main utility is in studying hard examples, we give
some simple illustrations of its use below.

Write the conclusion of Corollary 33 as 79 < wmax, w% F(e). Consider
a regular unweighted graph, and let I';. , be chosen uniformly from the set
of minimum-length paths from z to y. Suppose that F'(e) takes the same
value F for every directed edge e. A sufficient condition for this is that the
graph be arc-transitive (see Chapter 8 yyy). Then, summing over edges in
Corollary 33,

2| E | < wZZZﬂxﬂyszyH(eepw) = ’wZZﬂ'Z’/TyE|F$y|2
e T Yy z Yy

where | < | is the number of directed edges. Now w = | < |, so we may
reinterpret this inequality as follows.

Corollary 34 For random walk on an arc-transitive graph, 9 < FED?,
where D = d(&1,&;) is the distance between independent uniform random
vertices £1, €.

In the context of the d-dimensional torus Zj'(;, the upper bound is asymptotic

(as N — o) to NQE( 4, Ui)2 where the U; are independent uniform
[0,1/2], This bound is asymptotic to d(d + 1/3)N?/16. Here (Chapter 5
Example yyy) in fact 73 ~ dN?/(27?%), so for fixed d the bound is off by only
a constant. On the d-cube (Chapter 5 Example yyy), D has Binomial(d, 1/2)
distribution and so the bound is ED? = (d? + d)/4, while in fact 7, = d/2.

Intuitively one feels that the bound in Corollary 34 should hold for more
general graphs, but the following example illustrates a difficulty.

Example 35 Consider the graph on n = 2m vertices obtained from two
complete graphs on m vertices by adding m edges comprising a matching of
the two vertex-sets.

Here a straightforward implementation of Theorem 32 gives an upper bound
of 2m, while in fact 72 = m/2. On the other hand the conclusion of Corol-
lary 34 would give an O(1) bound. Thus even though this example has a
strong symmetry property (vertez-transitivity: Chapter 8 yyy) no bound
like Corollary 34 can hold.
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5 The flow parameter 7.

In this section it’s convenient to work in continuous time, but the numerical
quantities involved here are unchanged by continuization.

5.1 Definition and easy inequalities

Define (A)r(A)
T T(A"®
T, = sup ————> 34
& QA A7) (3
where
Q(A,A) =D > migi;
1€A jEAC

and where such sups are always over proper subsets A of states. This param-
eter can be calculated exactly in only very special cases, where the following
lemma is helpful.

Lemma 36 The sup in (34) is attained by some split { A, A°} in which both
A and A° are connected (as subsets of the graph of permissible transitions).

Proof. Consider a split {A, A°} in which A is the union of m > 2 connected

components (B;). Write v = min; %. Then

QA A = QB B)
7Y w(Bw(B)
= Y (r(B) - 7))

= 7 (W(A) - ZWQ(Bz’))

7

v

and so
Q(A, A°) > T(A) = >, 7r2(BZ')‘
m(A)w(Ac) —  7w(A) - 7(A)

But for m > 2 we have Y, 7%(B;) < (3, )2

A,A° !
ey > 7- O

= 7%(A), which implies
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To see how 7. arises, note that the extremal characterization of 7, (22)
applied to g = 14 implies
m(A)m(A%)
Q(A, A°) ~

for any subset A. But much more is true: Chapter 3 yyy may be rephrased
as follows. For any subset A,

T2

m(A)r(A°)  w(A)E, Ty
Q(A, A°) < (A < m(A)E, T < 7

where a4 is the quasistationary distribution on A€ defined at Chapter 3 yyy.
So taking sups gives

Corollary 37

T(A)E T4

T. < su -
W (a9

S SUPW(A)EQATA S 72.

A
In a two-state chain these inequalities all become equalities. This seems a
good justification for our choice of definition of 7., instead of the alternative

a _m4)
ay<1/2 Q(A, A%)

which has been used in the literature but which would introduce a spurious
factor of 2 into the inequality 7. < 7.

Lemma 39 below shows that the final inequality of Corollary 37 can be
reversed. In contrast, on the n-cycle 7. = ©(n) whereas the other quantities
in Corollary 37 are ©(n?). This shows that the “square” in Theorem 40
below cannot be omitted in general. It also suggests the following question

(5))

(cf. 7 and 7
Open Problem 38 Does there exist a constant K such that

T(A)E T4

79 < K su
S VD

for every reversible chain?

A positive answer would provide, via Chapter 3 yyy, a correct order-of-
magnitude extremal characterization of 7 in terms of flows.
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Lemma 39

Ty < sup Ey,Ta
A:r(A)>1/2

and so in particular
Ty < 2supw(A)E, ,Ty.
A
Proof. 15 = ||h||3/E(h, k) for the eigenvector h associated with Ay, Put
A=A{z:h(z) <0}

and assume m(A) > 1/2, by replacing h by —h if necessary. Write hy =
max(h,0). We shall show

7o < Ay |[3/E(hs s hy) (35)
and then the extremal characterization Chapter 3 yyy
Eo,Ta = sup{||gl|3/€(9,9) 19 > 0,9 = 0 on A} (36)

implies 73 < E, T4 for this specific A.

The proof of (35) requires us to delve slightly further into the calculus of
Dirichlet forms. Write P;f for the function (P.f)(i) = E;f(X;) and write
(f,g) for the inner product 3=, m; f(i)g(i). Write 0(-) for £(-)¢=o. Then

of, Prg) = =E(f,9)

where )
£(7.9)= 1 Y 0G) - FONali) - oi)as
i
Now consider d(h4,P;h). On the one hand
O(hy, Peh) = =E(hy, h) < —E(hy, hy)

where the inequality follows from the inequality (¢t —b7)? < (aT—b%)(a—b)

for real a,b. On the other hand, (hy,h) < (hy,hy) = ||h4|]3, and the
eigenvector h satisfies 9(P¢h) = —Azh, so

Oy, Pih) > = ol lho I3

Combining these inequalities leads to (35).
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5.2 Cheeger-type inequalities

A lot of attention has been paid to reverse inequalities which upper bound
79 in terms of 7. or related “flow rate” parameters. Motivation for such
results will be touched upon in Chapter yyy. The prototype for such results
is

Theorem 40 (Cheeger’s inequality) 7, < 8¢*72, where ¢* = max; ;.

This result follows by combining Lemma 39 above with Lemma 41 below.
In discrete time these inequalities hold with ¢* deleted (i.e. replaced by
1), by continuization. Our treatment of Cheeger’s inequality closely follows
Diaconis and Stroock [16] — see Notes for more history.

Lemma 41 For any subset A,

2q* 12
T2(A

E,, Ty <

dA

~—

Proof. Fix A and g with ¢ > 0 and g = 0 on A.

(Z > lg*(@) - 92(y)l7rzqry)

z#y

< DN (9(@) = 9(9)*Taqey X D Y (9(2) + 9(3)*Tatay
Y TFY
by the Cauchy-Schwarz inequality

= 28(g,9) Y Y (9(2) + 9(y))*Tutuy

TFy

< 48(g,9) DD (0% (@) + 87 (1) Tallay

Ty
= 88(9,9)) Ty’ (v)

8¢*£(g,9) |l91]3-

IN

On the other hand

SN 19% @) = 62 (W) Tty

z#y

= 2) > (9%(2) = FP(W)Taty
9(x)>9(y)
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= 42 Z (/g(gg)tdt) TGy
g(z)> o

9(y) v)

= / ( quzy) dt
y)<t<g(z)

= 4/ t Q(Bt,Btc) dt where B; = {z : g(z) > t}

o 7(By)
> 4/ m(By) ) dt by definition of 7,
00 ﬂ- )
> 4/ dt because g =0 on A
_ >||g||2
TC
Rearranging,
llgll3 _ 2q*72

&(g,9) ~ m(A)
and the first assertion of the Theorem follows from the extremal character-
ization (36) of F, T4

5.3 7. and hitting times
Lemma 25 and Theorem 40 imply a bound on 7* in terms of 7.. But a direct
argument, using ideas similar to those in the proof of Lemma 41, does better.
Proposition 42

‘< 4(1+ logn)

min; 7;

Example 43 below will show that the log term cannot be omitted. Compare
with graph-theoretic bounds in Chapter 6 section yyy.

Proof. Fix states a,b. We want to use the extremal characterization
(Chapter 3 yyy). So fix a function 0 < g < 1 with g(a) = 0,¢9(b) = 1. Order

the states as a = 1,2,3,...,n = b so that g(-) is increasing.
£(g,9) = D> ma(g(k) - g(i))®
1<k
> 33> migin(g(G+1) - 9(5))?
1K<k
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= D (9(5+1) = 9(7))*Q(A;, A3), where A; =1, 5]

> S+ 1) - g (37)
But
. . . . 1/2(A ) 1/2(‘4]) Tcl/2
1= (9(+1)-90) = D _(9(i+1)—9(7) 7 T AT AT
So by Cauchy-Schwarz and (37)
1<7.8(g,9 Z (38)

J ’/T ] ( ])
But m(A;) > jm., where m, = min; 1;, so
2

_— § —(1 + logn).
jnr(g):suz ”(AJ)”( j =

The same bound holds for the sum over {j : 7(A;) > 1/2}, so applying (38)
we get

! < ! (14 logn)
— <7, — ogn
£(g,9) — T &

and the Proposition follows from the extremal characterization.

Example 43 Consider the weighted linear graph with loops on vertices
{0,1,2,...,n — 1}, with edge-weights

Wi =1, 1 <i<n—1;  wy=2n—ilgze) — (14 1)1 (izn-1)-

This gives vertex-weights w; = 2n, and so the stationary distribution is
uniform. By the commute interpretation of resistance,

n—1

™ = Eoly_1 4+ By = wrg 1 = on? Z 1/i ~ 2n%log n.

i=1
Using Lemma 36, the value of 7. is attained by a split of the form {[0, j],[7 +
1,n — 1]}, and a brief calculation shows that the maximizing value is j = 0
and gives

. =2(n—1).

So in this example, the bound in Proposition 42 is sharp up to the numerical
constant.

36



6 Induced and product chains

Here we record the behavior of our parameters under two natural operations
on chains.

6.1 Induced chains

Given a Markov chain X; on state space I and a function f : I — f, the
process f(X;) is typically not a Markov chain. But we can invent a chain
which substitutes. In discrete time (the continuous case is similar) define
the induced chain Xt to have transition matrix

o L L ()=if(G)=) TP

p; = Pr(f(Xy) = jIf(Xo) =1) = 5 . (39)
if(i)=i T
More informatively, we are matching the stationary flow rates:
Pa(Xo=1,X1 = j) = Pr(f(Xo) = 1, f(X1) = J)- (40)

The reader may check that (39) and (40) are equivalent. Under our standing
assumption that X} is reversible, the induced chain is also reversible (though
the construction works for general chains as well). In the electrical network
interpretation, we are shorting together vertices with the same f-values.
It seems intuitively plausible that this “shorting” can only decrease our
parameters describing convergence and mean hitting time behavior.

Proposition 44 (The contraction principle) The values of T*, 79, T2
and 7. in an induced chain are less than or equal to the corresponding values
in the original chain.

Proof. A function § : I — R pulls back to a function g = g(f(-)): I — R.
So the Dirichlet principle (Chapter 3 yyy) shows that mean commute times
can only decrease when passing to an induced chain:

EpaTi) + EsnTry < BTy + BT

This establishes the assertion for 7* and 73, and the extremal characteri-
zation of relaxation time works similarly for 7. The assertion about 7. is
immediate from the definition, since a partition of I pulls back to a partition
of I. O

On the other hand, it is easy to see that shorting may increase a one-
sided mean hitting time. For example, random walk on the unweighted

37



graph on the left has F,T; = 1, but when we short {a,d} together to form
vertex @ in the graph on the right, F;T, = 2.

Finally, the behavior of the 7y -family under shorting is unclear.

Open Problem 45 Is the value of 7'1(2) in an induced chain bounded by K
)

times the value of T1(2 in the original chain, for some absolute constant K %

For K =17

6.2 Product chains

Given Markov chains on state spaces I(") and I(?), there is a natural concept
of a “product chain” on state space (1) x I(?) Tt is worth writing this concept
out in detail for two reasons. First, to prevent confusion between several
different possible definitions in discrete time. Second, because the behavior
of relaxation times of product chains is relevant to simple examples and has
a surprising application (section 6.3).

As usual, things are simplest in continuous time. Define the product
chain to be

X = (xM, xP)

where the components Xt(l) and Xt(Q) are independent versions of the given
chains. So
. 1 1 : 2 2 :
Py (X = (o) = PO = PO = o). (41)
Using the interpretation of relaxation time as asymptotic rate of conver-
gence of transition probabilities, (Chapter 3 yyy) it is immediate that X
has relaxation time

(1) _(2)

Ty = max(7ry ', Ty ). (42)

In discrete time there are two different general notions of “product

( (2)

chain”. Omne could consider the chain (th),Xt ) whose coordinates are
the independent chains. This is the chain with transition probabilities

(i1,72) — (J1,J2) : probability P(l)(ilajl)P(Q)(h,jQ)
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and has relaxation time

Ty = maX(TZ(I), 7'2(2)).
But it is more natural to define the product chain X; to be the chain with
transition probabilities

(i1,72) — (j1,72) : probability §P(1)(21,]1)

(i1,72) — (41,72) : probability §P(2)(227]2)-

This is the jump chain derived from the product of the continuized chains,
and has relaxation time

Ty = QmaX(TQ(I), TQ(Q)). (43)

Again, this can be seen without need for calculation: the continuized chain
is just the continuous-time product chain run at half speed.

This definition and (43) extend to d-fold products in the obvious way.
Random walk on Z? is the product of d copies of random walk on Z', and
random walk on the d-cube (Chapter 5 yyy) is the product of d copies of
random walk on {0, 1}.

Just to make things more confusing, given graphs G(1) and G(?) the
Cartesian product graph is defined to have edges

('Ula lwl) A ('02, 'wl) for V1 < V9

(Ula'wl) Ad (?J1,‘w2) for Wy < Wa.

If both G and G are r-regular then random walk on the product graph
is the product of the random walks on the individual graphs. But in general,
discrete-time random walk on the product graph is the jump chain of the
product of the fluid model (Chapter 3 yyy) continuous-time random walks.
Soif the graphs are r1- and ro-regular then the discrete-time random walk on
the product graph has the product distribution as its stationary distribution
and has relaxation time

Ty = (r1 4 72) max(rg(l)/rl, 7'2(2)/7“2).

But for non-regular graphs, neither assertion is true.
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Let us briefly discuss the behavior of some other parameters under prod-
ucts. For the continuous-time product (41), the total variation distance d
of section 3 satisfies

d(t) =1—(1—dM(1))(1 - dP(1))
and we deduce the crude bound

1 < Qmax(rl(l),rlu))
where superscripts refer to the graphs G(l), G® and not to the parameters
in section 3.1. For the discrete-time chain, there is an extra factor of 2 from
“slowing down” (cf. (42,43)), leading to

7 < 41[1&)((7’1(1)7 7'1(2)).
Here our conventions are a bit confusing: this inequality refers to the discrete-
time product chain, but as in section 3 we define 74 via the continuized chain
— we leave the reader to figure out the analogous result for Tldlsc discussed
in section 3.3.

To state a result for 7y, consider the continuous-time product (Xlt(l)7 Xt(Q))
of independent copies of the same n-state chain. If the underlying chain
has eigenvalues (A;;1 < ¢ < n) then the product chain has eigenvalues
(Ai+A;51<4,7 <n)and so by the eigentime identity
1

= E X+ A

4,5>1;(4,5)#(1,1) !

= 20+ )

7_g)roduct

R
n n 1
= 2 2
o+ Z Z A+ /\J'
=2 j=1
< QTO—I—Zn:(n—i—}-l)z
B =2 AZ
< 27194 (n—1)279 = 2n7y.
Thus in discrete time duct
o 0T < drg, (44)
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6.3 Efron-Stein inequalities

The results above concerning relaxation times of product chains are essen-
tially obvious using the interpretation of relaxation time as asymptotic rate
of convergence of transition probabilities, but they are much less obvious
using the extremal interpretation. Indeed, consider the n-fold product of a
single chain X with itself. Write (Xo, X;) for the distribution at times 0
and 1 of X, and 7, for the relaxation time of X. Combining (43) with the
extremal characterization (22) of the relaxation time for the product chain,
a brief calculation gives the following result.

)

Corollary 46 Let f: 1" — R be arbitrary. Let (XD, YD) i=1,....n b
independent copies of (Xo, X1). Let 7 = f(X(l), .. .,X(”)) and let Z0) =
X, xED Y@ x @YD X)), Then

var (7) <
. nTy.
3 S B(Z = 702 = 7

To appreciate this, consider the “trivial” case where the underlying Markov
chain is just an i.i.d. sequence with distribution # on /. Then 7 = 1 and
the 2n random variables (X () Y ():1 < i < n) are i.i.d. with distribution 7.
And this special case of Corollary 46 becomes (45) below, because for each
i the distribution of Z — Z() is unchanged by substituting X, for Y.

Corollary 47 Let f : I" — R be arbitrary. Let (Xo, X1,...,X,) be i.i.d.
with distribution 7. Let Z() = f( X1, ., Xiz1, Xo, Xig1,- -, Xn) and let
Z = f(X1,...,Xn). Then

1 7
var () < 5 ;E(Z — 7(0))? (45)
If f is symmetric then
var (2) < Y E(zW - Z)? (46)
1=0

_ 1 .
where Z©) = 7 and 7 = T 20 ARE
Note that in the symmetric case we may rewrite

78 = f(Xo, X1,y Xiz1, Xig1s -0, Xn)-
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This reveals (46) to be the celebrated Efron-Stein inequality in statistics,
and in fact (45) is a known variant (see Notes).

Proof. As observed above, (45) is a special case of Corollary 46. So it
is enough to show that for symmetric f the right sides of (45) and (46) are
equal. Note that by symmetry a = E(Z(i))2 does not depend on ¢, and
b= EZ"DZ) does not depend on (i,7), for j # 1. So the right side of (45)
is

%n(a —2b+a)=n(a-0b).

But it is easy to calculate

a nb

EZWZ = EZ? = +
n+1 n+1

and then the right side of (46) equals

(n+1)(a—2EZYZ + EZ?) = na — nb.

6.4 Why these parameters?

The choice of parameters studied in this chapter is partly arbitrary, but our
choice has been guided by two criteria, one philosophical and one technical.
The philosophical criterion is

when formalizing a vague idea, choose a definition which has
several equivalent formulations.

This is why we used the maximal mean hitting time parameter max; ;(£;7;+
E;T;) instead of max; ; E;T;, because the former permits the equivalent “re-
sistance” interpretation.

Here is the technical criterion. Given a continuous-time chain X; and a
state ¢, create a new chain X/ by splitting ¢ into two states ¢;, 23 and setting

G = = Gy JF 1
A5, = 954, = 5(]]‘2' JF#
Griy, = Gipiy = P
with ¢* = ¢ elsewhere. Then 7*(i1) = 7*(i3) = 3m(i), with 7* = 7 else-
where. As p — oo, we may regard the new chain as converging to the old
chain in a certain sense. So our technical criterion for parameters 7 is that
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the value of 7 for X* should converge, as p — oo, to the value for X. It is
easy to check this holds for the 7’s we have studied, but it does not hold for,

say,

T= mi?x ;BT

which at first sight might seem a natural parameter.

7 Notes on Chapter 4

Section 3.1. The definition of 7'1(2) involves the idea of a stopping time U such
that Xy has distribution 7 and is independent of the starting position. This
idea is central to the standard modern theory of Harris-recurrent Markov
chains, i.e. chains on continuous space which mimic the asymptotic behavior
of discrete recurrent chains, and does not require reversibility. See [17] sec.
5.6 for an introduction, and [8, 30] for more comprehensive treatments. In
that field, researchers have usually been content to obtain some finite bound
on FU, and haven’t faced up to our issue of the quantitative dependence of
the bound on the underlying chain.

Separation and strong stationary times were introduced in Aldous and
Diaconis [5], who gave some basic theory. These constructions can be used to
bound convergence times in examples, but in practice are used in examples
with much special structure, e.g. non-necessarily-symmetric random walks
on groups. Examples can be found in [4, 5] and Matthews [28]. Development
of theory, mostly for stochastically monotone chains on 1-dimensional state
space, is in Diaconis and Fill [14, 15], Fill [20, 21] and Matthews [29].

The recurrent balayage theorem (Chapter 1 yyy) can be combined with
the mean hitting time formula to get

7'1(2) = max _—Z” (47)
17 ’/T]'
Curiously, this elegant result doesn’t seem to help much with the inequalities
in Theorem 6.

What happens with the 7-family of parameters for general chains re-
mains rather obscure. Some counter-examples to equivalence, and weaker
inequalities containing log 1/, factors, can be found in [1]. Recently, Lovasz

and Winkler [27] initiated a detailed study of 71(2) for general chains which
promises to shed more light on this question.
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Our choice of 71 as the “representative” of the family of Tl(i) ’s is somewhat
arbitrary. One motivation was that it gives the constant “1” in the inequality
79 < 11. It would be interesting to know whether the constants in other basic

inequalities relating the 7 -family to other parameters could be made “1”:

Open Problem 48 (a) Is < 7107
(b) Is 75 < Tl(z)?

Much of recent sophisticated theory xxx refs bounds d(¢) by bounding
d(t) and appealing to Lemma 7(b). But it is not clear whether there is an
analog of Theorem 6 relating the d-threshold to other quantities.

Section 3.2. The parts of Theorem 6 involving Tl(l) and Tl(g) are implicit
rather than explicit in [1]. That paper had an unnecessarily complicated
proof of Lemma 13. The proof of (15) in [1] gives a constant K = e'3.
It would be interesting to obtain a smaller constant! Failing this, a small
constant in the inequality 7'1(1) < ](7'1(3) would be desirable. As a weaker

result, it is easy to show

Tl(l) < 10minmax FE;T; (48)
7 %
which has some relevance to later examples (yyy).

Section 3.3. The analog of Open Problem 17 in which we measure dis-
tance from stationarity by d instead of d(t) is straightforward, using the
“CM proxy” property of discrete time chains:

Pi(Xy = i)+ P(Xgr41 = i) | 0 as t — oc.

Open Problem 17 itself seems deeper, though the weaker form in which we
require only that ¢(¢) = O(t) can probably be proved by translating the
proof of (15) into discrete time and using the CM proxy property.

Section 3.4. The cat-and-mouse game was treated briefly in Aleliunas et
al [6], who gave a bare-hands proof of a result like (21). Variations in which
the cat is also allowed an arbitrary strategy have been called “princess and
monster” games — see Isaacs [23] for results in a different setting.

Section 3.5. Sinclair [32] points out that “hard” results of Leighton and
Rao [25] on multicommodity flow imply

ilfl‘f P(f) < Ky logn. (49)

This follows from Corollary 22 and Lemma 23 when 7 is uniform, but Sinclair
posed
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Open Problem 49 (i) Is there a simple proof of (49) in general?
(ii) Does (49) hold with the diameter A in place of logn?

Section 4. As an example of historical interest, before this topic became
popular Fiedler [19] proved

Proposition 50 For random walk on a n-vertex weighted graph where the
stationary distribution is uniform,
w wn

T2<7N—

~ 4ncsin? 7 T2

where ¢ is the minimum cut defined at (4).

This upper bound is sharp. On the other hand, Proposition 2 gave the same
upper bound (up to the numerical constant) for the a priori larger quantity
7%, and so is essentially a stronger result.

Section 4.1. In the non-reversible case the definition of the maximal
correlation p(¢) makes sense, and there is similar asymptotic behavior:

p(t) ~ cexp(—At) as t — o0

where A is the “spectral gap”. But we cannot pull back from asymptotia
to the real world so easily: it is not true that p(¢) can be bounded by
K exp(—At) for universal K. A dramatic example from Aldous [3] section 4
has for each n an n-state chain with spectral gap bounded away from 0 but
with p(n) also bounded away from 0, instead of being exponentially small.
So implicit claims in the literature that estimates of the spectral gap for
general chains have implications for finite-time behavior should be treated
with extreme skepticism.

It is not surprising that the classical Berry-Esseen Theorem for i.i.d.
sums ([17] Thm. 2.4.10) has an analog for chains. Write o2 for the asymp-
totic variance rate in Proposition 29 and write Z for a standard Normal
T.v.

Proposition 51 There is a constant K, depending on the chain, such that
S
sup | Pr(—= < z) — P(Z < z)| < Kt~'/?
T Ut1/2

for allt > 1 and all standardized g.
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This result is usually stated for infinite-state chains satisfying various mix-
ing conditions, which are automatically satisfied by finite chains. See e.g.
Bolthausen [10]. At first sight the constant K depends on the function g
as well as the chain, but a finiteness argument shows that the dependence
on g can be removed. Unfortunately the usual proofs don’t give any useful
indications of how K depends on the chain, and so don’t help with Open
Problem 30.

The variance results in Proposition 29 are presumably classical, being
straightforward consequences of the spectral representation. Their use in
algorithmic settings such as Corollary 31 goes back at least to [2].

Section 4.3. Systematic study of the optimal choice of weights in the
Cauchy-Schwarz argument for Theorem 32 may lead to improved bounds in
examples. Alan Sokal has unpublished notes on this subject.

Section 5.1. The quantity 1/7., or rather this quantity with the alter-
nate definition of 7. mentioned in the text, has been called conductance.
I avoid that term, which invites unnecessary confusion with the electrical
network terminology. However, the subscript ¢ can be regarded as standing
for “Cheeger” or “conductance”.

In connection with Open Problem 38 we mention the following result.
Suppose that in the definition (section 4.1) of the maximal correlation func-
tion p(t) we considered only events, i.e. suppose we defined

p(t) = sup cor(1(xyea), L(x.eB))-
A,B
Then p(t) < p(t), but in fact the two definitions are equivalent in the sense
that there is a universal function ¥(z) | 0 as z | 0 such that p(t) < ¥(4(1)).
This is a result about “measures of dependence” which has nothing to do
with Markovianness — see e.g. Bradley et al [11].

Section 5.2. The history of Cheeger-type inequalities up to 1987 is dis-
cussed in [24] section 6. Briefly, Cheeger [13] proved a lower bound for
the eigenvalues of the Laplacian on a compact Riemannian manifold, and
this idea was subsequently adapted to different settings — in particular, by
Alon [7] to the relationship between eigenvalues and expansion properties of
graphs. Lawler and Sokal [24], and independently Jerrum and Sinclair [31],
were the first to discuss the relationship between 7. and 75 at the level of
reversible Markov chains. Their work was modified by Diaconis and Stroock
[16], whose proof we followed for Lemmas 39 and 41. The only novelty in my
presentation is talking explicitly about quasistationary distributions, which
makes the relationships easier to follow.
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equ
the

xxx give forward pointer to results of [26, 22].

Section 6.2. See Efron-Stein [18] for the origin of their inequality. In-
ality (45), or rather the variant mentioned above Corollary 47 involving
2n i.i.d. variables
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