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xxx In next revision, we should change the definition [in Chapter 4,

yyy:(14)] of d(t) so that what is now \/d(2t) becomes d(t).

This chapter concerns advanced L2-based techniques, developed mainly
by Persi Diaconis and Laurent Saloff-Coste [2, 3, 4, 5] for bounding mixing
times for (finite, irreducible) reversible Markov chains. For convenience,
we will work in continuous time throughout this chapter, unless otherwise
noted. Many of the results are conveniently expressed in terms of an “L?
threshold time” 7 (xxx use different notation?) defined by

7:=inf{t > 0: meCLXHPZ'(Xt €)—7()|2< e} (1)

xxx For NOTES: Discussion of discrete time, esp. negative eigenvalues.

Several preliminary comments are in order here. First, the definition of
the L2 distance || P;(X; € -) — 7(+)||]2 may be recalled from Chapter 2 section
yyy:6.2, and Chapter 3 yyy:(55) and the spectral representation give useful
reexpressions:

IP(Xee ) =7()E = 3o (M—l)

- ™5
j J

pii(2t)
- 1 P
)
= 7! Z exp( =2\ t)ud,.
m=2



Second, from (2) and Chapter 4 yyy:(14) we may also write the maximum
L? distance appearing in (1) using
Ppii(2)

(2t
max | X, € ) — 7()[2 = max PECD g g 2is(20)
2 7 5 2,7 71']'

— 1 =d(21).

Third, by the application of the Cauchy—Schwarz lemma in Chapter 4 Lemma
yyy:8, variation distance can be bounded by L? distance:

A1) = AR E)—mOIP < IP(Xe) - r()E @)
101 = dmax || (X, € ) - 70| < d(20); (4)

these inequalities are the primary motivation for studying L? distance.
As argued in Chapter 4 yyy:just following (23),

d(2t) < w7te 2, (5)

where 79 := /\2_1 is the relaxation time and 7, := min; w;. Thus if

1 1
t> 1 <§log——|—c),

™
then
d(t) < 3\/d(2t) < 3¢7°, (6)
which is small if ¢ is large; in particular, (6) gives the upper bound in
<7< (11 ! 1) 7
To ST STy QOgﬂ_*—l' ’ ()

and the lower bound follows easily.

For many simple chains (see Chapter 5), 72 can be computed exactly.
Typically, however, 7, can only be bounded. This can be done using the
“distinguished paths” method of Chapter 4 Section yyy:3. In Section 1 we
will see that that method may be regarded as a special case of a “comparison
method” whereby a chain with “unknown” relaxation time is compared to
a second chain with “known” relaxation time. The greater generality often
leads to improved bounds on 79. As a bonus, the comparison method also
gives bounds on the other “unknown” eigenvalues, and such bounds in turn
can sometimes further decrease the time ¢ required to guarantee that d(2t),
and hence also d(t), is small.



A second set of advanced techniques, encompassing the notions of Nash
inequalities, moderate growth, and local Poincaré inequaltities, is described
in Section 3. The development there springs from the inequality

1P:(X: € ) = 7(:)l|2 < N(s)e =2, (8)

established for all 0 < s <t in Section 2, where

(2t
N(#) = max || Pi(Xy € )lo = max (22D 45 g, (9)

Choosing s = 0 in (8) gives
IP(X; €)= m( )] < m] 2t

and maximizing over ¢ recaptures (5). The point of Section 3, however,
is that one can sometimes reduce the bound by a better choice of s and
suitable estimates of the decay rate of N(-). Such estimates can be provided
by so-called Nash inequalities, which are implied by (1) moderate growth
conditions and (2) local Poincaré inequalities. Roughly speaking, for chains
satisfying these two conditions, judicious choice of s shows that variation
mixing time and 7 are both of order A%, where A is the diameter of the
graph underlying the chain.

xxx Might not do (1) or (2), so need to modify the above.

To outline a third direction of improvement, we begin by noting that nei-
ther of the bounds in (7) can be much improved in general. Indeed, ignoring
0O(1) factors as usual, the lower bound is equality for the n-cycle (Chapter 5,
Example yyy:7) and the upper bound is equality for the M/M/1/n queue
(Chapter 5, Example yyy:6) with traffic intensity p € (0,1).

In Section 4 we introduce the log-Sobolev time 1; defined by

7 :=sup{L(g)/E(g,9): g # constant} (10)

where L(g) is the entropy-like quantity

L(g) = mig(i) log(lg(i)/[lgl2).

recalling ||g||3 = 3, mig(¢). Notice the similarity between (10) and the
extremal characterization of 73 (Chapter 3 Theorem yyy:22):

m = sup{|lg[l3/€(g,9) : Y _mig(i) =0, g# 0}.



We will see that

log (7% - 1)
PEMSTS0 o
— 27,

and that 7 is more closely related to 7; than to 75, in the sense that

1 1
n<+t<n <§loglog — + 2) . (11)

To illustrate the improvement over (7), from the knowledge for the d-
cube (Chapter 5, Example yyy:15) that 75 = d/2, one can deduce from (7)
that

1d <7 < Ylog2)d® + 1d. (12)

In Section 4.4 (Example 27) we will see that 7, = d/2; then from (11) we
can deduce the substantial improvement

1 1
dlogd + <1—Zlog 10g2)d (13)

upon (12).

777! Recall also the corrections in my notes on pages 8.2.11-12 (and
8.4.27). Continue same paragraph:

The upper bound here is remarkably tight: from Chapter 5 yyy:(65),

1 1
r = —dlogd —log ———— | d d d .
T gtieedt (4 Oglog(1+6_2)) +old) as d oo
777! In fact, the remainder term is O(1). Continue same paragraph:
Thus log-Sobolev techniques provide another means of improving mixing
time bounds, both in L? and, because of (3)—(4), in variation. As will
be seen, these techniques can also be combined usefully with comparison

methods and Nash inequalities.

1 The comparison method for eigenvalues

xxx Revise Chapter 7, Sections 1.9 and 4, in light of this section?

The comparison method, introduced by Diaconis and Saloff-Coste [2, 3],
generalizes the distinguished path method of Chapter 4, Section yyy:3 for
bounding the relaxation time of a reversible Markov chain. As before, we
first (xxx: delete word?) work in the setting of random walks on weighted
graphs. We will proceed for given state space (vertex set) I by comparing



a collection (w;;) of weights of interest to another collection (w@;;); the idea
will be to use known results for the random walk with weights (@;;) to derive
corresponding results for the walk of interest. We assume that the graph
is connected under each set of weights. As in Chapter 4, Section yyy:4.3,
we choose (“distinguish”) paths v,, from z to y. Now, however, this need
be done only for those (z,y) with z # y and @,, > 0, but we impose the
additional constraint w, > 0 for each edge e in the path. (Here and below,
e denotes a directed edge in the graph of interest.) In other words, roughly
put, we need to construct a (w;;)-path to effect each given (@, )-edge. Recall
from Chapter 3 yyy:(71) the definition of Dirichlet form:

£(g.9) = %EZ

[

fo.0) = 530 % el o)
i i

(g(5) ~ 9(i))", (14)

Theorem 1 (comparison of Dirichlet forms) For each ordered pair
(z,y) of distinct vertices with Wy, > 0, let 75, be a path from z to y with
we > 0 for every e € v5,. Then the Dirichlet forms (14) satisfy

~ w 1 .
£(9,9) < AL(g,9) = (g, 9) —max — 3 >ty Yoyl 1 (cery)
¢ T oyte

for every g.

Proof. For an edge e = (i,7) write Ag(e) = ¢(j) — ¢(i). Then

SN diay(g9(y) — g(x))?

T yFz

Z Z‘wmy ( Z Ag(e))

T ya c€%ay

Z Zﬁ’zyhzyl Z (Ag(e))* by Cauchy—Schwarz

T y#x €€y

< A we(Ag(e)? = A-2wE(g,g). m

26E(g,9)

IN

Remarks. (a) Suppose the comparison weights (@;;) are given by

Wi = wyw;/w fori,j €l



The corresponding discrete-time random walk is then the “trivial” walk with
w = w and
Wi = wi, Pij =75, Tj =T,

for all 7, 5, and

1 . )
Elg.9) = B Zzﬂ'iﬂ'j(g(]) - g(l))2 =varp g
i i
= ||gH% provided Y, m;g(7) = 0.

In this case the conclusion of Theorem 1 reduces to

g3 < &(g, gywmax =3 0> 5 7oy Yoy L cers,)-
Tyt

This inequality was established in the proof of the distinguished path the-
orem (Chapter 4 Theorem yyy:32), and that theorem was an immediate
consequence of the inequality. Hence the comparison Theorem 1 may be
regarded as a generalization of the distinguished path theorem.

[xxx For NOTES: We’ve used simple Sinclair weighting. What about
other weighting in use of Cauchy—Schwarz? Hasn’t been considered, as far
as [ know.]

(b) When specialized to the setting of reversible random flights on Cay-
ley graphs described in Chapter 7 Section yyy:1.9, Theorem 1 yields The-
orem yyy:14 of Chapter 7. To see this, adopt the setup in Chapter 7 Sec-
tion yyy:1.9, and observe that the word

T =g1g2- 94 (with each g; € G) (15)
corresponds uniquely to a path
Yide = (id, 91,0192, .., 9192+ 94 = @) (16)

in the Cayley graph corresponding to the generating set G of interest. Having
built paths 7iq. for each z € I, we then can build paths v,, for y,z € I by
exploiting vertex-transitivity, to wit, by setting

Yyz = (¥, Y91, Y91925 - - - Y9192 - gd = 2)
where y~'z = z and the path ;4 is given by (16). In Theorem 1 we then

have both stationary distributions = and 7 uniform,

oy = (@7 y)/ns B =1, eyl = Piagmsy| = dlid,a™hy),



and, if e = (v,vg) with v € I and ¢ € G,

we = p(g)/n; w =1, leeyy,) = N@tvetvg)en, ,o1,)"

Thus A of Theorem 1 equals

Z Z :u 1 ld x ) (I—lu,z_lvge%d,x—ly)7

UEI, geg (g ¢ y#z

which reduces easily to K of Theorem yyy:14 of Chapter 7. Since 7 and 7
are both uniform, the extremal characterization

2 = sup{|lgll3/£(g, 9) Emg =0} (17)

gives Theorem yyy:14 of Chapter 7.

Theorem 1 compares Dirichlet forms. To compare relaxation times using
the extremal characterization (17), we compare L?-norms using the same
“direct” technique as for Chapter 3 Lemma yyy:26. For any g,

lgllz < llgll3* max(xi/7:) (18)

where, as usual, m; := w;/w and T; = W;/w. So if g has T-mean 0 and
7-mean b, then

~2
Allg - b

g1l < lg — ol < _ 2 max(m; /7). (19)
E(g,9) ~ E(g—b,g—b) = E(g—b,g—b) i+

Thus

Corollary 2 (comparison of relaxation times) In Theorem 1,

A
Ty < —Ty
a
where
w 1 .
A = — Mmax — Z Z 4w17y|71‘y|1(€€7xy)7
woe We g yF#x
a := min(7;/7;).
2



xxx Perhaps restate as
T2 < T2

where )
wy
B = - . i
(mex g D--) (o)
(and similarly for Corollaries 4 and 7)?
xxx Remark about best if 7 = 77
Here is a simple example, taken from [2], showing the improvement in
Corollary 2 over Theorem yyy:32 of Chapter 4 provided by the freedom in
choice of benchmark chain.
xxx NOTE: After the fact, I realized that the following example was
already Example yyy:20 of Chapter 7; must reconcile.

Example 3 Consider a card shuffle which transposes the top two cards in
the deck, moves the top card to the bottom, or moves the bottom card
to the top, each with probability 1/3. This example fits the specialized
group framework of Chapter 7 Section yyy:1.9 (see also Remark (b) following
Theorem 1 above) with I taken to be the symmetric group on m letters and

G={12),(mm-1m-=2---1),(12 --- m)}

in cycle notation. [If the order of the deck is represented by a permutation o
in such a way that o(¢) is the position of the card with label ¢, and if
permutations are composed left to right, then - (m m—-1m -2 --- 1) is
the order resulting from o by moving the top card to the bottom.]

We obtain a representation (15) for any given permutation z by writing

& =hy by _1---ho
in such a way that
(hm - +hi)7'(j) = 271 (j) fori<j<m (20)

(i.e., hyy - - - h; and z agree in positions ¢ through m) and each h; is explicitly
represented as a product of generators. To accomplish this, we proceed
inductively. Suppose that (20) holds for given 7 € {3,...,m + 1}, and that
(A - hi)(z7 (i = 1)) =1; = [, with 1 <[ <4 — 1. Then let

hicgy == (mm—-1m-2 ... 1)1_1[(12)(mm—1m_2 1)]i—l—1

(mm—-1m—=2 ... 1)" "2



In words, beginning with h,, ---h;, we repeatedly move the top card to
the bottom until card 271(7 — 1) has risen to the top; then we repeatedly
transpose and shift until the top m — i + 2 cards, in order, are z71(7 —
1),...,27(m); and finally we cut these m — i + 2 cards to the bottom.

xxx Fither revise Section 1.9 of Chapter 7 to delete requirement of
geodesic paths, or explain one can erase cycles.

It follows that the diameter A of the Cayley graph associated with G
satisfies

m+1

A<S li-1D)+26—Li— 1)+ (m—i+2)] < 3(’”)
=2 2

and so by Chapter 7 Corollary yyy:15 that 7 < 27(7;)2 < 24—7m4.

To improve this bound on the relaxation time we compare the chain of
interest to the random transposition chain of Chapter 7 Example yyy:18
and employ Corollary 2, or rather its specialization, (yyy:Theorem 14) of
Chapter 7.

xxx Continue as in Chapter 7 Example yyy:20 to get
T m 27
= <38%, RH=o, n<omd
T2 2

2
xxx Test function on page 2139 of [2] shows this is right order.

Corollary 2 can be combined with the inequality
. 1 1
7 <1y <§log . + 1) (21)

from (7) to bound the L? threshold parameter 7 for the chain of interest, but
Theorem 1 sometimes affords a sharper result. From the Courant—Fischer
“min-max” theorem ([9], Theorem 4.2.11) it follows along the same lines as
in Chapter 3 Section yyy:6.3 that

A =infp(hy, by b)), m=2,...,m, (22)

where Ay = 1 and xxx Say the conditions better!

p(h17h27"'7hm—1)
= sup{||gll3/€(g,9): Zwihj(i)g(i) =0 forj=1,...,m—1}

and the inf in (22) is taken over all vectors hy, ..., h,—1 that are orthogo-
nal in L%(r) (or, equivalently, that are linearly independent). Using (19),
Corollary 2 now generalizes to



Corollary 4 (comparison of eigenvalues) In Theorem 1, the eigenval-
ues A, and A, in the respective spectral representations satisfy

with A and a as defined in Corollary 2.

Here is a simple example [3] not possessing vertex-transitivity:
xxx NOTE: This is a DIRECT comparison!: see Chapter 3 Section 6.4.

Example 5 Random walk on a d-dimensonal grid.

To keep the notation simple, we let d = 2 and consider the grid I :=
{0,...,my — 1} x {0,...,mq — 1} as an (unweighted) subgraph of Z?. The
eigenvalues A; are not known in closed form. However, if we add self-loops
to make a benchmark graph where I is regular with degree 4, then the
eigenvalues \; for the continuous-time walk are

1 Tr TS
1——={cos +cos— ], 0<r<m;—1, 0<s<my—1.
2 mq my
xxxX Product chain. Add discussion of all eigenvalues to Section yyy:6.2
of Chapter 47
xxx P.S. See Chapter 5, (66).
In particular, assuming mq > my we have

-1
Tp=2 (1 — cos m_) . (23)
1

Now we apply Corollary 4 to bound the eigenvalues A;. In Theorem 1,
the two graphs agree except for self-loops, so

A= w/w;
furthermore,
LMW
¢ = min — = — min W;w;,
v Ty w2
s0

A w;
— =max — < 1.
a t Wy

Thus /\1_1 < ;\1_1 for 1 <1 < n:= mymq; in particular,

T2 S 7:2. (24)

10



Comparing the other way around gives

2 w;

A< <max%) At=231 1<i<n

and in particular

The result %;\1—1 <A< ;\1—1 extends to general d, for which (for example)

-1
7:2:d<1—COS£>
m

where I = {0,...,my — 1} x ---x{0,...,mg — 1} and m := max; m;.
Example 6 Random walk on a thinned grid.

As a somewhat more interesting example, suppose we modify the grid in Z?
in Example 5 by deleting at most one edge from each unit square.

xxx Copy picture on page 700 in [3] as example?

Again we can apply Corollary 4, using the same benchmark graph as in
Example 5. In Theorem 1, Wy, > 0 for z # y if and only if = and y are
neighboring vertices in the (unthinned) grid {0, ..., my—1}x{0,...,mg—1}.
We can choose 7, to have length 1 (if the edge joining = and y has not been
deleted) or 3 (if it has). For any directed edge e in the grid, there are at most
two paths of length 3 and at most one path of length 1 passing through e.
Thus A < Tw/®, and so A/a < 7Tmax;(w;/w;) < 7; comparing the other
way around is even easier (all paths have length 1), and we find

AL <A ST, 2<i <

A=

xxx REMINDER: NOTES OR ELSEWHERE?: Mention exclusion pro-
cess [7, 3.

Example 7 The n-path with end self-loops.

The comparison technique does not always provide results as sharp as those
in the preceding two examples, even when the two chains are “close.” For
example, let the chain of interest be the m-path, with self-loops added at
each end added to make the graph regular with degree 2, and let the bench-
mark graph be the n-cycle (Chapter 5, Example yyy:7). Use of Corol-

: =~ : _ ry—1 2 2
lary 2 gives only 73 < nfy, whereas in fact 5 = (1 — cOoS 5) ~ 5N and

-1
~ _ 2T 1 2
Ty = <1 cos ) ~ 5z’

n

11



It is difficult in general to use Corollary 4 to improve upon (21). However,
when both the chain of interest and the benchmark chain are symmetric
reversible chains (as defined in Chapter 7 Section yyy:1.1), it follows from
Chapter 4 yyy:(14) by averaging over ¢ that

%/ a
dit) <d| —t t>
m<d(5t). 10
and hence from (1) we obtain

Corollary 8 (comparison of 72 mixing times) In Theorem 1, if both
the graph of interest and the benchmark graph are vertez-transitive, then the
L? mizing time parameters + and 7 satisfy

3

7 <

SHINS

Example 9 Returning to the slow card-shuffling scheme of Example 3 with
random transpositions benchmark, it is known from group representation
methods [1, 6] which make essential use of all the eigenvalues A, not just Ag,
that

F o %mlogm as m — 0.

Since @ = 1 and A (= K of Chapter 7, Theorem yyy:14) < 27m?, it follows
that
7 < (14 0(1))2m?® log m. (25)

This improves upon Example 3, which combines with (21) to give only
# < (14 o(1))2Im* log m.

xxx Show truth is 7 = @(m?>logm)?

2 Improved bounds on L? distance

The central theme of the remainder of this chapter is that norms other than
the L' norm (and closely related variation distance) and L% norm can be
used to improve substantially upon the bound

1Pi(X: € ) = m(:)ll2 < 7727t (26)

12



2.1 L7 norms and operator norms

Our discussion here of L? norms will parallel and extend the discussion in
Chapter 2 Section yyy:6.2 of L' and L% norms. Given 1 < ¢ < oo, both
the L? norm of a function and the L? norm of a signed measure are defined
with respect to some fixed reference probability distribution 7 on I, which
for our purposes will be the stationary distribution of some irreducible but
not necessarily reversible chain under consideration. For 1 < ¢ < oo, the L?
norm of a function f:I — R is

1/q
Il o= (Zw(i)w) ,

and we define the L? norm of a signed measure v on I to be the L? norm of
its density function with respect to :

1/q
1_
Ivlly = (Zﬂj q|l/y‘|q) :
J

For ¢ = oo, the corresponding definitions are
Il o= max | £G5)

and

e = max(lol /).
Any matrix A := (a;; : i,j € I) operates on functions f : I — R by
left-multiplication:
(AN)(i) =D ai [(5), (27)
J
and on signed measures v by right-multiplication:

(vA); = Zl/iaij. (28)

For (27),fix 1 < ¢ < o0 and 1 < g3 < 0o and regard A as a linear operator
mapping L7 into L%. The operator norm ||A||,—g, is defined by

[Allg1—g, = suptllAfllg = I fllo = 13- (29)

13



The sup in (29) is always achieved, and there are many equivalent reexpres-
sions, including

[Allg—g = max{[[Afllg, : [[flls <13
max{[|Afllg, /[ fllg: : f 7 0}

Note also that
HBAH%*% < ”AHQ1—>Q2HBHQ2AQ37 1< q1,92,93 < 0. (30)

For (28), we may similarly regard A as a linear operator mapping signed
measures v, measured by ||v||,, , to signed measures v A, measured by |[vA||,,.
The corresponding definition of operator norm, call it |||Al||;;—q,, is then

IAlllg—g := sup{l[vAlly, : [[¥llg = 13-

A brief calculation shows that

[ANlg1—~g2 = 1A lg1~g5>

where A* is the matrix with (7, j) entry 7;a;;/m;, that is, A* is the adjoint
operator to A (with respect to 7).

Our applications in this chapter will all have A = A*, so we will not need
to distinguish between the two operator norms. In fact, all our applications
will take A to be either P; or P; — E for some ¢ > 0, where

Pii=(pi(1) 4,5 € 1)

xxx notation P; found elsewhere in book?
and E = lim;_. ., P; is the transition matrix for the trivial discrete time
chain that jumps in one step to stationarity:

E=(r;:4,j€l),

and where we assume that the chain for (P;) is reversible. Note that E
operates on functions essentially as expectation with respect to :

®N) =Y mfG), i€l

The effect of E on signed measures is to map v to (3_, v;)7, and

P.E=E=EP, 1>0. (31)

14



2.2 A more general bound on L? distance

The following preliminary result, a close relative to Chapter 3, Lemmas
vyy:21 and 23, is used frequently enough in the sequel that we isolate it
for reference. It is the simple identity in part (b) that shows why L%-based
techniques are so useful.

Lemma 10 (a) For any function f,
d 9 2
d_”PtfH2 = =28(P.f,Pif) < ——var, P, f <0.
t T2
(b)
[Py — Ella—y = e/, t>0.

Proof. (a) Using the backward equations

dtpm qu pk]

we find d
E(Ptf)(i) =Y a[(Pef) (k)]

k
and so

%Hptfug = 22272 P f)()lgir[(Pef)(F)]

—QE(Ptf, P:f) by Chapter 3 yyy:(70)

2
——var, P;f by the extremal characterization of 7.
T2

(b) From (a), for any f we have

IN

d d 2
TP =E)f[lZ = [P f - Bf)]5 < — 5 (P = E)/l3,
which yields

(P~ E)f|3 [(Po — B)f||2 72/ = (var, f)e 2/

1115 2.

[ANVAN

Thus |P; — E|Js—2 < e~*/™. Taking f to be the eigenvector

fi = 7r»_1/2u2'2, 1 €1,

k3

15



of P;—E corresponding to eigenvalue exp(—t/72) demonstrates equality and
completes the proof of (b). =

The key to all further developments in this chapter is the following result.

Lemma 11 For an irreducible reversible chain with arbitrary initial distri-
bution and any s,t > 0,

[P(Xops € ) = 7()ll2 < [|P(X € |2l Pt = El|l2—2 = [[P(X; € )l e/,
Proof. The equality is Lemma 10(b), and

[P(Xsqe € ) =7()ll2 = [|P(Xs € - )(Pr = E)l[2 < | P(Xs € )[|2| P — El|l2—2

proves the inequality. m

We have already discussed, in Section 1, a technique for bounding 7,
when (as is usually the case) it cannot be computed exactly. To utilize
Lemma 11, we must also bound ||[P(X; € -)||2. Since

[P(Xs € )2 = [[P(Xo € -)Ps]l2 (32)

xxx For NOTES: By Jensen’s inequality (for 1 < ¢ < 00), any transition
matrix contracts L? for any 1 < ¢ < .
example, from Lemma 10(a); and note that ||P¢||2—2 = 1 by considering
constant functions), it follows that

and each P; is contractive on L?, i.e., [|P¢||2—2 < 1 (this follows, for

||P(Xs € -)||2 decreases monotonically to 1 as s T oo, (33)

and the decrease is strictly monotone unless P(Xg € ) = n(+). From (32)
follows

[P(Xs € )ll2 < [P(Xo € )lg*[|Psllgr—2 for any 1 < ¢" < o0, (34)
and again
|IPs||g*—2 decreases monotonically to 1 as s T cc. (35)

The norm ||Pgl|,+—2 decreases in ¢* (for fixed s) and is identically 1 when
g* > 2, but in applications we will want to take ¢* < 2. The following
duality lemma will then often prove useful. Recall that 1 < ¢,¢* < co are
said to be (Hdélder-)conjugate exponents if

1 1

-4+ —=1. 36
q q* (36)

16



Lemma 12 For any operator A, let
A* = (mjaji/m 1,5 € 1)
denote its adjoint with respect to w. Then, for any 1 < ¢1,q2 < 00,
[Allg—=g2 = [[A"llg3—a;-
In particular, for a reversible chain and any 1 < g < 0o and s > 0,
IPslla—g = [[Psllgr—2- (37)

Proof. Classical duality for L? spaces (see, e.g., Chapter 6 in [11]) asserts
that, given 1 < ¢ < oo and g on I,

lgllyr = max{[(f,9)| : [ fll, = 1}

where

(f.9) =3 _mif(i)g(i).
Thus

A gllyy = max{[(f,A%g)|:[|flle, =1}

= max{[{Af,g)|:[fll, = 1},

and also
(AL, 9 < A fllaall9llay < [[Algi—az [lf a1 1914z

o)

1A%gllo; < 1 Allgi—a2llglla;-

Since this is true for every g, we conclude [|A*[|gs—qr < [|A|lg,—g, Reverse
roles to complete the proof. =

As a corollary, if ¢* = 1 then (34) and (37) combine to give
1P(Xs € ll2 < [[Psllimz = [IPsl2—c

and then
[P(Xopt € 1) = 7( )2 < [|Ps|2moe €™

from Lemma 11. Thus

Vd(2(s +1)) < [|Pyllamce e/, (38)

Here is a somewhat different derivation of (38):
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Lemma 13 For 0 < s <1t,

Vd(2t) = [Pt — El|2—c0

IN

”Ps||2—>oo”Pt—s - EH2—>2

= ”PSH2—>OO e_(t_s)/q—?'

Proof. In light of (31), (30), and Lemma 10(b), we need only establish
the first equality. Indeed, ||Pi(Xt € -) —x(+)||2 is the L% norm of the function
(P(X¢ € -)/n(-))— 1 and so equals

max {

Taking the maximum over 7 € I we obtain

> (i) = 75) f(5)

J

I Allz = 1} = max{|((P:—E)/)(@)] : [ fll2 = 1}-

d2e) = max {max|((P,~ BN 172 =1}

= max{[|(P; —E)f[loo : [ fll2 = 1}
|P: — E[3—c. m

Choosing s = 0 in Lemma 11 recaptures (26), and choosing s = 0 in
Lemma 13 likewise recaptures the consequence (5) of (26). The central
theme for both Nash and log-Sobolev techniques is that one can improve
upon these results by more judicious choice of s.

2.3 Exact computation of N(s)

The proof of Lemma 13 can also be used to show that

N(8) 1= [Pullaoe = max [ A(X, € |2 = max [ZEC - (59)
k3
as at (9). In those rare instances when the spectral representation is known
explicitly, this gives the formula
xxxX Also useful in conjunction with comparison method—see Section 3.
xxx If we can compute this, we can compute d(2t) = N?(t) — 1. But the
point is to test out Lemma 13.

1V2(S) =1+ maX’il’Z»_l Z ‘U?m exp(—2A,,5), (40)

m=2

18



and the techniques of later sections are not needed to compute N(s). In
particular, in the vertex-transitive case

n

Nis)=1+ Z exp(—2As).

m=2
The norm N(s) clearly behaves nicely under the formation of products:
N(s) = NO(s)N@(s). (41)
Example 14 The two-state chain and the d-cube.
For the two-state chain, the results of Chapter 5 Example yyy:4 show

IVQ(S) -1 m%LX(p, Q)e—Q(p+q)s‘
min(p, q)

In particular, for the continuized walk on the 2-path,
N%(s) =1+,
By the extension of (41) to higher-order products, we therefore have
N2(s) = (1 + e /4y

for the continuized walk on the d-cube. This result is also easily derived from
the results of Chapter 5 Example yyy:15. For d > 2 and ¢t > %dlog(d - 1),
the optimal choice of s in Lemma 13 is therefore

s = tdlog(d — 1)
and this leads in straightforward fashion to the bound
7 < td(logd + 3).
While this is a significant improvement on the bound [cf. (12)]
7 < (log2)d® + 1d

obtained by setting s = 0, i.e., obtained using only information about 7, it
is not

xxx REWRITE! in light of corrections to my notes.

as sharp as the upper bound

7 < (14 0(1))}dlogd

in (13) that will be derived using log-Sobolev techniques.
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Example 15 The complete graph.

For this graph, the results of Chapter 5 Example yyy:9 show

N2(s) =14 (n—1)exp (— 215 ) .

n—1

It turns out for this example that s = 0 is the optimal choice in Lemma 13.
This is not surprising given the sharpness of the bound in (7) in this case.
See Example 32 below for further details.

Example 16 Product random walk on a d-dimensional grid.

Consider again the benchmark product chain (i.e., the “tilde chain”) in
Example 5. That chain has relaxation time

-1 1
m=d|]1- cos T §—dm2,
m 2

so choosing s = 0 in Lemma 13 gives

r < d <1 1 + 1)
T s cos(m/m) \2 oen
< IdmP(logn + 2). (42)

This bound can be improved using N(-). Indeed, if we first consider
continuized random walk on the m-path with self-loops added at each end,
the stationary distribution is uniform, the eigenvalues are

Al=1—cos(n(l—1)/m), 1<I<m,
and the eigenvectors are given by
ui = (2/m)?cos(n(l = 1)(i = 3)/m), 0<i<m-—-1, 2<I<m.

According to (40) and simple estimates, for s > 0

N3(s)—1< Qiexp[—Qs(l —cos(m({—1)/m)] < sz—: exp(—4sl*/m?)
=2 =1
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and

3
L

exp(—4sl*/m?) < / exp(—4sz?/m?) dz

m(5) (22" 5)

En

(4s/m?)~/? exp(—4s/m?)

.\.
||
N

I

when 7 is standard normal; in particular, we have used the well-known (xxx:
point to Ross book exercise) bound

P(Z >2)< 6_22/2, z > 0.

[

Thus
N?(s) < 1+42[1+ (4s/m?)" ] exp(—4s/m?), s> 0.

Return now to the “tilde chain” of Example 5, and assume for simplicity
that mqy = --- = my = m. Since this chain is a slowed-down d-fold product
of the path chain, it has

45 \ "1/2 4s 4
1421+ (W) exp <— de) , s$>0. (43)

In particular, since d(2t) = N2(t) — 1, it is now easy to see that

N3(s) <

7 < Km?dlogd = Kn*%dlogd (44)

for a universal constant K.

xxx We’ve improved on (42), which gave order m?d? log m.

xxx When used to bound d(¢) at (4), the bound (44) is “right”: see
Theorem 4.1, p. 481, in [5].

The optimal choice of s in Lemma 13 cannot be obtained explicitly
when (43) is used to bound N(s) = [|P||2—c. For this reason, and for
later purposes, it is useful to use the simpler, but more restricted, bound

N?(s) < (4dm?/s)"? for 0 < s < dm?/16. (45)
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To verify this bound, simply notice that ut2ue=% 42~ < 4for < u < %

When s = dm?/16, (45), and 15 < dm?/2 are used in Lemma 13, we find
7 < 3mPd*(log2 + 2d7).

xxx Improvement over (42) by factor ©(log m), but display following (43)
shows still off by factor O(d/logd).

3 Nash inequalities

xxx For NOTES: Nash vs. Sobolev
A Nash inequality for a chain is an inequality of the form

2+% D
lgll, ™™ < Cl€(g.9) + NglA gl (46)

that holds for some positive constants C'; D, and T and for all functions g¢.
We connect Nash inequalities to mixing times in Section 3.1, and in Sec-
tion 3.2 we discuss a comparison method for establishing such inequalities.

3.1 Nash inequalities and mixing times

A Nash inequality implies a useful bound on the quantity
N(t) = [[Pifla—c0 (47)

appearing in the mixing time Lemma 13. This norm is continuous in ¢ and
decreases to ||E||2—c = 1 as t | co. Here is the main result:

Theorem 17 [f the Nash inequality (46) holds for a continuous-time re-
versible chain, some C,D,T > 0, and all g, then the norm N(s) at (47)
satisfies

N(t)<e(DC/H)P for0<t<T.

Proof. First note N(t) = ||P|l1—2 by Lemma 12. Thus we seek a bound
on h(t) := ||P:g||3 independent of ¢ satisfying ||g||; = 1; the square root of
such a bound will also bound N (%).

Substituting Pg for ¢ in (46) and utilizing the identity in Lemma 10(a)
and the fact that P, is contractive on L', we obtain the differential inequality

h(t)'"F35 < C[-1h/(t) + Lh(1)], > 0.
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Wit
riting 1 o 1 jeD)
H(t):= [SCh(1)e /7] :

the inequality can be equivalently rearranged to

H(1)> [2D(C/2) | emr, 120,
Since H(0) > 0, it follows that
H(t) > T [2C/2)| 7 (evr — 1), 120,

or equivalently

But

t
eHIPT) <1 — T(l—e_l/D) for0<t<T,
so for these same values of ¢ we have

e 0=

= [% (e/P - 1)] - < [e(DC /)PP,

h(t)

IN

as desired. m

We now return to Lemma 13 and, for ¢ > 7', set s = T'. (Indeed, using
the bound on N (s)in Theorem 17, this is the optimal choice of sif 7" < Dry.)
This gives

xxx NOTE: In next theorem, only need conclusion of Theorem 17, not
hypothesis!

Theorem 18 In Theorem 17, if ¢ > 1 and

D
t>T+ 7 <Dlog<TC)+c),

then \/J(Qt) < e'=¢: in particular,
D
F<T+m7 <Dlog (TC> —|—2>.
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The following converse of sorts to Theorem 17 will be very useful in
conjunction with the comparison method.

Theorem 19 If a continuous time reversible chain satisfies
NHy<ct™? foro<t<T,
then it satisfies the Nash inequality

2+
lglls™™ < C'[E(g.9) + 2llglZlglh/” Jor all g
with )
C":=2(14 55)[(142D)'/2CTVP < 2**2p CV/P,

xxx Detail in proof to be filled in (I have notes): Show £(P.g,P.g) | as
t T, or at least that it’s maximized at ¢ = 0. Stronger of two statements is
equivalent to assertion that |P,f||% is convex in ¢.

Proof. As in the proof of Theorem 17, we note N(¢) = ||P¢||1—2. Hence,
for any g and any 0 <t < T,

t
ol = IPul3— [ #IP.glds
a

1
IPigll3+2 [ £(P.g.Pug)ds by Lemma 10(a)

IP:gll3 + 2E(g,g)t xxx see above
26(g, 9)t + C*7?P|g| 7.

[ANVAN

This gives
lgll3 < tl2(g.9) + Fllgli3] + C*7P|lgl}

for any t > 0. The righthand side here is convex in ¢ and minimized (for g #
0) at

‘e ( 2DC?|gl}

1/(2D+1)
2E(g,9) + T‘lllgH%)

Plugging in this value, raising both sides to the power 14+ % and simplifying
yields the desired Nash inequality. The upper bound for C’ is derived with
a little bit of calculus. m
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3.2 The comparison method for bounding N(-)

In Section 1 we compared relaxation times for two chains by comparing
Dirichlet forms and variances. The point of this subsection is that the com-
parison can be extended to the norm function N(-) of (47) using Nash in-
equalities. Then results on N(-) like those in Section 2.3 can be used to
bound mixing times for other chains on the same state space.

xxx For NOTES?: Can even use different spaces. New paragraph:

To see how this goes, suppose that a benchmark chain is known to satisfy

Nt <Ct™ for0o<t<T. (48)

By Theorem 19, it then satisfies a Nash inequality. The L'- and L?-norms
appearing in this inequality can be compared in the obvious fashion [cf. (18)]
and the Dirichlet forms can be compared as in Theorem 1. This shows that
the chain of interest also satisfies a Nash inequality. But then Theorem 17
gives a bound like (48) for the chain of interest, and Theorem 18 can then
be used to bound the L? threshold time 7.

Here is the precise result; the details of the proof are left to the reader.

Theorem 20 (comparison of bounds on N(-)) Ifa reversible benchmark
chain satisfies

N#)<Ct™DP foro<t<T

for constants C, D, T > 0, then any other reversible chain on the same state
space satisfies
N(t) < e(DC/t)P for 0 <t <T,

where, with a and A as defined in Corollary 2, and with
a’ 1= max(;/m;),

we set

!
l

D,

C = a@D)dMP A% o1 4+ L)1 +2D)/2CP
a~@+D) M0 g x 22+3p CV/D,

24

a?

IN
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xxx Must correct this slightly. Works for any A such that £ < A&, not
just minimal one. This is important since we need a lower bound on T but
generally only have an upper bound on & /€. The same goes for a’ (only
need upper bound on 7;/m;): we also need an upper bound on 7.

Example 21 Random walk on a d-dimensional grid.

As in Example 5, consider the continuized walk on the d-dimensional grid
I =1{0,...,m—1}%. In Example 5 we compared the Dirichlet form and
variance for this walk to the d-fold product of random walk on the m-path
with end self-loops to obtain

T3 < F =d(1—cos Z)7! < Ldm?; (49)

using the simple bound 4/d(2¢) < a2emtim < (2n)~1/% exp (_dfrfi’) we

then get
# < Im2d[log(2n) + 2], (50)
which is of order m?d?log m. Here we will see how comparing N(-), too,
gives a bound of order m%d?log d. In Example 43, we will bring log-Sobolev
techniques to bear, too, to lower this bound to order m?dlogd
xxx which is correct, at least for TV. New paragraph:
Recalling (45), we may apply Theorem 20 with

D=d/4, C=(4dm®)¥* T =dm?/16,
and, from the considerations in Example 5,
az%, A=1, d =2
xxx See xxx following Theorem 20. Same paragraph:
This gives
D=d/4, C<2%V7dm?<2%dm?, T = dm?/32.
Plugging these into Theorem 18 yields
# < imPd’logd + (Llog2)m*d® + Lm’d, (51)

which is < 3m?d?logd for d > 2.
Other variants of the walk, including the thinned-grid walk of Example 6,
can be handled in a similar fashion.

xxx Do moderate growth and local Poincaré? Probably not, to keep
length manageable. Also, will need to rewrite intro a little, since not doing
A?-stuff (in any detail).
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4 Logarithmic Sobolev inequalities

xxx For NOTES: For history and literature, see ([4], first paragraph and end
of Section 1).
xxx For NOTES: Somewhere mention relaxing to nonreversible chains.

4.1 The log-Sobolev time 7

Given a probability distribution 7 on a finite set I, define
xxx For NOTES: Persi’s £(g) is double ours.

L(g) =D mig*(i)log(|g(i)]/llgll2) (52)

for g # 0, recalling ||g||3 = 3°; mi¢g*(¢) and using the convention 0log0 = 0.
By Jensen’s inequality,

L(g) > 0, with equality if and only if |g| is constant.

Given a finite, irreducible, reversible Markov chain with stationary distribu-
tion 7, define the logarithmic Sobolev (or log-Sobolev) time by

xxx For NOTES: Persi’s a is 1/(2m).

xxx Note 71 < 00. (Show?) See also Corollary 27.

7 :=sup{L(g)/E(g,9): g # constant}. (53)

Notice the similarity between (53) and the extremal characterization of
(Chapter 3, Theorem yyy:22):

m = sup{|lg[l3/€(g,9) : 3 _mig(i) =0, g#0}.

We discuss exact computation of 7; in Section 4.3, the behavior of 7; for
product chains in Section 4.4, and a comparison method for bounding 7
in Section 4.5. In Section 4.2 we focus on the connection between 7; and
mixing times. A first such result asserts that the relaxation time does not
exceed the log-Sobolev time:

Lemma 22 < 7.

xxx Remarks about how “usually” equality?
xxx For NOTES: Proof from [10], via [4].
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Proof. Given g # constant and ¢, let f := 14 €g. Then, writing g =
>imig(i), and with all asymptotics as € — 0,

log |f|*? = 2eq—eg*+0(),

log £ = 26+ Cllglli 2% + O(),
2
log ‘:§=|2 = 2e(g—g)+(25% — ||g])2 - ¢%) + O(¢%).
2
Also,
f2 — 1_|_2€g_|_€292;
thus

FHlog(IF12/11£113) = 2¢(g — 9) + (3¢ — 1913 — 499 + 29°) + O(¢%)
and so
L(f)=€Ellglls = g*) + O(¥) = évary g + O(€%).
Furthermore, £(f, f) = ¢2£(g, g); therefore
L(f)  vargg
"EELD T Eg.9)

Finish by letting ¢ — 0 and then taking the supremum over g. =

+ O(e).

4.2 7, mixing times, and hypercontractivity

In this subsection we discuss the connection between the L2 threshold time
parameter

F=inf{t > 0:4/d(2t) = max || P(X¢ € -) =7 ()2 < ey (54)

and the log-Sobolev time 7;. As in Section 3, we again consider the funda-
mental quantity
N(s) = [Pslla—oo

arising in the bound on y/d(2¢) in Lemma 13, and recall from Section 3.1
that

N{(s) decreases strictly monotonically from 7r*_1/2 at s=0to1ass T oo.

The function N is continuous. It would be nice (especially for use in con-
junction with the comparison technique) if we could characterize, in terms
of the Dirichlet form &, the value of s, call it s*, such that N(s) equals 2
(say), but such a characterization is not presently available.

xxx For NOTES?: A partial result is Theorem 3.9 in [4], taking ¢ = cc.
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Open Problem 23 Characterize s* in terms of £.

To carry on along these general lines, it turns out to be somewhat more
convenient to substitute use of

IP(Xe € ) =7 ()2 < [1P(Xo € )|z, [Pslla—g e/, 2 < g < o0,
(55)
an immediate consequence of Lemmas 11 and 12 and (34), for use of Lemma

13. The reason is that, like N(s), ||Ps||2—, decreases monotonically to 1 as
s T oo; but, unlike N(s), it turns out that

for each ¢ > 2, ||Ps||2—4 equals 1 for all sufficiently large s.  (56)

The property (56) is called hypercontractivity, in light of the facts that, for
fixed s, P is a contraction on L? and ||Ps||s—, is increasing in ¢. Let

sq :=inf{s > 0: ||Ps|la—q < 1} = inf{s: [|Py|l2—q = 1};

then sy = 0 < 5,4, and we will see presently that s, < oo for ¢ > 2. The
following theorem affords a connections with the log-Sobolev time 7; (and
hence with the Dirichlet form &).

Theorem 24 For any finite, irreducible, reversible chain,

2s,
TT= sup ————.
2<q<poo log(q - 1)

Proof. The theorem is equivalently rephrased as follows:
|P¢|j2—y < 1forall t >0 and 2 < ¢ < oo satisfying e2/* > g —1  (57)

if and only if w > 7. The proof will make use of the generalization

Lo(g):= D _milg(D)|"og(lg(i)l/llgll,)

of (52). Fixing 0 # ¢ > 0 and u > 0, we will also employ the notation

a(t) = 1+ G(t) = |Pag]2f), (58)

1
IPigllacy = exp [ 7 o8 G0

=y
~
o~
p—
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for ¢t > 0.
As a preliminary, we compute the derivative of F. To begin, we can
proceed as at the start of the proof of Lemma 10(a) to derive

G'(1) = ~a(t) € (Pug, (Pug)" ") + %E [(Peg)*log ((Prg)*)] .
Then
/ _ G'(t)  q(1)logG(t)
Fe = [qu)G(t) (1) ]F(t)

P00 [L2 B~ & (Pig, Py )] (59

For the first half of the proof we suppose that (57) holds and must prove
71 < u, that is, we must establish the log-Sobolev inequality

L(g) < u&(g,g) for every g. (60)

To establish (60) it is enough to consider 0 # ¢ > 0,
xxx Do we actually use g > 0 here?
since for arbitrary g we have

L(g) = L(lg]) and E(g,9) > E(|g], |9])- (61)

Plugging the specific formula (58) for ¢(¢) into (59) and setting ¢t = 0 gives

F(0) = [lgll; " (u" " L(g) — E(g,9))- (62)

Moreover, since

F(t) = [[Puglly

I

IPella—qllgllz < [lgll2 by (57)
IPogll2 = £(0),

the (right-hand) derivative of /' at 0 must be nonpositive. The inequal-
ity (60) now follows from (62).

For the second half of the proof, we may assume u = 7; and must estab-
lish (57). For ¢ > 0, (53) and Lemma 25 (to follow) give

2
T
L2,(0) = L") < () < 1T

< mg(mgq‘l) (63)
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for any 1 < ¢ < co. With ¢(t) := 1+ €*/™, we have ¢/(t) = %(q(t) —1),and
replacing ¢ by Ptg in (63) we obtain

Ly (Pig) — € (Pig, (Pg)" 1) < 0.

From (59) we then find F’(¢) < 0 for all ¢ > 0. Since F(0) = ||g||2, this
implies
IP:gllaqry < llgl2- (64)

We have assumed g > 0, but (64) now extends trivially to general g, and
therefore
[Pell2—g() < 1.

This gives the desired hypercontractivity assertion (57). m

Here is the technical Dirichlet form lemma that was used in the proof of
Theorem 24.

Lemma 25 &£(g,¢977!) > g‘22;11(‘:(‘(]‘1/2,‘(]‘1/2) forg>0and1 < q< .

xxx Do we somewhere have the following?:

E(f,9) = 3303 miai (F(i) — F())(9(i) — g())- (65)

[

Proof. For any 0 < a < b

/2 q/2\ 2 b 2
u — q / t%_l dt
b—a 2(b—a) Ja

2 b 2 g=1 _ 49-1
< 1 / p2gp = 4 0 @
4(b—a) Ja 4qg—1) b-ua

This shows that

(b7t — a1 (b—a) > %(mﬁ — a?/?)?

and the lemma follows easily from this and (65). =

Now we are prepared to bound 7 in terms of 7.
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Theorem 26 (a) If ¢ > 0, then for any state i with m; < e™!,
|Pi( Xt € ) —7()|]2 < €'7° for t > Lriloglog ﬁ% + e7y.

(b)

7T < %Tlloglog 7}—* + 21 < Tl(%loglog 7}—* +2).

Proof. Part (b) follows immediately from (54), part (a), and Lemma 22.
To prove part (a), we begin with (55):

”Pi(Xt = ) — ’/'T()”2 < 7ri_1/q HPSHQA'Q e—(t—s)/TQ.

As in the second half of the proof of Theorem 24, let ¢ = ¢(s) := 1+ e/,
Then [|Ps|l—q(s) < 1. Thus

IP(Xe €)= (Yo < a0 < <
Choosing s = 37 log log(%) we have ¢(s) =1+ log(%) and thus

IPi(X¢ € ) —m(-)|]2 < exp(l — t;—;) fort>s. =

We have established the upper bound in the following corollary; for the
lower bound, see Corollary 3.11 in [4].

Corollary 27
<7< Tl(%loglog 7}—* +2).

Examples illustrating the improvement Corollary 27 affords over the sim-
ilar result (7) in terms of 7, are offered in Examples 37 and 40.

4.3 Exact computation of 7,

Exact computation of 7; is exceptionally difficult—so difficult, in fact, that 7
is known only for a handful of examples. We present some of these examples
in this subsection.

Example 28 Trivial two-state chains.
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We consider a discrete-time chain on {0,1} that jumps in one step to sta-
tionarity (or, since the value of 7; is unaffected by continuization, the cor-
responding continuized chain). Thus (poo, po1,p10,p11) = (0,1 —8,6,1 — 0)
with § = mp = 1 — m;. We also assume 0 < 6 < 1/2. The claim is that

log[(1-6)/6] -
= %(1—29) if 0#£1/2 (66)
1 i =1/2.

Note that this is continuous and decreasing for § € (0,1/2].

To prove (66), we need to show that £(g)/&(g,g9) < 7(8) for every non-
constant g on {0,1}, where 7(6) denotes the righthand side of (66), with
equality for some go. First suppose 8 # 1/2. For the inequality, as at
(60)—(61) we may suppose g > 0 and, by homogeneity,

Erg =09(0)+ (1-0)g(1) = 1.
We will work in terms of the single variable

z:=1/(g9(0)—g(1)),

so that s 4
=142 ym=1-1

’
T Z

and we must consider z € (—oo, —(1 — )] U [#,00). We calculate

£(g,9) = 6(1-06)(9(0) - g(1))* = 6(1-6)/2*,
o3 = o(1+=") +a-o(1-2)

o(1 - 6)

’
22

= [0z 10 +(1-0)(x —0))/aP = 14

Uz) = ﬁ(g):0<1+%0)210g<1+ﬂ)

x

) (1 _ g)Zlog <1 _ g)
—%0 <1 + 0(1$; 0)) log (1 + 0(196; 0))

= [0z +1-0)log(x + 1 0)* + (1 0)(z — 6)* log( — 6)*
—(a? +6(1 - 0))log(a? + 6(1 - 0))] /(20?),
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L(g)
£(g.9)
= Bz+1-0)>log(z+1-0)*+(1—8)(z—6)*log(z —6)*
—(2? + 6(1 — ) log(z? + 6(1 — 0)).

r(z) = 26(1-86) = 22%(x)

JFrom here, a straightforward but very tedious calculus exercise shows
that r decreases over (—oo, —(1 — )], with r(—oc0) = 26(1 — 6), and that r
is strictly unimodal over [#, o0), with 7(#) = 0 and r(c0) = 26(1 — 6). It
follows that r(z) is maximized over (—oo, —(1 — )] U [#, o00) by taking z to
be the unique root to

0 = r'(z)=40(z + (1 - 6))log(z + (1 - 0)) (67)
+4(1— 0)(z — 8)log(z — 0) — 2z log(z% + 6(1 — 6))

over (#,00).
There is on hope for solving (67) explicitly unless

22401 -0)=(z+1—-0)z—0),

ie, z =26(1 —0)/(1 — 26). Fortunately, this is a solution to (67), and it
falls in (6, 00). The corresponding value of r is 9{1__23) log %, so (66) follows,
and we learn furthermore that the function ¢ maximizing £(g)/&(g,9) is go,
with go(0) = 21_9 and go(1) = 2(11——6)'

For § = 1/2, the major change is that now r is increasing, rather than
unimodal, over [#, 00). Thus rg,p = 26(1 — 0) = 1/2, and (66) again follows.

Example 29 Two-state chains.

Now consider any irreducible chain (automatically reversible) on {0, 1}, with
stationary distribution 7. Without loss of generality we may suppose my <
m1. We claim that
71 log(m /m)
72;01(1_12%0) if mo #1/2
T =
1/(2p01) if Ty = 1/2

The proof is easy. The functional £(g) depends only on 7 and so is un-
changed from Example 28, and the Dirichlet form changes from £(g,¢9) =

Tom1(g(0) — ¢g(1))? in Example 28 to £(g,9) = po1(g(0) — ¢(1))? here.
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Remark. Recall from Chapter 5, Example yyy:4 that 7 = 1/(po1+p10) =
71 /po1. It follows that

log(m1 /™ .
. 24%%1 if0<mg<1/2

E 1 if 7o = 1/2

is a continuous and decreasing function of . In particular, we have equality
in Lemma 22 for a two-state chain if and only if 79 = 1/2. Moreover,

T Tg ~ %10g(1/ﬂ'0) — o0 as mg — 0.
Example 30 Trivial chains.

The proof of Lemma 22 and the result of Example 28 can be combined
to prove the following result: For the “trivial” chain with p;; = ;, the
log-Sobolev time 7; is given (when 7. < 1/2) by

log(= — 1)
T o0 -2m)
We omit the details, referring the reader to Theorem 5.1 of [4].
As an immediate corollary, we get a reverse-inequality complement to

Lemma 22:

Corollary 31 For any reversible chain (with m. < 1/2, which is automatic
form >3),
log(ﬂl—* -1)

< .
=502,

Proof. The result of Example 30 can be written

log(rl—* -1)

L(g) < (var, g)ma

and var, ¢ < 726(g,g) by the extremal characterization of 75. =
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Example 32 The complete graph.

It follows readily from Example 30 that the continuized walk of the complete

graph has

(n—1)log(n —1)
2(n—2)

Since 7, = (n — 1)/n, equality holds in Corollary 31 for this example.

= 11
T = ~ — log n.
l 2 g

xxx Move the following warning to follow Corollary 27, perhaps?
Warning. Although the ratio of the upper bound on 7 to lower bound in
Corollary 27 is smaller than that in (7), the upper bound in Corollary 27 is
sometimes of larger order of magnitude than the upper bound in (7). For
the complete graph, (7) says
=l < F < %(%logn—l— 1)

n

and Corollary 27 yields
(14 o(1))logn < # < (1+ o(1))}(log n)(log log n),

while, from Chapter 5, yyy:(33) it follows that

1
7= %1ogn—|—0<oin).

As another example, the product chain development in the next subsec-
tion together with Example 29 will give 7; exactly for the d-cube. On the
other hand, the exact value of 7; is unknown even for many of the simplest
examples in Chapter 5. For instance,

Open Problem 33 Calculate 7; for the n-cycle (Chapter 5 Example yyy:7)
when n > 4.

xxx For NOTES: n = 3 is complete graph K3, covered by Example 32.
(11 =1log2 for n = 3.)

Notwithstanding Open Problem 33, the value of 7; is known up to mul-
tiplicative constants. Indeed, it is shown in Section 4.2 in [4] that

1, 2%
2t ST et

Here is a similar result we will find useful later in dealing with our running
example of the grid.
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Example 34 The m-path with end self-loops.

For this example, discussed above in Example 16, we claim

2
—2m2 <7< m2.
T

The lower bound is easy, using Lemma 22:

2
71> 7 =(1—-cos(n/m))”" > = m?.

For the upper bound we use Corollary 27 and estimation of 7. Indeed, in
Example 16 it was shown that

d(21) = N*(t) = 1 < [1+ (4t/m?) 7] exp(—4t/m?), 1> 0.

Substituting t = m? gives \/d(2t) < /3/2e7? < el som < F < mk

xxx P.S. Persi (98/07/02) points out that H. T. Yau showed 7, = ©(nlogn)
for random transpositions by combining 7 > 75 (Lemma 22) and 7, <
L(g0)/E(g0,90) with go = delta function. I have written notes generaliz-
ing and discussing this and will incorporate them into a later version.

4.4 7, and product chains

xxx Remind reader of definition of product chain in continuous time given
in Chapter 4 Section yyy:6.2.
xxx Motivate study as providing benchmark chains for comparison method.
xxx Recall from Chapter 4, yyy:(42):

Ty = maX(TQ(I), TQ(Z)). (68)

xxx Product chain has transition rates equal (off diagonal) to

1 e . . )
qz(h)j1 if 11 # 71 and 13 = J

Q(il,ig),(jl,jg) = q2(22372 lf Z’l = jl alld i2 # j2 (69)

0 otherwise.

xxx Dirichlet form works out very nicely for products:
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Lemma 35

Z% i2), 9(,i2)) + S E@(g(ir, ), glin, ).

i1

Proof. This follows easily from (69) and the definition of £ in Chapter 3
Section yyy:6.1 (cf. (68)). =

The analogue of (68) for the log-Sobolev time is also true:
xxx For NOTES?: Can give analagous proof of (68): see my notes,
page 8.4.24A.

Theorem 36 For a continuous-time product chain,
1) (2
7 =max(r; ’, 7, 7).

Proof. The keys to the proof are Lemma 35 and the following “law of
total L£-functional.” Given a function g Z 0 on the product state space
I =1 x I, define a function G5 # 0 on I3 by

1/2
Ga(iz) := |lg(-,d2)|l2 = (ZMQQ(@'M?)) :

i1

Then
L(g) = Zﬂil,z’zg?(@'hiz)[10g(|9(@'1a@'2)|/G2(i2))+10g(G2(i2)/HgH2)]
= Zw% (i) + LO(Ga),

where we have used

1G5 = llgll3-
2

Thus, using the extremal characterization (definition) (53) of Tl(l) and 7,7,
(1) Z 7['2(22)6(1)(9(7 Z2)7 g(a 12)) + 71(2)5(2)(G2, Gg) (70)

But from

|Ga72) = Galia)] = [llg(- d2)ll2 = lg(s éo)llol < [lg (-5 72) — 9(- 22)l]2
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follows
g G27G2 Zﬂn Zla')vg(ilv'))‘ (71)

From (70), (71), Lemma 35, and the extremal characterization of 7, we

(1) (2))

conclude 7; < max(7; 7, 7;”). Testing on functions that depend only on one

M ).

of the two variables shows that 7 = max(7,"/, 7, ]

Theorem 36 extends in the obvious fashion to higher-dimensional prod-
ucts.

Example 37 The d-cube.

The continuized walk on the d-cube (Chapter 5, Example yyy:15) is
simply the product of d copies of the continuized walk on the 2-path, each run
at rate 1/d. Therefore, since the log-Sobolev time for the 2-path equals 1/2
by Example 29, the corresponding time for the d-cube is

n=d/2=T,.
JFrom this and the upper bound in Corollary 27 we can deduce
7 < tdlogd + (1 — 1log 1Ong)al.

As discussed in this chapter’s introduction, this bound is remarkably sharp
and improves significantly upon the analogous bound that uses only knowl-
edge of 7. xxx Recall corrections marked on pages 8.2.11-12 of my notes.

4.5 The comparison method for bounding 7,

In Section 1 we compared relaxation times for two chains by using the ex-
tremal characterization and comparing Dirichlet forms and variances. For
comparing variances, we used the characterization

vary g = min llg — ¢l|2-

To extend the comparison method to log-Sobolev times, we need the follow-
ing similar characterization of L.

xxx For NOTES: Cite [8].
Lemma 38 The functional L in (52) satisfies

9) = rgmeL(g(i%CL g#0, (72)

with

L(g(i), ) = g*(i) log(lg(i)| /e) = 3(97(i) — ¢*) > 0. (73)
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Proof. We compute

fle) = 23 mil(g(i),c'?) = Ex(g” log|g|*) — |lgll3log c — [|g]I3 + c,
flley = 1=cYgll3, f(e)=c?gll3 > 0.
Thus f is strictly convex and minimized by the choice ¢ = ||g||3, and so

ggg;WiL(g(i)76) = zmin f(e) = 3 (llgl12) = £(g)-

This proves (72). Finally, applying the inequality
zlog(z/y)—(x—y)>0 forallz>0,y>0
to z = ¢*(i) and y = ¢? gives the inequality in (73). m

Now it’s easy to see how to compare log-Sobolev times, since, adopting
the notation of Section 1, Lemma 38 immediately yields the analogue

L(g) < L(g) max(mi/7;)
of (18). In the notation of Corollary 2, we therefore have

Corollary 39 (comparison of log-Sobolev times)

A

< —7.
a

Example 40 Random walk on a d-dimensional grid.

xxx Remarked in Example 34 that 7, < m? for m-path with end self-loops.
xxx So by Theorem 36, benchmark product chain has 7 < dm?.
Recalling A <1 and a > 1/2 from Example 5, we therefore find

7 < 2m?d (74)
for random walk on the grid. Then Theorem 26(b) gives
# < m*d(loglog(2n) + 4),

which is of order m2d(logd + loglogm). This is an improvement on the

T9-only bound O(m?2d*logm) of (50) and may be compared with the Nash-

based bound O(m?d*logd) of (51). In Example 43 we will combine Nash-

inequality and log-Sobolev techniques to get a bound of order m2dlogd
xxx right for TV.
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5 Combining the techniques

To get the maximum power out of the techniques of this chapter, it is some-
times necessary to combine the various techniques. Before proceeding to a
general result in this direction, we record a simple fact. Recall (36).

Lemma 41 If ¢ and ¢* are conjugate exponents with 2 < ¢ < oo, then

1-2 2
I fllg= < WAl *MIfllz for all .
Proof. Apply Hélder’s inequality
llghllx < llgllp (1711
with
g=|f|eDa- oy, 21T
? ? q _ 2

Theorem 42 Suppose that a continuous-time reversible chain satisfies

Nt)<Ct™ for0<t<T (75)

for some constants C, T, D satisfying CT™P > e. Ifc > 0, then
d(20) = max | B(X; € ) = 7(-)]2 < ¢

for
t>T+ %Tllog [log(C’T‘D) - 1] + c7o,

where Ty is the relaxation time and 7; is the log-Sobolev time.

Proof. ;From Lemma 11 and a slight extension of (34), for any s,¢,u > 0
and any initial distribution we have

IP(Xottu € ) = 7()ll2 S [IP(Xs € g [Pellgrmz e/

for any 1 < ¢* < o0. Choose ¢ = ¢(t) = 1+ e2/7 and ¢* to be its conjugate.
Then, as in the proof of Theorem 26(a),

[Pellgr—2 = [[Pell2—g < 1.
According to Lemma 41, (39), and (75), if 0 < s <7 then

IP(X, € Yl < IPXS € 5 < N(s)?2 < (Cs7P)2e,
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Now choose s =T'. Combining everything so far,

VAQRT + 1+ u)) < (CT™PY210) ¢=u/7 for 1,4 > 0,

The final idea is to choose ¢ so that the first factor is bounded by e2.
;From the formula for ¢(¢), the smallest such ¢ is

17 log [log(CT‘D) — 1] .
With this choice, the theorem follows readily. m
Example 43 Random walk on a d-dimensional grid.

Return one last time to the walk of interest in Example 5. FExample 21

showed that (75) holds with
D=d/4, C=e2"d®m®)Y* = e(27dm)¥?, T = dm?/32.

Also recall 7, < %dm2 from (49) and 7; < 2dm? from Example 40. Plugging
these into Theorem 42 with ¢ = 2 yields

7 < ¥midlog[idlogd + 2dlog?2], which is < 5m*dlogd for d > 2.

xxx Finally of right order of magnitude.

6 Notes on Chapter 8

xxxX The chapter notes go here. Currently, they are interspersed throughout
the text.
xxx Also cite and plug [12].
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