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Start two independent copies of a reversible Markov chain from arbitrary initial states. Then the expected 

time until they meet is bounded by a constant times the maximum first hitting time for the single chain. 
This and a sharper result are proved, and several related conjectures are discussed. 

1. Introduction 

Let (X,) be an irreducible continuous-time pure jump Markov chain on finite state 

space I = {i, j, k, . . .} with stationary distribution n: Classical theory says P(X, = j) + 

3 as t -+ CO for all j, regardless of the initial distribution. The modern ‘coupling’ 

proof goes as follows. Let (Y,) be an independent copy of the chain. Then (X,, Y,), 

considered as a chain on I x I, is irreducible and hence the meeting time 

T,=min{t: X,= Y,} 

is a.s. finite, regardless of the initial distributions. Now give Y,, the stationary 

distribution and define 

rz, = 
{ 

X,, t<T,, 

Y,, ta TM. 

Then (2,) has the same distribution as (X,). So 

IP(X, =j) - 31= P(gf = j) - P( Y, =j)l 

s P(X, # Y,) 

=P(T,> t)+O as t+co. 

Asmussen (1987) gives a good account of this and other coupling arguments. 

Given a simple proof of a fundamental result, it is natural to probe more deeply 

into the surrounding issues. The argument above can be quantified as follows. Let 

di( t) be the total variation distance between n and the distribution of X, given X0 = i: 

di( t) =; c IPi(X, =j) - 7rjl. 
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Then one obtains 

d,(r)GP(T,>tJX,=i, Y,E 77). (1) 

This leads to the idea of maximal coupling: there is a dependent construction of X, 

and Y, such that equality holds in (1). See Thorisson (1986) for a recent account. 

This paper goes in a different direction, to study the meeting time of independent 

chains as a quanity in its own right, and to compare this quantity with other quantities 

associated with the Markov chain. 

A natural object of study is the worst-case mean meeting time 

rM=maxE(T,IX,=i, YO=j). 
i.i (2) 

Inequality (1) can be used to relate this to a parameter or indicating the time taken 

for the distribution of the single chain to approach the stationary distribution. Define 

d(t) = max di( t), 7, =min{t: d(t)6 1/(2e)} (3) 

(the constant 1/(2e) has no special significance beyond algebraic convenience). 

Then (1) and Markov’s inequality give 

r, G 2e7,. (4) 

Aldous (1982) studied TV and showed that for reversible chains it is ‘equivalent’ 

to various other parameters T, in the sense that 

7, < Kr, r G Kr, , 

where here and throughout K denotes an absolute constant, not depending on the 

chain or the number of states (K varies from line to line). 

In this paper we seek similar results for TM. It is easy to see that rM may be much 

larger than 7,: consider the chain which holds at a state for an exponential (1) time 

and then jumps to a uniform random state. It seems natural to try to relate rM to 

hitting times 

H, = min{ 1: X, =j} 

for the single chain. Let us consider two examples. 

Example 1. Consider continuous-time simple symmetric random walk on the integer 

lattice Zd modulo q. Then the distance X, - Y, between independent walks behaves 

precisely as X,,, the single walk with transition rates doubled. Hence in this example 

rM = $ maxi j E,H,. 

Example 2. Consider the continuous-time analog of deterministic cycling. That is, 

take I = (0, 1, . . . , IV- 1) and transition rates qi,i+l = 1 = qN_,,O. Then maxi,j EiHj = 

N - 1. Now if X,, Y, are independent walks then X, - Y, modulo N is symmetric 

random walk. So by considering X0- Y, = [$N], the central limit theorem shows 

that TV is of order N*. 
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The behavior in Example 2 is in a sense a pathology caused by cyclicity: we can 

eliminate this by restricting attention to reversible chains. The exact equality in 

Example 1 arises from spatial homogeneity and cannot be expected elsewhere, but 

it turns out there is a bound. 

Proposition 1. TV s K maxi,j E,H, for all reversible chains. 0 

Our argument for this proposition is indirect and yields a large K, but it is 

conceivable that K =4 suffices. Example 2 shows no 

irreversible chains, but suggests: 

such bound can hold for 

Conjecture 1. TV G KN max,,, E,H, for all chains, where N = number of states. 

This conjecture seems curiously difficult: the author can do no better than a N” 

bound. 

Returning to the reversible case, adding a very rarely-visited state j may make 

E,H, large without affecting TV, so the bound in Proposition 1 may not be the 

correct order of magnitude. There is a better bound, in which the E,H, are averaged 

using the stationary distribution. 

Proposition 2. For all reversible chains, 

Here a v b = max (a, b) and E, denotes the stationary initial distribution, so 

E,Hi =Ck TkEkHi. In words, the bound is the rr-weighted harmonic mean of the 

T, v E-Hi. Though complicated, the bound does involve only quantities associated 

with the single chain. We conjecture that this is the correct bound, in that the 

opposite inequality holds: 

Conjecture 2. For all reversible chains, 

The author can obtain only the weaker result, 

min E,Hi c KT~. 

The mathematical content of this paper is the proof of Proposition 2: we shall see 

that Proposition 1 is a consequence. The proof is an interesting use of the ‘harmonic 

mean formula’ idea for estimating probabilities of rare events: see Aldous (1989a,b) 

for different applications. The form of the bound in Proposition 2 may look like an 
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artifact of the proof, but Example 3 below is rather convincing that Proposition 2 

shows the correct bound. Calculations with 2-state chains show that the ri term in 

Proposition 2 cannot be omitted. 

Although these meeting time questions have (apparently) not been studied before 

in this generality, a more complicated related question has been studied. Start a 

copy of the Markov chain from every state, and let the chains run independently 

except that chains coalesce when they meet. At some random time TC all the chains 

have coalesced into one chain. This process, where the underlying chain is simple 

random walk on an infinite integer lattice, arises as a dual process to voter models - 

see Liggett (1985) - and in finite settings has been studied by Donnelly and Welsh 

(1983) and Cox (1989). Write TV = ET,. Clearly 7c 2 rM. It is easy to see that 

rc< KT~ log N, where N is the number of states. In natural examples, such as 

random walk on the d-dimensional torus, it turns out that 7,~ KT~. Ted Cox 

(private communication) has observed this is false in general (consider random 

walk, on a ‘star’ graph), but the following (partly vague) conjecture is open. 

Conjecture 3. (a) For all reversible chains, To S K max,,j EiHj. 

(b) Under suitable symmetry conditions, TV s KT~. 

We end this introduction with an instructive example. 

Example 3. Take state space (0, 1,. . . , N - 1; A} with transition rates 

qi,,=l ifj=i*l modulo N, 

qi,d = Nmb, qd, = N-‘-l, O<i<N-1. 

Here 0 < a < b < 2 are fixed, and it is easy to see the order of magnitude (as N + 00) 

of the various quantities: 

v(A) = Na-b, n(i) ^- N-’ for i # A, 

E,H, = Nb, E,H, = N’+h’2 for i # A, 

7, = Nb. 

Now the first meeting time TM for two independent chains X,, Y, can be regarded 

as min (T,, T,), where 

T,=min{t: X,= Y,=A}, T,=min{t: X,= Y,#A}. 

One can show 

ET, = N2b-a, ET, z N’+b/2, 

and hence TM 2 N(Zh--alA(l+b/2). Now looking at the bound in Proposition 2, 

n(A)/E,H, = Na-“, i& r(i)/ E,H, L- Np(‘-tb’2’ 

and the bound works out as = N(2b~a’A(‘+b’2’ . Thus although the qualitative behavior 

of TM changes according to whether 26 - a or 1 +$b is larger, our bound tracks this 

change correctly. 



D.J. Aldous / Markov meeiing times 189 

Remark 1. Though stated for finite-state chains, the fact that the constants K do 

not depend on the number of states implies the results extend to general state space. 

In most cases such extensions are uninteresting since the bounds will be infinite. 

An exception is that one can construct ‘Brownian motion’ on certain compact fractal 

sets in Rd as a limit of random walks on graphs; see e.g. Lindstrom (1990), Barlow 

and Perkins (1988). If such a process hits single points a.s., then our results suggest 

that two independent processes will meet as., and this is indeed true (Krebs, 1990). 

2. Ingredients of the proof of Proposition 2 

The proof to be given in Section 3 is a concoction of three rather diverse ingredients, 

which will be set out in this section. 

The first is the recurrent-potential formula for mean hitting times. In any finite 

state Markov chain, 

E,H, = Ril ri, (5) 

where 

Ri = (pii - niTi) ds. (6) 

This can be deduced from matrix expressions for E,H, in Kemeny and Snell (1960) 

in discrete time, and then extended to continuous time: a simpler argument based 

on renewal theory is in Aldous (1983). Though (6) does not assume reversibility, 

its use for bounding mean hitting times is helped by the fact: 

in a reversible chain, pii( t) decreases to ri as t + ~0. (7) 

This follows from the spectral representation: Keilson (1979, Section 3.3). 

The second set of ingredients are bounds from Aldous (1982) which relate the 

parameter r1 of (3) to other quantities. As in Section 1, K denotes an absolute 

constant. different from line to line. 

Proposition 3. For reversible chains: 

(a) 7,s K yxc 7r’rlE,H;-EkHjI. 
’ I 

(b) There exist stopping times U, such that E,Ui G KT, and dist(X, 1 X0= i) = 

7r. 0 

Note that (a) implies the much weaker result 

7, < K max EiHj. 
i.1 (8) 

This enables us to deduce Proposition 1 from Proposition 2. For Proposition 2 

certainly implies 

rM s K miax (7, A l&H,) 
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and then (8) gives Proposition 1. Next, consider independent copies of the chain 

(X,, Y,) as a chain on state space Ix I, and let r? be defined as at (3) for this 

product chain. It is easy to show, using the submultiplicative property of 2d( t) (see 

Aldous, 1982), that 7: G Kr, So Proposition 3(b) gives: 

Corollary 1. For independent copies (X,, Y,) of a reversible chain, and for any i, j, 

there exists a stopping time U such that 

dist(X,, YU ( X0 = i, Y0 = j) = T x n, 

E(UIX,=i, Y,=j)CKT,. q 

The third ingredient is the starting idea of what the author calls ‘harmonic mean 

formulas’ for estimating first hitting times. Let (2,) be a stationary process, and 

suppose A is such that the sojourns of 2 in A and in A’ form successive non-trivial 

time intervals. Write L, for the Lebesgue measure of (0 c s s t; .Z, E A}. Then 

J 
I 

1 (L,>O) = ~;'1~,\,,& 

0 

(interpreting the integrand as 0 for 2, E A’). So taking expectations, 

I 

, 
P(Z,EA for some O~s~t)=P(L,>O)= E (L,‘; 2, E A) ds. (9) 

0 

3. Proof of Proposition 2 

We first give the proof under the extra assumption 

max ri s 2 min 7r8 (LO) 

and will then show the general case can be reduced to this case by a ‘splitting states’ 

technique. 

Let X,, Y, be independent copies of the chain with the stationary initial distribu- 

tion TK Applying (9) to the stationary process (X,, Y,) and to A = {(k, k) : k E I} gives 

P(X,= Y, forsome Ossst)= J 
I 

E (L;‘; X, = Y,) ds 
0 

where 

J 
I 

L, = 1(x,= y,) ds 
0 

= ‘xE(L;‘)Z,=Y,=i);rjds 
I 0 I 

iJ 

I 

3 (2Ay c E (L7’ ( X, = Y, = i) ds 
0 
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where N is the number of states, since (10) implies vi 3 (2N)-‘, 

~(2N)-~x ‘{E(L,IX,=Y,=i)J’ds 
il 0 

by Jensen’s inequality. 

So we consider, for 0 s s G t, 

E(L, ( X, = Y, = i) 

I 
s2 

I 
P(X, = Y, ( X0= Y,,= i) ds (using 

0 

reversibility) 

191 

(11) 

= 2 
I 

: 7 p:(s) ds (by independence) 

= 2 ‘zp,(s)p,,(s)~~/~~ ds (by reversibility) 
I 0 i 

~4 
I 

’ CpijCs)Pji(s) ds (by (10)) 
0 i 

=4 
I 

f 

pii (2s) ds 
0 

I 

2r 

=2 Pii ds o 

5 

21 

=2 (pii(s)-mi) ds+4tgi 
0 

C2Ri+4trri (by (7), for Ri as at (6)) 

G 4ri(E,Hi + t) (by (5)) 

G 16N-’ max(E,H,, t) (since nis22/N by (10)). 

Putting this together with (22), and putting t = TV, 

P(X, = Y, for some 0~ s c T,) 3 (64N))‘7, C (max(E,H,, T,)))~ 

3 (128))‘rr/~,, = (Y, say, (12) 

where Th = {xi ri/max(E,H,, 7,)) -’ is the desired bound for Proposition 2, and 

where we used ris2/N again. 

The inequality (12) applies to the case where X0, Y. are independent with 

distribution n. Consider now the case where X0 and Y. are arbitrary. Using 

Corollary 1 we can construct stopping times S, = Et=, U, such that 

um==Tl, 

(X,“, Ys,) has distribution v x T and is independent of 

F”_, = (T(X,, Y,; t c sn_,+ T,), 

(13) 
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Then the meeting time TM satisfies 

TM<Sc+r,, (14) 

where 5 = min{n: XS,,+,, = YsatU for some 0~ u G ri}. By (13) and the optional 

sampling theorem, 

ES, s Kr, Et. 

But by (12) and the independence property of our construction, 

P(LJ>m)S(l-(Y)m, mz1, 

and so Et< a-‘. Thus from (14) and (12), 

ET, s r1 + Kr,/a 

=z Kr,, since rh 2 7, by definition. (15) 

This completes the proof under assumption (10). Consider now a reversible chain 

(X,) on 1 with arbitrary r: we shall show that (15) remains true with the same K. 

We can choose integers M, 2 1 such that (r,/Mi) satisfies (10). Define a chain 

2,=(X,, V,) on I*={(i,m):i~Z, I~m~M,} with transition rates 

(i,m)+(j,m’) rate qii/M, (i#jEI; ISrnSM,, l<m’SM,), 

(i,m)+(i,m’) rate y (isI; lGm#m’GM,), 

where qij are the transition rates of X and y is arbitrary. Then (Xt) is a copy of 

(X,). And (2,) is reversible and has stationary distribution g*( i, m) = nj/ M,. So 2 

satisfies (10) and hence (15). This is true for any value of y. As y+00 there is 

probability+ 1 that, during a visit of X, to i, V, will visit all states 1 s m s M,. It is 

easy to deduce that, writing HY and TL for hitting and meeting times for 2, 

En*(Hzm)+ E,H, as y+co. 

Also, for all y, 

E(T,IX,,=i, Y,=j)<E(T$I&=i, ?,,=j). 

Thus we can pass to the limit in (15) and see that (15) holds for (X,). •I 
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