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1 Introduction

This survey describes a general approach to a class of problems that arise
in combinatorial probability and combinatorial optimization. Formally, the
method is part of weak convergence theory, but in concrete problems the
method has a flavor of its own. A characteristic element of the method is that
it often calls for one to introduce a new, infinite, probabilistic object whose
local properties inform us about the limiting properties of a sequence of finite
problems.

The name objective method hopes to underscore the value of shifting ones
attention to the new, large random object with fixed distributional proper-
ties and way from the sequence of objects with changing distributions. The
new object always provides us with some new information on the asymptotic
behavior of the original sequence, and, in the happiest cases, the constants
associated with the infinite object even permit us to find the elusive limit
constants for that sequence.
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1.1 A Motivating Example: the Assignment Problem

The assignment problem for the n × n cost matrix (cij) is the task of de-
termining the permutation π : [n] → [n] that minimizes the total cost
c1,π(1) + c2,π(2) + · · · + cn,π(n) of assigning one column to each row. This
problem arises in many applied contexts, and it has spawned an extensive
algorithmic literature. Here we are more specifically concerned with the value
of the objective function

An = min
π

n∑

i=1

ci,π(i) ,

where the costs cij , 1 ≤ i, j ≤ n, are assumed to be independent and identi-
cally distributed random variables.

Investigation of An seems to have begun in 1962, when Kurtzberg [42] used
heuristic methods like greedy matching to obtain upper bounds on E[An] for
uniformly distributed costs. Kurtzberg’s bounds were of order logn, and these
were not improved until 1979 when Walkup [64] showed that E[An] is bounded
independently of n, which was quite a surprising discovery at the time. Eight
years later, Karp [38] introduced a new approach to the estimation of E[An]
that was based on linear programming. Karp exploited the explicit bases that
were known to be optimal for the assignment problem, and he obtained the
elegant bound E[An] ≤ 2. Inspired in part by Karp’s result, Dyer, Frieze and
McDiarmid [19] developed a general bound for the objective function of linear
programming problems with random costs, and they were able to recapture
Karp’s bound without recourse to special bases. A probabilist’s interpretation
of the Dyer-Frieze-McDiarmid inequality forms the basis of Chapter 4 of
Steele [60] where one can find further information on the early history of the
assignment problem with random costs.

A new period in the development of the random assignment problem began
in 1987 with the fascinating article of Mézard and Parisi [50] which offered
a non-rigorous statistical mechanical argument for the assertion that

lim
n→∞

E[An] =
π2

6
= ζ(2) . (1.1)

The desire for a rigorous proof of this limit has influenced much of the sub-
sequent work on the assignment problem, and the critical first step is simply
to show that actually E[An] converges as n → ∞. Convergence would fol-
low immediately if one could show that E[An] is nondecreasing, but it is still
not known if E[An] is monotone. Nevertheless, in 1992 Aldous [3] used the
objective method to show that E[An] does indeed converge.

In 1998 Parisi [51] added further interest to the random assignment prob-
lem when he advanced the remarkable conjecture that for independent expo-
nentially distributed random cost cij with mean 1, one has an exact formula:
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E[An] =
n∑

k=1

k−2 . (1.2)

A proof of Parisi’s conjecture would immediately confirm the ζ(2) limit for-
mula; moreover, there are good reasons to believe the truth of this stronger
assertion. Specifically, Alm and Sorkin [9] proved the conjecture for all val-
ues of n up to n = 5. Unfortunately, even for such small values, the proofs
are not easy, and Alm and Sorkin had to find their way through a swamp of
special cases with the help of automated theorem proving computations. The
conjectured formula for E[An] remains a tantalizing challenge.

Nevertheless, progress on the limit value for E[An] has been more defini-
tive. In 2001 – by means of the objective method – Aldous [4] finally proved
the ζ(2) limit formula that Mézard and Parisi [50] first brought to light in
1987.

1.2 A Stalking Horse: the Partial Matching Problem

One of the aims of this survey is to show how the objective method helps to
solve problems such as the determination of the limiting value of E[An], but
the assignment problem itself is too burdened with individual nuance for it
to serve as our basic guide. For this reason, we introduce a new problem, the
maximal partial matching problem.

This problem does not have the long history of the random assignment
problem, but it is especially well suited for illustrating the objective method.
In particular, it builds on the theory of random trees, and the limit theory of
such trees provides the prototype for the objective method. Also, the maximal
partial matching problem leads inexorably to the notion of a distributional
identity. Such identities have always had a role in probability theory, but,
along with allied notions like self-similarity and subadditivity, distributional
identities are now a topic of emerging importance.

The relevant identities for the maximal partial matching problem are also
much more tractable than the corresponding identities for the random assign-
ment problem, yet many of the same tools come into play. In particular, we will
find that one often does well to begin by guessing the solution of a distribu-
tional identity. After one has a good guess, then classic tools like Kolmogorov’s
consistency theorem and contemporary tricks like “coupling from the past”
can be used to confirm the existence, uniqueness, and stability of the solutions
of the distributional identity.

1.3 Organization of the Survey

The maximal partial matching problem provides our introductory case study,
but before it can be addressed we need to deal with some foundational is-
sues. In particular, Section 2 develops the notion of local weak convergence.
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Formally, this is nothing more than the weak convergence of probability mea-
sures on a certain metric space of “rooted geometric graphs,” but the attending
intuition differs substantially from the classic weak convergence theory. Sec-
tion 2 also introduces the “standard construction,” which is a general recipe
for building rooted geometric graphs. This construction turns out to have
a subtle, yet pervasive, influence on the applications of the objective method.

After we have dealt with the essential metric space formalities, we see what
local weak convergence tells us about the simplest model for random trees. In
particular, we review Grimmett’s lemma, and we develop an understanding
of the convergence of the large and the small parts of a random tree that
has been cut at a randomly chosen edge. This analysis provides us with the
essential distribution theory for random trees that is needed later.

The theory of the maximum partial matching problem developed in Sec-
tion 3 is concrete and self-contained. Nevertheless, it faces most of the issues
that one meets in more complex applications of the objective method, and it
offers the best introduction we know to the essential ideas.

In Section 4 we introduce the mean-field model of distance which is a phys-
ically motivated probability model designed to gain insight into problems for
point processes in R

d. In this model the distribution of some of inter-point
distances of R

d are captured precisely while other (hopefully less essential)
inter-point distance distributions are distorted in comparison to R

d. The
mean-field model leads us to the PWIT, or Poisson weighted infinite tree,
which is arguably the most important infinite tree model. To illustrate the
close connection of the theory of the PWIT and the objective method, we
give a reasonably detailed proof of the ζ(3) theorem of Frieze.

The relationship of the PWIT to problems of combinatorial optimization
is continued in Section 5 by developing the limit theory for the minimum cost
Cn of a perfect matching of the complete graph Kn with independent edge
weights ξe having a common distribution F . We provide a reasonably detailed
(and hopefully friendly) sketch of the fact that E[Cn] converges to ζ(2)/2 as
n → ∞ when F is the exponential distribution with mean one; this result is
the direct analog of the ζ(2) limit theorem for E[An]. Understandably, some
non-trivial details must be omitted from the sketch, but the section should
still provide a useful introduction to Aldous’s proof of the ζ(2) limit theorem.

All of the problems in Sections 3 – 5 call on distance models with sub-
stantial intrinsic independence; for example, in Section 3 we have independent
weights on every edge, and we face the infinite Poisson-Galton-Watson tree in
the limit, while in Sections 4 and 5, we have the tempered independence that
one inherits from the mean-field model, and we face the PWIT in the limit.
The problems of Section 6 are different; they deal directly with inter-point
distances in R

d rather than with edge weights that are blessed ex cathedra
with independence properties, and in the limit we often need to deal with the
Poisson process.

The probability theory of Euclidean combinatorial optimization has grown
quite large, and in Section 6 we provide very few proofs. Nevertheless, we hope
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to provide a useful up-date of the survey of Steele [60]. In particular, we ad-
dress progress on the minimal spanning tree problem, including a recent weak
law of large numbers developed in Penrose and Yukich [53] which has close ties
to the objective method. The section also contrasts the objective method and
the subadditive method that has served for years as a principal workhorse in
the probability theory of Euclidean combinatorial optimization. In the closing
subsection, we break into entirely new territory and describe a remarkable
new result of Benjamini and Schramm on the recurrence properties of the
local weak limits of planar graphs.

In Section 7, the last section, we first summarize some of the circumstances
that seem to be needed for the objective method to be successful. We then de-
velop the background of an attractive conjecture on the independence number
of a random regular graph. This problem is used in turn to illustrate several
of the basic challenges that appear to be critical to the deeper development
of the objective method.

Finally, we should note that even though our main intention is to provide
a survey and a tutorial, this exposition also contains new results. In partic-
ular, the material in Section 3 on the maximum partial matching problem is
new, including the basic limit theorem (Theorem 3.3) and the theorem that
determines the limit constants (Theorem 3.4). Another new result is the Con-
vergence Theorem for Minimal Spanning Trees (Theorem 5.4). This theorem
both generalizes and simplifies much earlier work; it is also applied several
times during the course of the survey.

2 Geometric Graphs and Local Weak Convergence

Before the theory of local weak convergence can be brought face-to-face with
the concrete problems of combinatorial optimization, one is forced to intro-
duce an appropriate complete metric space. This introduction has been made
several times before on a purely ad hoc basis, but now there is enough cumu-
lative experience to suggest a general framework that should suffice for most
applications. After describing this framework, we will give it a quick test run
by discussing a prototypical result from the limit theory of random trees –
Grimmett’s lemma on the convergence of rooted Cayley trees.

2.1 Geometric Graphs

If G = (V,E) is a graph with a finite or countable vertex set V and a corre-
sponding edge set E, then any function � : E → (0,∞] can be used to define
a distance between vertices of G. Specifically, for any pair of vertices u and v,
one just takes the distance between u and v to be the infimum over all paths
between u and v of the sum of the lengths of the edges in the path.
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Definition 2.1 (Geometric Graphs and the Two Classes G and G�).
If G = (V,E) is a connected, undirected graph with a countable or infinite
vertex set V and if � is an edge length function that makes G locally finite
in the sense that for each vertex v and each real � <∞ the number of vertices
within distance � from v is finite, then G is called a geometric graph. When
there is also a distinguished vertex v, we say that G is a rooted geometric
graph with root v. The set of geometric graphs will be denoted by G, and the
set of rooted geometric graphs will be denoted by G�.

2.2 G� as a Metric Space

The set G� of rooted geometric graphs provides our basic workspace, but
before honest work can begin we need to say what we mean for a sequence
Gn of elements of G� to converge to a G in G�. The idea one wants to capture
is that for large n, the rooted geometric graph Gn looks very much like G in
an arbitrarily large neighborhood of the root of G.

To formalize this idea, we first recall that an isomorphism between graphs
G = (V,E) and G′ = (V ′, E′) is a bijection φ : V → V ′ such that
(φ(u), φ(v)) ∈ E′ if and only if (u, v) ∈ E. Also, given any such isomor-
phism, one can extend the domain of φ to E simply by defining φ(e) to be
(φ(u), φ(v)) for each e = (u, v) ∈ E.

Finally, we say that two geometric graphs G = (V,E) and G′ = (V ′, E′)
are isomorphic provided that (1) they are isomorphic as ordinary graphs and
(2) there is a graph isomorphism φ between G and G′ that also preserves edge
lengths (so �′(φ(e)) = �(e) for all e ∈ E). In the case of two rooted geometric
graphsG = (V,E) and G′ = (V ′, E′), we will say they are isomorphic provided
that there is a graph isomorphism φ that preserves edges lengths and that also
maps the root of G to the root of G′.

Next we consider a special rooted geometric graph that one may view
intuitively as the “neighborhood of radius � about the root” of the rooted
geometric graph G. Specifically, for any � > 0 we let N�(G) denote the graph
whose vertex set V�(G) is the set of vertices of G that are at a distance of at
most � from the root of G and whose edge set consists of just those edges of G
that have both vertices in V�(G), where, as before, the distance between any
two vertices u and v in G is taken to be the infimum over all paths between
u and v of the sum of the lengths of the edges in the path. We again view
N�(G) as an element of G� whose the edge length function and root are just
those of G. Finally, we say that � > 0 is a continuity point of G if no vertex
of G is exactly at a distance � from the root of G.

Definition 2.2 (Convergence in G�). We say that Gn converges to G∞ in
G� provided that for each continuity point � of G∞ there is an n0 = n0(�,G∞)
such that for all n ≥ n0 there exists a isomorphism γn,� from the rooted
geometric graph N�(G∞) to the rooted geometric graph N�(Gn) such that for
each edge e of N�(G∞) the length of γn,�(e) converges to the length of e as
n→∞.
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With a little work, one can show that this definition determines a topology
that makes G� into a complete separable metric space. As a consequence, all of
the usual tools of weak convergence theory apply to sequences of probability
measures on G�, and we may safely use the conventional notation and write

µn
d−→ µ to mean that

∫

G�

f dµn →
∫

G�

f dµ

for each bounded continuous function f : G� → R.

2.3 Local Weak Convergence

The topology on the metric space G� turns out to give weak convergence of
probability measures on G� a local character that sharply differs from the
traditional weak convergence such as one finds in the weak convergence of
scaled random walk to Brownian motion. Weak convergence of measures on
G� never involves any rescaling, and the special role of the neighborhoods
N�(G) means that convergence in G� only informs us about behavior in the
neighborhood of the root.

In practical terms, this means that weak convergence in G� can tell us
about local features such as the degree of the root, the length of the longest
edge incident to the root, and so on; yet it cannot convey detailed information
on a global quantity such as the length of the longest path. To underscore
this difference, one sometimes speaks of weak convergence in G� as local weak
convergence.

2.4 The Standard Construction

Most of the random processes considered here are associated with a standard
construction that has some lasting consequences, even though it may seem
rather bland at first. The construction begins with a probability measure
that is concentrated on the subset of G consisting of geometric graphs with
exactly n vertices. We then consider a random element Gn of G that is chosen
according to this measure, and we choose a vertex Xn at random according
to the uniform distribution on the n vertices of Gn. We then make Gn into
a random rooted geometric graph Gn[Xn] by distinguishing Xn as the root
vertex. The distribution of Gn[Xn] is then a probability measure on the set of
n-vertex elements in the set of rooted geometric graphs. Finally, if a sequence
{Gn[Xn] : n = 1, 2, ...} of such G�-valued random variables converges weakly
in G� to a G�-valued random variable G∞, then we say that the distribution
of G∞ is obtained by the standard construction.

One might think that virtually any measure on G� might be obtained by
the standard construction, but the measures given by the standard construc-
tion are not unconstrained. Later we will find that they must satisfy a modest
symmetry property that we call involution invariance. This property may
sometimes be used to rule out what would otherwise be a tempting candidate
for a limiting object.
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2.5 A Prototype: The Limit of Uniform Random Trees

A classical formula of Cayley tells us that if V is a set of n distinguishable
elements, then the set Sn of rooted trees with vertex set V has cardinality
nn−1. If Tn denotes a tree that is chosen from Sn according the uniform
distribution, then one can show that Tn converges in distribution to a random
variable T∞ that takes values in G�. Remarkably, one can characterize the
distribution of T∞ by a direct construction that relies on the classical theory
of branching processes.

The Infinite “Skeleton Tree” T ∞ – or, PGW∞(1)

To begin, we consider a Galton-Watson branching process with one progenitor
and an offspring distribution that has the Poisson distribution with mean
one. With probability one, any such branching process has a finite number
of vertices, and the finite trees generated in this way are said to have the
Poisson Galton-Watson distribution with mean one. This distribution on the
finite elements of G� is denoted by PGW(1).

Now consider an infinite sequence of independent PGW(1) distributed
trees T0, T1, T2, ..., and let v0, v1, v2, . . . denote their roots. Finally, to make
this collection of trees into one infinite rooted tree, we add all of the edges
{(vi, vi+1), 0 ≤ i <∞}, and we declare v0 the root of the new infinite tree. The
tree T∞ that one builds this way is said to have the PGW∞(1) distribution,
and it is illustrated in Figure 1.

� � � � � � � � � �v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

� � �� �

�� ��

��

�� ��

�� ��

� �

� �

�� ����

�
�� ��

� �

�

�

�

��

�

�

Fig. 1. The “Skeleton Tree” T∞ – also known as PGW∞(1). Here, one should note
that only the root v0 of T∞ is labelled; the chimerical notations v1, v2, ... are only
given to focus the eye on the unique path from the root to infinity. The existence of
such a path is one of the most fundamental features of PGW∞(1).
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One might imagine that T∞ could be an undistinguished member of the
multitude of infinite trees that anyone might paste together from finite trees,
but this intuition is faulty. As the next lemma explains, the skeleton tree T∞
has an inevitable – and highly distinguished – role in the theory of random
trees. We should note that in the next lemma, and throughout the survey,
a graph without its own edge length function is given one by taking the length
of each edge to be 1.

Lemma 2.3 (Grimmett’s Lemma). The randomly rooted uniformly dis-
tributed labelled tree Tn on n vertices converges weakly in G� to the “skeleton
tree” T∞; that is, one has

Tn
d−→ T∞ as n→∞ .

This result was first formalized and proved in Grimmett [26], and further
proofs and generalizations are given by Devroye [18] and Aldous [2]. In some
respects, Lemma 2.3 is the most fundamental fact about random trees under
the model of uniform distribution. Grimmett’s Lemma also has an interesting
self-generalizing quality, and shortly we will see that the convergence in dis-
tribution of T n actually implies that certain special parts of Tn must converge
to corresponding special parts of T∞.

This convergence of parts seems to be a recurring theme in the theory of
local weak convergence. In particular, it provides one key to the appearance
of the distributional identities that have had a crucial role in some of the most
interesting applications of the objective method.

Special Parts of the Skeleton Tree PGW∞(1)

Our first observation about the skeleton tree of Figure 1 is that it has a pleas-
antly recursive structure. From the root v0 there is just one edge (v0, v1) that
is part of the unique infinite path v0 → v1 → · · · of T∞, and if we delete that
edge we find two subtrees – one finite and one infinite. If T small∞ denotes the
finite tree rooted at v0 and T big∞ denotes the infinite tree rooted at v1, then
we see from the definition of T∞ that we can identify their distributions

T small

∞
d= PGW(1) and T big

∞
d= PGW∞(1) .

This decomposition and the definition of weak convergence of probability mea-
sures on G� promptly suggest that one may give a more detailed interpretation
of Grimmett’s Lemma.

Convergence of the Corresponding Parts

Consider again the randomly rooted uniform tree Tn on n vertices, and let r
denote the root of Tn. Any child c of r determines an edge e = (r, c), and,
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when e is deleted from T , we let Tn,c denote the remaining component of Tn
that contains c. We again view Tn,c as a rooted geometric weighted graph by
taking its root to be c.

Now, we let c∗ denote a child of r that is chosen at random from the set
of all children of the root for which the cardinality of Tn,c is maximal; in fact,
for large n, one finds that with high probability there is a unique maximal
subtree. If we remove the edge (r, c∗) from Tn we get two subtrees that we
now label T small

n and T big

n according to their cardinality (and with any tie
being broken by a coin flip). Finally, we view T small

n and T big

n as rooted trees
by letting the end point of the deleted edge determine the new roots.

Next, by our observations on the structure of the skeleton tree, we can
give a more detailed view of the convergence that is guaranteed by Grim-
mett’s Lemma. Specifically, Grimmett’s Lemma automatically implies both
the convergence of the small component

T small

n
d−→ T small

∞
d= PGW(1)

and convergence of the large component

T big

n
d−→ T big

∞
d= PGW∞(1) .

Moreover, Grimmett’s Lemma even implies the joint convergence

(
T small

n , T big

n

) d−→
(
T small

∞ , T big

∞
)
,

where the two processes T small

∞
d= PGW(1) and T big

∞
d= PGW∞(1) are

independent. This independence is often useful, and in the Section 3 its con-
tribution is essential.

Beyond the Skeleton Trees

Many models for random trees have been introduced in combinatorics and
the theory of algorithms ([47], [63]), and for the majority of these models one
finds that there is a natural weak limit. Moreover, the analysis of Aldous [2]
shows that for a large class of these models the limit object is a random rooted
tree which shares many of the qualitative features of the Skeleton Tree given
in Grimmett’s Lemma.

Specifically, one finds that each of these limit objects has a unique infinite
path from the root, and, as we saw in our discussion of Grimmett’s Lemma,
when one removes this skeleton one finds a sequence of finite trees that have
a useful description. In general, these finite trees are no longer independent and
identically distributed; instead, this sequence trees is more closely described
as a hidden Markov process. In fortunate circumstances, the Markov structure
that one finds can serve as a useful substitute for the independence that we
use here.
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3 Maximal Weight Partial Matching on Random Trees

Like most methods, the objective method is best understood through the
examination of a concrete example, and, for all the reasons mentioned in the
introduction, we believe that the maximal weight partial matching problem is
the right place to begin. It is tractable enough to be developed completely, yet
rich enough to demonstrate the structural features of the objective method
that are important in more complex problems such as the random assignment
problem.

3.1 Weighted Matchings of Graphs in General

For any graph G = (V,E) a partial matching S is simply a subset of the set
of edges of G such that no pair of edges of S share a common vertex. Any
function w : E(G) → R may be viewed as a weight function on the edge set
of G, and the weight of the partial matching S is defined simply as

w(S) def=
∑

e∈S
w(e) .

If S∗ is a partial matching of G such that w(S∗) is equal to the supremum of
w(S) over all partial matchings ofG, then S∗ is called a maximal weight partial
matching of G. Such matchings are important in many problems of combi-
natorial optimization, and methods for computing maximum weight partial
matchings have an important role in the theory of algorithms (cf. Lovász and
Plummer [46]).

3.2 Our Case: Random Trees with Random Edge Weights

To each fixed finite rooted tree T and to each edge e of T , we now associate
a random variable ξe. Moreover, we assume that the ensemble {ξe : e ∈ T } is
independent and that ξe has distribution F for each e ∈ T . We view e �→ ξe
as a weight function on T , and a T with this weight function will be called
an F -weighted rooted tree. Finally, for each F -weighted rooted tree T we let
M(T ) denote the maximum weight over all partial matchings of T .

In particular, if Tn denotes an F -weighted rooted tree that is chosen at
random according to the uniform distribution on the set of nn−1 rooted trees
with n-vertices, then we write Mn as shorthand for M(Tn). The random vari-
able Mn is therefore the maximum weight of a partial matching of a random
n-vertex F -weighted rooted tree, and it will be at the center of our attention
for the rest of this section.

3.3 Two Obvious Guesses: One Right, One Wrong

When the edge weight distribution F has a finite mean, one immediately
suspects that there is an asymptotic relationship of the form
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E[Mn] ∼ γn as n→∞

where γ = γ(F ) is a constant that depends only on F . What one further
suspects is that even for the nicest choices of F the calculation of γ might
be an almost impossible task. By comparison, one can list perhaps a dozen
problems where subadditive methods yield a similar asymptotic relationship,
yet the limit constants have gone unknown for decades.

In the partial matching problem we face a happier circumstance. For con-
tinuous F the objective method not only yields a proof of the asymptotic
relation, it also provides a concrete characterization of the limit constant.
This characterization is not necessarily simple, but at least in the leading case
of exponentially distributed edge weights it does lead to an explicit integral
representation for γ that can be calculated numerically.

Our Assumptions on the Distribution F

The intuition that leads one to guess that E(Mn)/n converges does not impose
any constraint on the edge-weight distribution F , except the trivial constraint
that the expectation of ξe ∼ F should be well defined. Nevertheless, here we
will always assume that F is continuous and that P (ξe ≥ 0) = 1; these
assumption guarantee that the maximal weight partial matching exists and is
unique with probability one.

We do not believe that the continuity of F is needed for the convergence
of E(Mn)/n, but, without this assumption, the possibility of multiple optima
would forced us to face many irritating complications. Since our main inten-
tion here is to demonstrate the fundamental features of the objective method
in the simplest realistic light, the issue of discontinuous F is best left for
another time.

3.4 Not Your Grandfather’s Recursion

The first thought of anyone interested in the asymptotics of E[Mn] is to look
for a relation between E[Mn] and the earlier expectations E[Mi], 1 ≤ i < n.
Here we will also hunt for a recurrence relation, but what we find differs
radically from the recursions one commonly meets in discrete mathematics.

If we remove an edge e from the edge set of Tn, then Tn is broken into
two connected components. We can then view these components as rooted
trees where we take the old vertices of e to be our new roots. Next, we label
these trees T small

n (e) and T big

n (e) according to their cardinality (with any tie
being broken by taking the labels at random). This process is similar to the
discussion of the refinement of Grimmett’s Lemma, except that here the cut
edge e can be any edge of Tn.

Now, we consider whether or not the edge e is in the maximal partial
matching of Tn. If one does not use the edge e, then the maximum weight of
a partial matching of Tn is also equal to



14 David Aldous and J. Michael Steele

M
(
T small

n (e)
)

+M
(
T big

n (e)
)
. (3.1)

To go deeper we need some additional notation. If T is any weighted rooted
tree, we define B(T ) by letting M(T ) − B(T ) denote the maximum weight
of a partial matching of T where the root is not in an edge of the partial
matching. By optimality of M(T ) we see that B(T ) ≥ 0, and we think of
B(T ) as the bonus one gets from the option of being allowed to use edges that
meet the root. With this notation, we see that the maximal weight of a partial
matching that is required to use e is given by the sum

ξe +
{
M(T small

n (e))−B(T small

n )(e)
}

+
{
M(T big

n (e))−B(T big

n )(e)
}
. (3.2)

When we compare the weights (3.1) and (3.2), we see that with probability
one the edge e is in the maximum weight partial matching if and only if

ξe > B
(
T small

n (e)
)

+B
(
T big

n (e)
)
. (3.3)

This inclusion criterion naturally gives us a nice way to write Mn as a sum
over the edges of Tn. If we use 1(A) to denote the indicator function for an
event A, then the inclusion criterion (3.3), tells us that

Mn =
∑

e∈T n

ξe1
(
ξe > B(T small

n (e) ) +B(T big

n (e) )
)
. (3.4)

Now, if e denotes an edge chosen uniformly from the edge set of Tn, we see
from the sum (3.4) that the expectation E[Mn] can be written as

E[Mn] = (n− 1)E
[
ξe1

(
ξe > B(T small

n (e) ) +B(T big

n (e) )
)]
.

Finally, since the distribution of ξe does not depend on e and since ξe is
independent of B(T small

n (e)) and B(T big

n (e)), the last equation may be written
a bit more crisply as

E[Mn] = (n− 1)E
[
ξ1
(
ξ > B(T small

n (e) ) +B(T big

n (e) )
) ]

, (3.5)

where we understand that ξ
d= F and that ξ is independent of the pair(

B(T small

n (e) ), B(T big

n (e) )
)
.

3.5 A Direct and Intuitive Plan

The representation for E[Mn] given by equation (3.5) is hardly a conventional
recursion, yet it is still encouraging. The first factor n− 1 hints loudly at the
gross behavior one expects from E[Mn]. Moreover, from our discussion of
the refinement of Grimmett’s Lemma, one can guess that two tree processes
T small

n (e) and T big

n (e) will converge in distribution, and this strongly suggests
that the second factor of formula (3.5) will converge to a constant as n→∞.
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Certainly, one should worry about the fact that B(·) is not a bounded
continuous function on G�; after all, B(·) is not even well defined on all of G�.
Nevertheless, B(·) is well defined on the finite graphs of G�, and any optimist
surely suspects it to nice enough for the random variables B(T small

n (e)) and
B(T big

n (e)) to inherit convergence in distribution from the weak convergence
of T small

n (e) and T big

n (e).
To refine these suspicions, we first note that T small

n (e) and T big

n (e) differ
from the trees T small

n and T big

n in our discussion of Grimmett’s Lemma only in
that the roots of T small

n (e) and T big

n (e) are determined by the random edge e
while the roots of T small

n and T big

n were determined by a random uniform choice
from the respective vertex sets.

As Figure 2 suggests, the root r of T small

n (e) is not quite uniformly dis-
tributed on the vertex set of Tn when e is chosen at uniformly at random
from the edge set of Tn. In fact, if n is odd, then there is always one vertex of
Tn that has probability 0 of being the root of T small

n (e), and, when n is even,
then there are always two vertices that have probability 1/(2(n− 1)) of being
the root of T small

n (e). In both cases, all of the other vertices have probability
1/(n − 1) of being the root of T small

n (e), so, even though r is not uniformly
distributed on the vertex set of Tn, it is almost uniformly distributed. In fact,
the total variation distance between the distribution of r and the uniform
distribution is always bounded by 1/2n, and for odd values of n this bound is
exact.

From this observation and a traditional coupling argument, one finds that
there is only a small change in the distribution of the bonus when the omitted
edge is used to determine the root; specifically, for all n ≥ 1 and all x ∈ R we
have the inequality

∣∣P
(
B(T small

n (e)) ≤ x
)
− P

(
B(T small

n ) ≤ x
) ∣∣ ≤ 1

2n
. (3.6)

Odd Valued n

1/7 1/7

1/7 1/7

1/7

1/7 1/7

Uniform

1/6 1/6

0 1/6

1/6

1/6 1/6

Edge Biased

Even Valued n

1/8 1/8

1/8 1/8

1/8

1/8 1/8

1/8

Uniform

1/7 1/7

1/14 1/7

1/14

1/7 1/7

1/7

Edge Biased

Fig. 2. In this figure, the value next to a vertex is the probability of that vertex
being the root of T small

n . One should note that the uniform choice of an edge typically
leads to a non-uniform distribution on the vertices.
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A parallel analysis of the root of T big

n (e) yields an identical bound for the
distributions of the bonuses of the big tree components, and together these
bounds tell us that if the distribution F of ξ is not too long-tailed, then the
asymptotic behavior of the right hand side of our exact formula (3.5) for
E[Mn] will not be changed if we replace the edge biased trees T small

n (e) and
T big

n (e) by their randomly rooted cousins T big

n and T small

n whose asymptotic
behavior is well understood.

We now see that along the path to proving that E[Mn]/n converges, we
have the natural intermediate task of showing that the bonuses B(T small

n ) and
B(T big

n ) converge in distribution. Further, if we hope to have a serious chance
of calculating the value of the limit of E[Mn]/n, we also need a concrete
characterization of the limiting distributions of B(T small

n ) and B(T big

n ).

3.6 Characterization of the Limit of B(T small

n )

From our discussion of Grimmett’s Lemma, we know that T small

n converges in
distribution to a tree T with the Poisson Galton-Watson distribution PGW(1).
When we view T as an F -weighted tree, then the bonus B(T ) is well defined
since T is almost surely finite. Moreover, one can check directly from the
definition of weak convergence in G� that we have

B(T small

n ) d−→ B(T ) , (3.7)

so the real question is whether there is an effective way to characterize the
distribution of B(T ). This is where the notion of a distributional identity
enters the picture.

The basic idea is that the recursive definition of the tree T should translate
into a useful self-referencing identity for the distribution of B(T ); we just need
to put this idea to work. If C denotes the set of children of the root of T , then
for each i ∈ C there is a subtree T i of T that is determined by the descendants
of i, and we may view T i as a rooted tree with root i. If ξi denotes the weight
of the edge from the root of T to the child i, then the maximum weight of
a matching on T that does not meet the root is given by the sum

∑

i∈C
M(T i) ;

so, to get an identity for B(T ) we just need to calculate the maximum weight
of a partial matching that does meet the root.

If j ∈ C, then the maximum weight for a partial matching that uses the
edge from the root of T to j is equal to

ξj +
{
M(T j)−B(T j)

}
+

∑

i∈C, i�=j
M(T i) = ξj −B(T j) +

∑

i∈C
M(T i) ,

so the maximal weight for a partial matching that does include the root is
equal to
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max
j∈C

{
ξj −B(T j)

}
+
∑

i∈C
M(T i) .

We now see that the difference B(T ) between the overall maximum and the
constrained maximum

∑
i∈CM(T i) is given by

B(T ) = max
{

0, ξi −B(T i) : i ∈ C
}
. (3.8)

Finally, the cardinality of C is Poisson with mean one, T d= T i for all
i ∈ C, and all of the random variables on the right hand side of the identity
(3.8) are independent, so we have before us a very powerful constraint on the
distribution of B(T ). In fact, we can check that any random variable that
satisfies a distributional recursion like that defined by equation (3.8) must be
equal in distribution to B(T ).

Formalization

To formalize this assertion, we let F and G denote any two distributions, and
we define DF (G) to be the distribution of the random variable

max{0, ξi − Yi : 1 ≤ i ≤ N} (3.9)

where random variables in the collection {N,Yi, ξi : i = 1, 2, ...} are indepen-
dent, N has the Poisson(1) distribution, and we have ξi ∼ F and Yi ∼ G for
all 1 ≤ i < ∞. The next proposition tells us that one may characterize the
distribution of the bonus B(T ) as a fixed-point of the mapping DF (·).

Proposition 3.1. If T is an F -weighted PGW(1) tree where F is continuous
and F ([0,∞)) = 1, then the distribution

G(x) = P
(
B(T ) ≤ x

)

is the unique solution of the fixed-point equation

DF (G) = G . (3.10)

Since the discussion leading up to this proposition shows that the distribution
of B(T ) is a solution of the fixed-point equation, we see that the characteri-
zation will be complete if we show that any solution of equation (3.10) must
be the distribution of B(T ) for some F -weighted PGW(1) tree T . This will
be done in a way that is particularly probabilistic.

A Uniqueness Proof by a Probabilistic Construction

Let G denote a solution of the fixed-point equation DF (G) = G, so our task is
to show that G is the distribution function of B(T ) where T is an F -weighted
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PGW(1) tree. Our plan is simply to use G to construct such a T , and Figure 3
suggests how we start.

In the first step, we just consider the tree consisting of a root and a set C
of N children. We then attach a random variable Yi to each child i ∈ C where
the Yi are independent and Yi ∼ G. We then define Y by the identity

Y = max{0, ξi − Yi : i ∈ C} ,

where the ξi are independent and ξi ∼ F . We describe this process by saying
that the root has been expanded.

Next, take any unexpanded vertex v (at the second step this would be any
of the elements of C) and expand v in the same way that we expanded the root.
Specifically, we give v a set C(v) of children with cardinality N(v) = |C(v)|
that is independent Poisson(1), attach a random variable Yv,i to each child
i ∈ C(v) where the Yv,i are independent and Yv,i ∼ G, and then define Yv by
the identity

Yv = max{0, ξv,i − Yv,i : i ∈ C} , (3.11)

where as before the ξv,i are independent and ξv,i ∼ F .
When we expand the root, the fixed-point property of G guarantees that

Y has the distribution G. Later, when we expand v, the values of Yv and Y
will be changed, but their distribution will not be changed. Thus, to complete
the construction, we simply repeat the process of expanding any unexpanded
vertex until no such vertices remain. The tree we construct in this way is
precisely a Galton-Watson tree with the Poisson(1) off-spring distribution, so,
with probability one, the expansion process stops after finitely many steps.
Moreover, even though each vertex expansion changes the values of the ran-
dom variables that are attached to the vertices along the path back to the
root, all of the distributions will be unchanged.

�

� � � �

Y

Y1 Y2
� � �

Yv
� � �

YN

N ∼ Poisson(1)

Yi i.i.d. G

Y = max(0, ξi − Yi : 1 ≤ i ≤ N)

�

� � � �

� � � � � �

Yv,1 Yv,2 Yv,N(v)

Y

Y1 Y2
� � � � � �

YN

N(v) ∼ Poisson(1)

Yv,i i.i.d. G

Yv = max(0, ξv,i − Yv,i : 1 ≤ i ≤ N(v))

Fig. 3. Expansion of the root and expansion of a descendant vertex.
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By this construction, we see that for any leaf � of the resulting tree T the
value Y� associated to � by the value rule (3.11) is zero. The bonus B(T �) is
also zero for any leaf, and the recursion (3.8) for the bonus is the same as the
recursion that defines the associated values Yv, v ∈ T . We therefore find that
B(T ) = Y , and consequently we see that any solution G of the fixed-point
equation DF (G) = G is equal to the distribution of B(T ) for an F -weighted
PGW(1) tree T .

An Analytical Question

This proof of Proposition 3.1 is quite natural given the way that we came
to the fixed-point equation DF (G) = G, but the uniqueness question for this
equation is in fact a purely analytical problem. It seems natural to ask if the
uniqueness of the solution of DF (G) = G may be proved directly without
recourse to the probabilistic interpretation of G, but we do not address that
question here. For the moment the more pressing question is whether we might
also be able to characterize B(T big

n ) by a distributional identity like the one
we used to characterize B(T small

n ).

3.7 Characterization of the Limit of B(T big

n )

To be sure, one can begin just as before; specifically, we can note from our
discussion of Grimmett’s Lemma that T big

n converges weakly in G� to a random
tree, although this time the limit is T∞, the skeletal tree with distribution
PGW∞(1). We would dearly love to conclude that

B(T big

n ) d−→ B(T∞) , (3.12)

but as soon as one writes this equation trouble appears.
Since T∞ is almost surely infinite, one sees that the total weight of the

maximal partial matching of T∞ is infinite. For the same reason, the total
weight of the maximal partial matching that does not meet the root of T∞
is also infinite. The bottom line is that the bonus B(T∞), which is nominally
the difference of these two quantities, is not well defined.

Nevertheless, one should not lose heart. If indeed there is a finite random
variable Z such that

B(T big

n ) d−→ Z , (3.13)

then we still may be able to use our intuition about the undefined quan-
tity B(T∞) to help us to understand Z. Moreover, if we successfully guess
a distributional identity that characterizes Z, we may even be able to use the
stability of that characterization to build an honest proof of the conjectured
convergence (3.13).
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Guessing the Distributional Identity for Z

As physicists sometimes do, we cross our fingers and calculate with B(T∞)
even though it represents the difference of two infinite quantities. Since we only
want to guess an identity for Z that will be subsequently justified by a rigorous
argument, there is no cost to proceeding heuristically for the moment.

If we label T∞ as we did in Figure 1 and if we remove the edge (v0, v1),
then we obtain two subtrees with roots v0 and v1. If T denotes the subtree
with root v0, then T has the PGW(1) distribution, and, if T ′∞ denotes the
subtree with root v1, then T ′∞ has the PGW∞(1) distribution. By the “defini-
tion” of B(T∞), the optimal partial matching of T∞ that does not match the
root v0 has weight M(T∞)−B(T∞), and our first task is to get an alternative
representation for this quantity.

To begin, we let C denote the set of all of the children of v0 except for
the special child v1 that is on the path from v0 to infinity in T∞. For each
i ∈ C we view the vertex i and its descendants as a subtree T i of T , and we
take i as the root of T i. With this notation, we can write the weight of the
optimal matching on T∞ that does not match the root v0 to a second vertex
and obtain the bookkeeping identity

M(T∞)−B(T∞) = M(T ′∞) +
∑

i∈C
M(T i) . (3.14)

The next step is to find an appropriate expression for the maximal weight
of a partial matching of T∞ that does meet the root. We first note the maximal
weight of a partial matching of T∞ that contains the edge (v0, j) with j ∈ C
is given by

ξj +
{
M(T j)−B(T j)

}
+M(T ′∞) +

∑

i∈C,i�=j
M(T i)

which we may simplify to
{
ξj −B(T j)

}
+M(T ′∞) +

∑

i∈C
M(T i) .

Now, if ξ denotes the weight of the edge (v0, v1), then the maximal weight of
a partial matching of T∞ that contains the edge (v0, v1) can be written as

∑

i∈C
M(T i) + ξ +

{
M(T ′∞)−B(T ′∞)

}
,

so, choosing the best of all of the possibilities, we see that M(T∞) equals
∑

i∈C
M(T i) +M(T ′∞) + max

{
0, max

j∈C
{ξj −B(T j)}, ξ −B(T ′∞)

}
.

When we subtract the value of M(T∞) − B(T∞) given by equation (3.14),
we find
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B(T∞) = max
{
0, max

j∈C
{ξj −B(T j)}, ξ −B(T ′∞)

}
.

We know maxj∈C{0, ξj − B(T j)} has the same distribution as B(T ) by the
basic distributional identity (3.8) for the bonus, and we also know that T ′∞
and T∞ have the same distribution, so at last we have a nice, simple, and –
lamentably heuristic – identity for B(T∞):

B(T∞) d= max
{
B(T ), ξ −B(T∞)

}
.

Conversion to an Honest Proposition

For any given continuous distribution F , we know that the distribution G of
the bonus B(T ) for the F -weighted PGW(1) tree T can be characterized as
the unique solution of the fixed-point equation DF (G) = G, and our heuris-
tic derivation suggests that we can characterize the limiting distribution of
B(T big

n ) in a way that is perfectly analogous. Specifically, given any distribu-
tion H and independent random variables

Z ∼ H, Y ∼ G, and ξ ∼ F ,

we let D̃F (H) denote the distribution of max{Y, ξ −Z}, and we consider the
fixed-point equation

D̃F (H) = H .

This time we do not know a priori that there is a solution to this equation,
but we do expect the limiting distribution of B(T big

n ) to exist, and for large
n we also expect B(T big

n ) to be much like B(T∞). Therefore, we suspect that
the limiting distribution of B(T big

n ) will satisfy D̃F (H) = H . The next propo-
sition confirms these suspicions while also confirming the crucial fact that the
solution of the fixed-point equation D̃F (H) = H is unique.

Proposition 3.2. For any continuous distribution F with support on [0,∞),
the fixed-point equation

D̃F (H) = H (3.15)

has a unique solution H; moreover, one has

lim
n→∞

P
(
B
(
T big

n

)
≤ x

)
= H(x) for all x ∈ R .

Before proving this proposition, we will first show that it really does com-
plete the program with which we began.

3.8 The Limit Theorem for Maximum Weight Partial Matchings

Our whole discussion of E[Mn] has been motivated by the formula

E[Mn] = (n− 1)E
[
ξ1
(
ξ > B(T small

n (e) ) +B(T big

n (e) )
) ]

, (3.16)
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and now with the help of Proposition 3.1 and Proposition 3.2 we are ready to
take the limit. If we assume that ξ has a finite expectation, then the integrands
in formula (3.16) are uniformly integrable and they converge in distribution
to ξ1(ξ > Y +Z), so without further concern we can take the limit under the
expectation to obtain the main theorem of this section.

Theorem 3.3. If F is a continuous distribution with support on [0,∞) and
a finite mean, then the maximum weight Mn of an F -weighted random tree
on n vertices satisfies

lim
n→∞

1
n
E [Mn] = E [ξ1(ξ > Y + Z))] TS

1 (3.17)

where the random variables ξ, Y , and Z are independent,

ξ ∼ F, Y ∼ G, and Z ∼ H ,

and the distributions G and H are the unique solutions of the fixed-point
equations

DF (G) = G and D̃F (H) = H . (3.18)

The expression E[ξ1(ξ > Y + Z))] for the limit (3.17) in Theorem 3.3
always provides some structural insight into the value of the limit, but, since
the distributions of Y an Z are only defined through the solutions of two fixed-
point equations, one might think that Theorem 3.3 is still rather abstract.
The next result tells us that in one of the cases that matters most, the limit
E[ξ1(ξ > Y + Z))] may be calculated explicitly.

Theorem 3.4. If F (x) = 1 − e−x for x ≥ 0, then the maximum weight Mn

of a partial matching on an F -weighted random tree on n vertices satisfies

lim
n→∞

1
n
E[Mn] =

∫ ∞

0

∫ s

0

c(e−y − be−s) exp(−ce−y − ce−(s−y))se−s dy ds ,

where the constants b and c are defined by equations (3.21) and (3.22) of
Lemma 3.5. Moreover, by numerical integration one finds

lim
n→∞

1
n
E[Mn] = 0.239583....

To prove Theorem 3.4 we just need to solve two fixed-point equations,
and the lack-of-memory property of the exponential distribution makes this
easier than anyone has any right to expect. Later we will find several other
situations like this one where distributional identities lead us to calculations
that are mysteriously pleasant.

TS
1 Please check if there is a bracket too much.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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Lemma 3.5. If F (x) = 1− e−x for x ≥ 0, then the solutions G and H of the
fixed-point equations (3.18) are

G(y) = exp(−ce−y) for y ≥ 0 (3.19)

and H(z) = (1− be−z) exp(−ce−z) for z ≥ 0 , (3.20)

where b and c are related by

b = c2/(c2 + 2c− 1) (3.21)

and c is the unique strictly positive solution of

c2 + e−c = 1 . (3.22)

Numerically, one finds b = 0.543353... and c = 0.714556....

To prove Lemma 3.5, we first consider Y ∼ G along with an independent
pair of independent sequences {Yi : i = 1, 2, ...} and {ξi : i = 1, 2, ...} with
Yi ∼ G and ξi ∼ F. In terms of these variables, the equation DF (G) = G
simply means

P (Y ≤ y) = P
(
ξi − Yi ≤ y for all 1 ≤ i ≤ N

)
= exp

(
−P (ξ − Y > y)

)
,

where the second identity follows by conditioning on the independent Poisson
variableN . Now, if we take logarithms and apply the lack-of-memory property
of the exponential, then we find

logP (Y ≤ y) = −P (ξ > y + Y ) = −e−yP (ξ > Y ) , (3.23)

and this identity gives us the explicit formula (3.19) when we set c equal to
P (ξ > Y ).

Next, to get the determining equation (3.22) we only need to calculate
c = P (ξ > Y ) with help from the distribution (3.19) of Y ; specifically, we find

c = P (ξ > Y ) =
∫ ∞

0

e−yP (Y ≤ y)dy =
∫ ∞

0

exp(−ce−y) e−ydy

=
∫ 1

0

exp(−cz) dz = c−1(1− e−c) .

Finally, to get the distribution of Z, we use the defining relation (3.15) and
the lack-of-memory property of the exponential to see for z > 0 that

P (Z ≤ z) =P (Y ≤ z)P (ξ − Z ≤ z)

= exp(−ce−z) P (ξ ≤ z + Z) = exp(−ce−z)
{
1− e−zP (ξ > Z)

}
,

so if we set b = P (ξ > Z), then P (Z ≤ z) = (1 − be−z) exp(−ce−z), just as
we hoped. Now, all that remains is to express b = P (ξ > Z) as a function of
c = P (ξ > Y ), and we begin by noting
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b = P (ξ > Z) =
∫ ∞

0

P (Z < z)e−z dz

=
∫ ∞

0

(1− be−z) exp(−ce−z) e−zdz =
c− b

c2
+
b− c+ bc

c2
e−c .

Now, if we use the identity (3.22) to replace e−c by 1 − c2, we see that the
last equation may be solved for b to obtain the promised relation (3.21).
Finally, we note that the uniqueness of c follows from the convexity of the
map x �→ x2 + e−x.

3.9 Closing the Loop: Another Probabilistic Solution
of a Fixed-Point Equation

To complete our investigation of the maximal partial matching problem, we
only need to prove Proposition 3.2. Specifically, we need to show that the
fixed-point equation

D̃F (H) = H

has a unique solution, and we need to show that this solution is the limiting
distribution for the bonuses B

(
T big

n ).

Existence Follows from General Theory

The existence of a solution to the equation D̃F (H) = H is almost obvious
once one draws a connection between the fixed-point equation and the theory
of Markov chains. Specifically, if we set

K(z,A) = P
(
max{ξ − z, Y } ∈ A

)

where ξ ∼ F and Y ∼ G are independent, then K(x,A) defines a Markov
transition kernel on R

+. One then sees at that a distribution is a fixed point
of D̃F if and only if it is a stationary distribution for the Markov chain with
kernel K.

Finally, since the kernelK has the Feller property and since it is dominated
by the distribution of max{ξ, Y }, the general theory of Markov chains on R

+

tells us that there is a stationary distribution for K (cf. Meyn and Tweedie
[49], Theorem 2.1.2).

Uniqueness – Observed and Confirmed by Coupling

While we might also be able to show the uniqueness of the solution of the
fixed-point equation with help from Markov process theory, there is another
approach via coupling that is particularly informative. Moreover, the argu-
ment anticipates a useful stability result that gives us just the tool we need
to prove that B(T big

n ) converges in distribution.
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To begin, we assume that the variables { ξm, Ym : 1 ≤ m ≤ ∞} are
independent with ξm ∼ F and Ym ∼ G for all m. Next, simultaneously for
each z ≥ 0, we construct a Markov chain Zm(z), m = 1, 2, ... by taking
Z0(z) = z and by setting

Zm(z) = max{ ξm − Zm−1(z), Ym } for m ≥ 1 .

Now, for all z and z′ in R
+, we see that

Zm(z) ≥ Zm(z′) implies Zm+1(z) ≤ Zm+1(z′) ,

and from this anti-monotone property we see that Zm(z) ≥ Zm(0) for all even
values of m. Therefore, if we let

T = min{m odd : Zm(0) = Ym } ,

then we see that ZT (z) = YT for all z. As a consequence, we see that T is
a coupling time in the exceptionally strong sense that

Zm(z) = Zm(0) for all z ≥ 0 and all m ≥ T ; (3.24)

moreover, the definition of Zm(0) gives us the simple bound

P (Zm(0) = Ym |Zm−1(0) = z) ≥ P (ξm < Ym) for all z ≥ 0 .

Now, if we set � = 1 − P (ξm < Ym) then we can easily check that � < 1. To
see why this is so, we first note that in a tree T that has exactly one edge with
weight ξ′ the bonus B(T ) is equal to ξ′. Now, if T is a PGW(1) tree, then the
probability that T has exactly one edge is equal to e−1, so for Y d= B(T )
we have

P (Y ∈ ·) ≥ e−1P (ξ′ ∈ ·) .

Now, ξ is independent of Y and has a continuous distribution, so we have the
bound

P (Y ≤ ξ) ≥ e−2P (ξ′ ≤ ξ) =
1
2e

.

Thus, we find � ≤ 1− 1/2e < 1, so the bound

P (T ≥ 2k + 1) ≤ �k for all k ≥ 0

gives us more than we need to show that T is finite with probability one.
Now, if H is the distribution function for a stationary measure for the

kernel K and if Z ∼ H , then by stationarity we have Zn(Z) ∼ H for all
n ≥ 1. Therefore, by the bound on the coupling time, we find for all x ∈ R

that
|H(x) − P (Zm(0) ≤ x)| ≤ �k for all m ≥ 2k + 1 ,

so we see that there is at most one stationary distribution.
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A Coupling Connection

Here we should note that this simultaneous coupling argument shares several
elements in common with the “coupling from the past” technique that has
become a popular tool in the theory of Markov chain Monte Carlo (cf. Propp
and Wilson [54]). In particular, the argument given above shows that for any
random initial value X we have

|P (Zm(X) ∈ A)− P (Z ∈ A)| ≤ �k for all n ≥ 2k + 1 ;

and, remarkably enough, one can even choose X so that it depends on the
elements of {ξm, Ym : m ≥ 1}.

3.10 From Coupling to Stability – Thence to Convergence

If one repeats this coupling argument while relaxing the condition on the
distribution of the variables Ym so that they are only required to have a dis-
tribution that is close to G, one is led to bounds on distributions that can
be viewed the solutions of an “approximate” fixed-point equation. Any such
stability result must face some notational clutter because many quantities are
constantly changing, but the next lemma should be easy to parse if one keeps
in mind that n is an index that increases as the distribution of Y nm comes
closer to G. Also, in the lemma we choose the time index m so that we can
focus our attention on Xn

0 , a quantity that one may view as the dependent
variable at the “time” 0 when the “approximation quality” equals n.

Lemma 3.6. Fix the integer k ≥ 1 and suppose for each n we have non-
negative random variables {Xn

m : −2k + 1 ≤ m ≤ 0} that are linked to the
variables {Y nm : −2k + 2 ≤ m ≤ 0} by the relation

Xn
m = max{ ξnm −Xn

m−1, Y
n
m } for all m = −2k + 2,−2k + 3, . . . , 0 ,

where the random variables {ξnm : −2k + 2 ≤ m ≤ 0} are independent, have
distribution F , and are independent from

Xn
−2k+1 and {Y nm : −2k + 2 ≤ m ≤ 0} .

Further, suppose that one has

(Y nm : −2k + 2 ≤ m ≤ 0) d−→ (Ym : −2k + 2 ≤ m ≤ 0) as n→∞ ,

where the random variables {Ym : m = 0,−1,−2, ...} are independent and
have distribution G. If H is the unique solution of

D̃F (H) = H ,

then we have the bound
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lim sup
n→∞

|P (Xn
0 ≤ x)−H(x) | ≤ �k for all x ∈ R and k = 1, 2, ...

where � is given by

� =
∫∫

y<x

dF (x) dG(y) < 1 .

From Stability to Convergence

First, we let T∞ denote an F -weighted PGW∞(1) tree, and let v0, v1, v2, . . .
denote the sequence of vertices along the unique path to infinity from the
root v0 according to the definition of PGW∞(1) and the familiar Figure 1.
Next, we let k ≥ 1 be an arbitrary integer, and we note from the local weak
convergence of Tn to T∞ that there exists an integer N(k, ω) so that for all
n ≥ N(k, ω) there is a path π with 2k vertices and the following properties:

1. the first vertex of π is the root vn0 of Tn
2. if π is written as vn0 → vn1 → vn2 → · · · → vn2k−1 then the deletion of the

edges of π creates a forest of subtrees Tni , i = 1, 2, ..., 2k− 1, of T n where
Tni is rooted at vni , and

3. we have the weak convergence relation

(Tni : 0 ≤ i ≤ 2k − 2 ) d−→ (T∞i : 0 ≤ i ≤ 2k − 2 )

where all of the righthand components T∞i , 1 ≤ i ≤ 2k−2, are independent
PGW(1) trees.

Next, for each n ≥ 1 and each 1 ≤ i < 2k, we let Rni denote the subtree of
Tn that is rooted at vni that one obtains by removing the single edge (vni−1, v

n
i )

from the path π. We think of Rni as a “remainder subtree” that contains
everything “past” vni−1 and to complete the picture we write Rn0 = Tn.

� � � � � � �

T n
0 T n

1 T n
i

Rn
i+1

vn
0 vn

1 vn
i vn

i+1

ξn
i

Fig. 4. The Residual Rn
i+1.
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Finally, if we let ξni denote the weight on edge (vni , v
n
i+1), then we may

use exactly the same argument that gave us the heuristic derivation of the
fixed-point equation D̃G(H) = H to show that

B(Rni ) = max
{
ξni −B(Rni+1), B(Tni )

}
for all 0 ≤ i ≤ 2k − 2 . (3.25)

In this case the argument is also rigorous since all of the trees involved are
finite, and B(·) is well defined at each stage.

Finally, we note that the recursion (3.25) sets up the direct application of
Lemma 3.6. We only need to take m = −i, to find that the lemma gives us

lim sup
n→∞

|P (B(Tn) ≤ x) −H(x)| ≤ �k .

Since � < 1 and since k is arbitrary, the last inequality is more than we need
to complete the proof of Proposition 3.2.

3.11 Looking Back: Perspective on a Case Study

When one looks back on the maximal partial matching problem, there are
several themes that seem to be worth recording for future use. First of all, the
inclusion criterion (3.3),

ξe > B
(
T small

n (e)
)

+B
(
T big

n (e)
)
,

helped drive the analysis almost from the beginning. In particular, this nec-
essary and sufficient condition for the edge e to be in the maximal partial
matching gave us the succinct representation (3.5) for E[Mn], which in turn
encouraged us to study the limit theory of B(T small

n (e) ) and B(T big

n (e)).
The asymptotic analysis of B

(
T small

n (e)
)

was relatively straightforward,
but the analysis ofB(T big

n (e) ) forced us to work harder. The key to its behavior
turned out to be the random variable recursion (3.25),

B(Rni ) = max{ ξni −B(Rni+1), B(Tni ) } for all 0 ≤ i ≤ 2k − 2 ,

but this equation might have left us empty handed if we had not first studied
its infinite analog. For the analog, we found there was a unique solution, and
this was encouraging. Such equations often have “stabilized” versions, and
this principle guided us to the proof of the weak convergence of B(T big

n (e) ).
One is unlikely to find too many problems that may be solved with a step-

by-step application of the method used here, but we will soon see several
other examples where most of the same elements are present. Certainly, the
heuristic derivation and rigorous solution of a distributional identity emerges
as a basic theme. Sometimes this identity is followed by stabilization, and at
other times it is exploited to provide an analog of an inclusion rule similar
to that provided by equation (3.3). Typically, the new inclusion rule would
apply only in a more elaborate model that one constructs with help from the
distributional identity.
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We will see from the analysis of more complicated problems that the so-
lution of the maximal partial matching problem is a hybrid; it is initiated
and organized by the objective method, but it is completed with help from
a traditional stochastic recursion. Nevertheless, the maximal partial match-
ing problem offers persuasive evidence of the effectiveness of the objective
method, and it provides a quick introduction to several of the method’s main
themes. In the next three sections, we hope to make this case more complete
and more inclusive.

4 The Mean-Field Model of Distance

In physics, and increasingly often in probability theory, one meets geometric
problems where one tries to gain insight by building an analytic model that
only captures part of the structure of the original set of inter-point distances.
For example, instead of studying a random variable that depends on all of the
inter-point distances of a point process in R

d, one may directly model just
the distances from a given point to its successive neighbors and then study
an appropriate analog of the original variable.

By preserving the distributions of the most essential inter-point distances
while distorting the distribution of less important distances, one hopes to
achieve a significant simplification while still gaining some insight into the
phenomena originally of interest. Models that aim for this kind of simplifi-
cation are commonly called mean field models following an earlier tradition
in physics where complicated fields were replaced by simpler ones that were
calibrated to match the average behavior of the more complicated fields.

In this section, we will describe several problems of probabilistic combi-
natorial optimization where mean-field models have been developed. These
models have a natural kinship with the objective method, and local weak
convergence turns out to be a most natural tool.

4.1 From Poisson Points in R
d to a Simple Distance Model

Consider for a moment a Poisson process P on R
d that has uniform intensity

1/vd where vd is the volume of the unit ball in R
d. For such a process the

expected number of points in the unit ball is equal to one, and, if we look
at the successive distances from the origin to the points of P , we have a new
point process

0 < ∆1 < ∆2 < ∆3 < . . . . (4.1)

This process is again Poisson, although now we have nonconstant intensity,
and the expected number of points in [0, x] equal to xd.

In a world where one is more concerned about the distances to one’s nearest
neighbors than about other distances, this simple reduction suggests a promis-
ing line of inquiry. Can one assign random distances to the edges of a complete
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graph Kn with n vertices so that for large n the successive distances from
a point r in Kn will mimic the distances that one finds for the sequence of
neighbors of 0 in the d-dimensional Poisson process P?

A Finite Distance Model: The d-Exponential Kn.

The answer to this question is affirmative, and it is easy to describe. For each
edge e of Kn, we simply introduce an independent random variable ξe such
that

ξe
d= n1/d∆1, or equivalently, P (ξe ≥ n−1/dx) = e−x

d

for x ≥ 0 . (4.2)

Now, if we fix a vertex r of Kn and consider the distance from this root r to
its nearest neighbor, next nearest neighbor, and so on, then one finds a set of
n− 1 increasing distances

0 < Dn
1 < Dn

2 < · · · < Dn
n−1.

The key feature of the distribution (4.2) is that one may now easily prove that

(Dn
i : i ≥ 1) d−→ (∆i : i ≥ 1) as n→∞ . (4.3)

This useful result yields some geometric insight, but it is possible to go much
further. One does not need long to guess that the distributional limit (4.3)
may be strengthened to prove the local weak convergence of the finite distance
models Kn. That is, one hopes to find that Kn satisfies the kind of limit
theorem that we found for Tn in Section 2.

Where to Start.

Anytime one hopes to prove a weak limit theorem in G�, the battle begins
by searching out a reasonably explicit candidate for the limit object. Here for
example, one should minimally note that any reasonable candidate for the
local weak limit of Kn must have infinite degree at every vertex. Moreover,
from the motivating limit (4.3) we also know that in the candidate object the
distances from a vertex to its neighbors must behave like the successive values
of the Poisson process (4.1).

After these easy observations, some deeper reflection is needed. In due
course, one finds that the description of the candidate is almost complete;
only one further observation is needed. Any candidate for the limit of graphs
Kn must be a tree – despite the fact that Kn is more full of cycles than any
other graph!
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4.2 The Poisson Weighted Infinite Tree – or, the PWIT

Even with a good limit object in mind, one needs to confirm that the candidate
exists as a clearly defined process. Here this is easily done by an inductive
procedure. One begins with a single root vertex that we denote by r. This
root vertex is then given an infinite number of children, and the edges from
the root to the children are assigned lengths according to a realization of
a Poisson process (ξri : 1 ≤ i < ∞) with mean function xd. The children of
the root are said to form generation one.

Now, recursively , each vertex v of generation k is given an infinite number
of children, and the edges to these children of v are again assigned lengths
according to an independent realization of a Poisson process (ξvi : 1 ≤ i <∞)
with mean function xd. This procedure is then continued ad infinitum.

The resulting rooted infinite tree T is then a well defined random variable
with values in G�. The tree T is said to be a Poisson weighted infinite tree, or,
a PWIT. Still, the nickname intends no disrespect. PWITs have an inevitable
role in the limit theory of trees, and the next theorem tells us that they are
precisely the limits of appropriately weighted complete graphs on n vertices.

Theorem 4.1 (Convergence Theorem for Kn). If Kn is a randomly
rooted complete graph on n vertices with independent edge lengths ξe that
satisfy

P (ξe ≥ n−1/dx) = e−x
d

for all x ≥ 0 ,
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Fig. 5. Part of a realization of a PWIT that shows just the first three children of
each vertex; one needs to keep in mind that in the full PWIT each vertex has an
infinite number of children. Here the values written next to the edges that descend
from a fixed vertex are intended to reflect an independent realization of a Poisson
process with mean function xd. Finally, the labels of the vertices in this figure are
only for convenience; in a PWIT the vertices are unlabelled except for the root.



32 David Aldous and J. Michael Steele

then we have the local weak convergence

Kn
d−→ T as n→∞ .

where T is a PWIT with edge weight mean function xd.

This theorem from Aldous [3] permits one to study optimization problems
for Kn in the same way that Grimmett’s Lemma permits one to study opti-
mization problems for the uniform random tree Tn. Nevertheless, there is one
noteworthy distinction; the exponential weights on Kn are tied to the Poisson
processes that generate the PWIT, but the F -weights for the edges of Tn may
be chosen with great freedom.

We will not repeat the proof of Theorem 4.1 here, but we should indicate
why the cycles of Kn disappear in the limit. If we introduce a random variable
that measures the length of the shortest cycle containing the root,

Cn = min
C

{∑

e∈C
ξe : C is a cycle of Kn that contains the root r

}
,

then the key issue is that one can prove that

lim
n→∞

P (Cn ≤ �) = 0 for all � > 0 . (4.4)

Intuitively this result says that in the limit there is no cycle of finite length
that contains the root, and, with some attention to detail, this leads to a proof
that the weak limit of Kn in G� must be a random tree.

The Dimension Parameter and a Voluntary Restriction

For the rest of this section, we will restrict our attention to the case when
d = 1, and the Poisson process (4.1) of successive distances (∆i : 1 ≤ i <∞)
reduces to a plain vanilla Poisson process with constant rate 1. Nevertheless,
we should emphasize that this restriction is voluntary; it is only taken to
shorten and simplify our exposition.

For all of the problems studied in this section and the next, there are
parallel results even for noninteger 0 < d < ∞, and, in most cases, one will
find complete proofs of these results in the references. Moreover, one should
note that for the problems studied here, the logic of the analysis is identical
for all values of 0 < d <∞, even though the explicit calculations often depend
on the specific value. These calculations are almost always simplest for d = 1
where one has access to the lack-of-memory property of the exponential.

4.3 The Cut-off Components of a Weighted Graph and a PWIT

For a moment, we consider a perfectly general weighted graph G, and we let
Gs denote the subgraph Gs that one obtains from G by deleting all of the
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edges of length s or greater. Also, if v is a vertex of G we let c(G, v; s) denote
the connected component of Gs that contains v.

Now, if T is a dimension-one PWIT with root r we may view the compo-
nent c(T, v; s) as a rooted tree with root r, and, rather pleasantly, this tree can
identified with a Galton-Watson branching process with a single progenitor
and an offspring distribution that is Poisson with mean s. In other words, for
all s > 0 we have

c(T, r; s) d= PGW(s) ,

and this simple observation has several useful consequences.
In particular, if q(s) denotes the probability that the component c(T, r; s)

is infinite, then classical formulas for the extinction probability of a branching
process (such as those of Harris [30], p.7) tell us that we have q(s) = 0 when
0 ≤ s ≤ 1, and otherwise we find that q(s) is the unique strictly positive
solution of

1− q(s) = exp(−sq(s)) when s > 1 . (4.5)

By inverting this relationship, one also sees that the value of s for which we
have extinction probability 0 < q < 1 is given by

s(q) = −q−1 log(1 − q) , (4.6)

a formula that will soon come in handy.

4.4 The Minimum Spanning Forests of an Infinite Graph

We want to define an analog of the minimal spanning tree for the PWIT and
other infinite graphs, but some care must be taken. Naive attempts to mimic
the usual greedy algorithms certainly will not work; in most cases, they can
never get started.

Instead, we are guided by a well-known criterion for an edge e = (v1, v2)
with length s to be in the MST of a finite graph G with distinct edge weights.
For such a graph, e is in the MST of G if and only if there does not exist a path
in G from v1 to v2 such that each edge of the path has weight less than s. This
criterion is easy to prove, and it is occasionally useful in correctness proofs
for MST algorithms, such as the five discussed in Section 4.4 of Matoušek and
Neštřil [48].

Definition 4.2 (Minimal Spanning Forest). The minimal spanning for-
est of an infinite graph G that has all distinct edge lengths is the subgraph
MSF (G) of G with the same vertex set as G and with an edge set that con-
tains each edge e = (v1, v2) of G for which

1. c(G, v1; s) and c(G, v2; s) are disjoint, and
2. c(G, v1; s) and c(G, v2; s) are not both infinite

when s is taken to be the length of the edge e = (v1, v2) ∈ G.
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Fig. 6. The edge e = (v1, v2) of G is in the minimal spanning forest if and only if
at least one of the trees c(G, v1; s) and c(G, v2; s) is finite when s = ξe.

One can easily check that the graph MSF (G) defined this way will have no
cycles, and, since it trivially spans the vertex set of G, we see that MSF (G)
is certainly a spanning forest. Nevertheless, some work is needed to see why
MSF (G) is the right analog to the MST of a finite graph and to justify the
name minimal spanning forest.

A first step, one should note that all of the connected components of
MSF (G) are infinite. To see this, suppose to the contrary that G0 is a finite
component of MSF (G) of minimal cardinality. Next, consider the shortest
edge e = (v1, v2) between G0 and its complement. Since one cannot get out
of G0 without using an edge length greater than s, we see that c(G, v1; s) is
contained in G0 and hence that c(G, v1; s) is finite. From the definition of the
MSF (G), we then have e ∈MSF (G), and this contradicts the minimality of
the component G0.

4.5 The Average Length Per Vertex of the MSF of a PWIT

If T is a PWIT with root r then the sum of the edges of MSF (T ) that are
incident to r can be written as

SMSF(T ) =
∑

e:r∈e
ξe1(e ∈MSF (T )) ,

and, if we think of each vertex as owning half of the length of each edge that
meets the vertex, then it is reasonable to think of

A =
1
2
E[SMSF(T )] (4.7)

as an average length per vertex of the minimal spanning forest of T .
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One might guess that A could be almost impossible to compute, but such
a view underestimates the natural grace of the PWIT. The next lemma and
its proof show that the PWIT supports some almost magical possibilities.

Lemma 4.3. The average cost A per vertex for the MSF of a PWIT satisfies

A = ζ(3) =
∞∑

k=1

k−3 .

To prove the lemma, we first recall that if one conditions a Poisson process
to have a point at s, then the set of complementary points is again a Poisson
process. Thus, if we condition on the existence of an edge e of length s from
the root to some child, then the subtrees obtained by cutting that edge are
again independent PGW(s) trees.

The probability that at least one of these is finite is equal to 1− q2(s), so
this is also the probability that e is an edge in the minimal spanning forest
and we find

A =
1
2

∫ ∞

0

s(1− q2(s)) ds . (4.8)

Calculation of this integral is quite a pleasing experience. We first integrate
by parts and then we use the defining equation (4.5) for q(s) to find

A =
1
2

∫ ∞

0

s2q(s)q′(s) ds =
1
2

∫ ∞

1

s2q(s)q′(s) ds =
1
2

∫ 1

0

log2(1− q)
q

dq ,

so the substitution u = − log(1− q) lets us finish with

A =
1
2

∫ ∞

0

u2 e−u

1− e−u
du =

1
2

∫ ∞

0

u2
∞∑

k=1

e−ku du =
∞∑

k=1

1
k3

= ζ(3) .

4.6 The Connection to Frieze’s ζ(3) Theorem

The emergence of ζ(3) as the average cost per vertex of the minimal spanning
forest of a PWIT is at least a little mysterious. Still, there is a related prece-
dent, and when one sees ζ(3) in the context of trees, the famous ζ(3) theorem
of Frieze [21] immediately comes to mind.

Theorem 4.4. Let each edge e of the complete graph on n vertices be assigned
an independent cost ξe with distribution F where F has a finite variance and
where F ′(0) exists and is nonzero. If CMST

n (F ) denotes the minimal cost of
a spanning tree of this graph, then as n→∞, we have

CMST
n (F )

p−→ ζ(3)/F ′(0) and E[CMST
n (F )]→ ζ(3)/F ′(0) . (4.9)
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By a simple coupling argument, Steele [57] showed that the convergence in
probability still holds without any moment assumptions, and later by a mar-
tingale argument Frieze and McDiarmid [22] showed that convergence in prob-
ability can be strengthened to almost sure convergence.

Nevertheless, what matters here are simply the exponential costs, and
to make the connection with our earlier calculations explicit, we note that
Frieze’s theorem implies that if the edge weight distribution Fn is exponential
with mean n, then we also have

lim
n→∞

1
n
E[CMST

n (Fn)] = ζ(3) . (4.10)

This limit says the average cost per vertex of the minimal spanning tree of
the appropriately weighted complete graph tends to the same value as the
expected average cost per vertex of the PWIT with d = 1. Conceivably, the
reappearance of ζ(3) is only a coincidence, but it is not. Quite to the contrary,
the limit (4.10) is a consequence of the fact that A = ζ(3).

The Local Weak Convergence Link

As a special case of Theorem 4.1, we know that for the complete graphKn on n
vertices with edge lengths that are independent and exponentially distributed
with mean n, one has the local weak convergence

Kn
d−→ T as n→∞ (4.11)

where T denotes a PWIT with d = 1. We will also see later in Theorem 5.4 of
Section 5 that just local weak convergence (4.11) and the fact that the PWIT
is an infinite graph with all distinct edge weights is enough to give us

(
Kn, MST (Kn)

) d−→
(
T, MSF (T )

)
. (4.12)

This limit is typical of the way the theory of local weak convergence informs
one about a problem in combinatorial optimization. At a conceptual level, the
limit (4.12) answers almost any question one may have about the qualitative
behavior of MST (Kn) for large n, provided that the question meets one re-
striction; it be expressed in terms of a function of some neighborhood of the
root of MST (Kn).

A Randomized Root and a Total Sum

The expectation E[CMST
n (Fn)] can be written as a function of the neighbor-

hood of the root, yet this representation seems to be a lucky break. Eventually
one calls on this break routinely, but at least once it seems useful to examine
the full logical chain; we begin by noting
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CMST
n (Fn) d=

∑

e

ξe1(e ∈MST (Kn))

so now if we let R denote a root chosen at random from the vertex set of Kn

we also have

1
n
E
[∑

e

ξe1(e ∈MST (Kn))
]

=
1
2
E
[ ∑

e:R∈e
ξe1(e ∈MST (Kn))

]

and from the local weak convergence MSF (Kn)→MSF (T ) we have

∑

e:R∈e
ξe1(e ∈MST (Kn))

d−→
∑

e:R∈e
ξe1(e ∈MST (T )) . (4.13)

Now, once one checks uniform integrability (which is a not particularly easy,
but which is a doable technical exercise), one finds from the basic distribu-
tional limit (4.13) that

E
[ ∑

e:R∈e
ξe1(e ∈MST (Kn))

]
→ E

[ ∑

e:R∈e
ξe1(e ∈MST (T ))

]
= 2ζ(3) ,

where the last equality comes from Lemma 4.3. From the links of the chain
we find

1
n
E
[
CMST
n (Fn)

]
→ ζ(3) ,

just as we hoped to show.

5 Minimal Cost Perfect Matchings

A perfect matching of a finite graph is a collection of disjoint edges with the
property that at most one vertex of the graph fails to be contained in an edge
of the collection. Perfect matchings are among the most intensively studied
structures of graph theory, and they suggest many natural random variables.
Here we focus on the prince among these, the minimal cost Cn of a perfect
matching of the complete graph Kn with independent edge weights ξe with
distribution F.

The assignment problem discussed in the introduction is precisely the per-
fect matching problem for the bi-partite graph Kn,n, and the analysis of Cn
is intimately connected to that of An. Thus, the following theorem is a direct
analog of the ζ(2) limit theorem for the expected assignment cost E[An], but
here we rescale the F -weights to be consistent with our discussion of the local
weak limit theory of Kn.
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Theorem 5.1. If Cn denotes the minimal cost of a perfect matching of the
complete graph Kn on n vertices with independent edge costs ξe having the
exponential distribution with mean n, then

lim
n→∞

1
n
E[Cn] =

1
2

∞∑

k=1

k−2 =
1
2
ζ(2) . (5.1)

Given the earlier experience with the maximum partial matching on the
weighted uniform tree Tn, one has every reason to expect that the local weak
convergence of Kn should provide the key to the proof of this theorem. This
view is well founded, but the earlier analyses only provide one with a proper
orientation. There are many devils in the details, and a complete proof of
Theorem 5.1 would take more space than we have here.

Nevertheless, we can provide the better part of one-half of the proof; that
is, we can provide most of the argument that proves the limit infimum of
E[Cn]/n is not less than ζ(2)/2. While doing so, we can also underscore the
main structural features of the full proof. In particular, we develop a basic
distributional identity and solve the identity to find an unexpected connection
to the logistic distribution. We can then use the distributional identity to
construct a special stochastic process which can be used in turn to define an
inclusion rule for the edges of a PWIT to be in a minimal cost matching.
Finally, given just a few properties of the freshly constructed process, we can
complete the analysis of the limit infimum.

In the course of this development, we can also complete a promise made
in Section 2; specifically, we can formalize the involution invariance property
that one finds for all limit objects that are given by the standard construction
discussed in Section 2. Even though involution invariance seems perfectly
innocuous, it has an unavoidable part in the proof of Theorem 5.1. In the
earliest stage, it helps weed out defective candidates for the limit objects, and
at a later stage it guides us to a proper understanding of the matchings on
the PWIT that can be attained as limits of matching on Kn.

5.1 A Natural Heuristic – Which Fails for a Good Reason

The local weak convergence of Kn almost compels one to think of using good
matchings on the PWIT to help in the hunt for good matchings on Kn. The
natural hope is that a perfect matching in the PWIT with minimal average
cost per vertex should be close to a perfect matching of Kn for large n; thus,
weak convergence theory might set us on the trail of a proof of Theorem 5.1.
This hope can be justified, but only after one restricts attention to an impor-
tant subset of the matchings on the PWIT that satisfy a natural symmetry
property. If one ignores this restriction, there are matchings on the PWIT
that are simply too good to be tied to matchings on Kn.
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A Symbolic PWIT and its Greedy Matching
�

� � � � � � ��

� � � � � � ��

� � � � � � ��

� � � � � � �

The greedy matching
of a PWIT is not
involution invariant,
so we cannot use it
to help construct a
good matching on Kn.

Fig. 7. To construct the greedy matching of a PWIT one takes the shortest edge e
out of the root, removes all of the vertices incident to e, and proceeds recursively.
The expected cost per vertex of the greedy matching is equal to one-half, which
beats the unbeatable limiting average cost of ζ(2)/2 per vertex for Kn.

An Example: Greedy Matching on the PWIT

In a finite weighted graph one reasonable way to hunt for a good matching is
the global greedy algorithm where one picks the edge e with minimal weight,
removes all of the edges incident to either endpoint of e, and proceeds recur-
sively. Unfortunately, in a PWIT this method does not have a chance to start
– a PWIT has no edge of minimal cost.

In the PWIT, a reasonable alternative to the global greedy algorithm is
the local greedy algorithm where one starts by choosing the edge of minimal
cost that is incident to the root. In a PWIT such an edge e exists, and we even
know that it has expected value equal to 1. One can then delete e, remove the
edges incident to e, and proceed recursively along the infinite forest produced
by this first step.

The local greedy algorithm produces a matching in the PWIT with an
expected cost per vertex equal to one-half, and this is intriguing since it is even
smaller than the value ζ(2)/2 that we expected to show to be asymptotically
optimal for the Kn.

Unfortunately, the greedy matching for the PWIT simply cannot be the
limit of a sequence of matchings for Kn. Moreover, one can even see this fact
from first principles. The problem is that the greedy matching lacks a sym-
metry property that one must find in every limit object like the limit of the
optimal matchings of Kn.

5.2 Involution Invariance and the Standard Construction

As the discussion of the greedy matching suggests, the measures on G� that
one obtains by the standard construction of Section 2 are not completely
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general. The random rooting process gives these measures a basic symmetry
that we call involution invariance.

This property turns out to be fundamental in the deeper applications
of the objective method. With some experience, one finds that involution
invariance serves as a graph theoretical surrogate for the translation invariance
that is central to the theory of stationary point processes. The main goal of
this section is to provide a patient development of the simplest properties of
involution invariance.

The Defining Elements

If G̃� denotes the set of pairs (G, v), where G ∈ G� and where v ∈ V is
a neighbor of the root of G, then one can view an element G̃ = (G, v) of
G̃� = G� × V as a graph with a distinguished directed edge; specifically, the
distinguished edge (root(G), v) may be viewed as a directed edge from the
root of G to the neighbor vertex v. One can therefore define an involution

ι : G̃� → G̃�

by taking ι(G̃) to be the element of G̃� that one obtains simply by reversing
the direction of the distinguished edge of G̃; that is, one makes v the new root
and takes the old root to be the new distinguished neighbor.

Now, given any probability measure µ on G�, one can define a new positive
measure µ̃ on G̃� by (1) taking the marginal measure of µ̃ on G to be µ and
by (2) taking the conditional measure µ̃G on the neighbors of the root of G
to be the counting measure. The measure µ̃ one obtains in this way is said to
be induced on G̃� by µ.

One should note that µ̃ is not a probability measure, except in some spe-
cial cases. Moreover, since the definition of G� permits infinite vertex sets and
permits vertices with infinite degree, µ̃ is often an infinite measure. Never-
theless, µ̃ is always a nonnegative σ-finite measure on the complete metric
space G̃�. Thus, with proper care, all of the usual results of weak convergence
theory may be applied to sequences of induced measures.

Definition 5.2 (Involution Invariance). A probability measure µ on G� is
said to be involution invariant provided that the σ-finite measure µ̃ induced
on G̃� by µ is invariant under the involution map ι; that is to say,

µ̃(A) = µ̃(ι−1(A)) for all Borel A ⊂ G̃� .

One of the consequences of involution invariance is that it essentially char-
acterizes the measures on G� that one can obtain via the standard construc-
tion. The next lemma formalizes this assertion for finite graphs.
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Lemma 5.3. If µ is the probability distribution of G[X ] where G[X ] is given
by the standard construction and G[X ] is finite with probability one, then µ
is involution invariant. Conversely, if the probability measure µ is involution
invariant and concentrated on the finite connected graphs in G�, then µ is the
distribution of a G�-valued random variable G[X ] that is given by the standard
construction.

To prove the direct implication, we first condition on the event that the
underlying graph of G[X ] is the fixed finite graph G. If G has n vertices and
m undirected edges, then the marginal measure µ̃G puts mass 1/n on each of
the 2m directed edges of G, so we trivially get involution invariance. To prove
the converse, one notes by the captioned discussion of Figure 8 that pG(·) is
constant on each connected component of G. Finally, if we assume that G is
connected, we see pG(·) is constant on G. This is precisely what it means to
say that the root X of G is chosen uniformly from its vertex set, so the proof
of the lemma is complete.

Connection to the Objects of the Objective Method

One of the basic features of involution invariance is that it is preserved under
local weak convergence in the metric space G�. To prove this fact, one first
shows that the topology on G� extends in a natural way to a topology on
G̃� that makes G̃� a complete separable metric space. Next one shows that
the transformation µ → µ̃ is a continuous mapping with respect to weak
convergence; specifically

µn
d−→ µ∞ ⇒ µ̃n

d−→ µ̃∞ .

Finally, one shows that the involution map ι : G̃� → G̃� is continuous.

v

we

e′

µ̃G(e) = pG(v)

µ̃G(e′) = pG(w)

Involution invariance

would force

pG(v) = pG(w)

Fig. 8. Given G = (V, E) we let pG(v) denote the probability that v is the root
of G, and if µ̃ is the induced measure, we write µ̃G for the marginal measure given
G. For any directed edge (v, w) of G, the measure µ̃G puts mass pG(v) on the edge
(v, w) and puts mass pG(w) on the edge (w, v). If one has involution invariance, then
µ̃G(v, w) = µ̃G(w, v), and we see that pG(v) = pG(w). Thus, pG(·) is constant on
each connected component of G whenever one has involution invariance.
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5.3 Involution Invariance and the Convergence of MSTs

The formalities of involution invariance give one no hint that the notion has
much force, but the next theorem shows that involution invariance can be
genuinely powerful. In fact, there is something fundamental about involution
invariance, since, in a way, it replaces the spatial invariance that one uses
constantly in the theory of homogeneous point processes. The pleasantly gen-
eral Theorem 5.4 contains as special cases Frieze’s ζ(3) theorem which was
discussed earlier and the convergence theorem for MSTs of random samples
in the cube which we will discuss in Section 6.

Theorem 5.4 (MST Convergence Theorem). Let G∞ denote a G�-
valued random variable such that with probability one G∞ has infinitely many
vertices and no two of the edges of G have the same length. Further, let
{Gn : n = 1, 2, ...} denote a sequence of G�-valued random variables such
that for each n the distribution of Gn is given by the standard construction
and such that for each n the vertex set of Gn has cardinality n with probability
one. If

Gn
d−→ G∞ as n→∞ , (5.2)

then one has the joint weak convergence in G� × G�,
(
Gn, MST (Gn)

) d−→
(
G∞, MSF (G∞)

)
. (5.3)

Further, if Nn denotes the degree of the root of MST (Gn) and N denotes the
degree of the root of MSF (G∞)

Nn
d−→ N and E[Nn]→ E[N ] = 2 , (5.4)

and, if Ln denotes the sum of lengths of the edges incident to the root of
MST (Gn) and L denotes the corresponding quantities for MSF (G∞), then

Ln
d−→ L . (5.5)

The applications of the limit (5.3) are easy to understand without working
through the convergence proof. Nevertheless, a survey on local weak conver-
gence should give at least one such proof in reasonable detail, and the limit
(5.3) is a attractive candidate. The proof demonstrates several basic facets of
involution invariance, and the net result is genuinely useful.

To begin the proof, we first note that the hypothesis (5.2) tells us the se-
quence {Gn} is tight, and if we consider the sequence of pairs (Gn, MST (Gn) )
one can check that they determine a sequence {µn} of measures on G� × G�
that is also tight. We then let µ denote a measure on G�×G� that one obtains
as the weak limit of a subsequence {µnj}.

By Skorohod’s embedding theorem, we may suppose the G� × G�-valued
random variables (Gnj , MST (Gnj) ) are all defined on a common probability
space and that there is a G�-valued random variable S such that
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(
Gnj , MST (Gnj)

)
→ (G∞, S) with probability one . (5.6)

From the definition of µ as the weak limit of the sequence {µnj}, we see that
the proof of the limit (4.12) boils down to showing

S(ω) = MSF (G∞)(ω) with probability one . (5.7)

This identity will be proved in two steps – one for each direction of the set
inclusions.

The First Inclusion is Easy

To show that MSF (G∞)(ω) ⊂ S(ω) for almost all ω, we begin by considering
an edge e = (u, v) ∈ MSF (G∞) that has length s. By the definition of
the minimal spanning forest, we may assume without loss of generality that
the component c(G∞, u; s) is finite. For convenience of notation, we will also
assume that the subsequence nj is in fact the full sequence; when the argument
is done, one will see that no generality was lost.

Now take a neighborhoodH of u that is large enough to contain c(G∞, u; s)
and note by the almost sure convergence of Gn to T that there is a finite
N(ω) such that for all n ≥ N(ω) there is an isomorphism between H and
a neighborhood of the root of Gn. Also, since c(G∞, u; s) is finite, there is an
ε > 0 such that each edge of c(G∞, u; s) has length less than s− ε.

If en = (un, vn) denotes the edge associated with e by the neighborhood
isomorphism, then for large n the length of en is at least s− ε/2 and all edges
of c(Gn, un; s) have length strictly less than s− ε/2. Therefore, there can be
no path in Gn from un to vn that has all of its edges shorter than the length
of en. Thus, we find that there a finite N ′(ω) such that en is in MST (Gn) for
all n ≥ N ′(ω). Since MST (Gn) converges to S in G�, we get our first inclusion

MSF (G∞)(ω) ⊂ S(ω) with probability one . (5.8)

A More Subtle Inclusion

To complete the proof we just need to show that the set difference

D(ω) = S(ω) \MSF (G∞)(ω) (5.9)

is empty with probability one. By the general lemma below, we also see that
it suffices to show that the number of edges in D that meet the root of G has
expectation zero.

Lemma 5.5. Let G be an involution invariant element of G� with root r and
let W be an involution invariant subset of the edges of G. If

E
[∑

e:r∈e
1(e ∈ W )

]
= 0 ,

then W is empty with probability one.
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This lemma is proved in Aldous and Steele [7], and, since the way
that it uses involution invariance is more simply illustrated by the proof of
Lemma 5.6, we will not repeat the proof Lemma 5.5 here. Instead, we will go
directly to its application.

Naturally, we want to apply Lemma 5.5 where W is taken to be the differ-
ence set D defined by equation (5.9), so our task is to estimate the correspond-
ing expectation. If we let Nn denote the degree of root of Gn in MST (Gn)
and let N denote the degree of the root of G∞ in MSF (G∞), then we have
the usual Skorohod embedding and the inclusion relation (5.8) give us the
bound

N ≤ lim inf
n→∞

Nn , (5.10)

and the definitions of D, Nn and N also give us
∑

e:r∈e
1(e ∈ D) ≤ (lim inf

n→∞
Nn)−N . (5.11)

Since an n-vertex tree has exactly n−1 edges, we always have the trivial limit

E[Nn] = 2(n− 1)/n↗ 2 ,

so, by the bound (5.10) and Fatou’s Lemma, we have

E[N ] ≤ E[lim inf
n→∞

Nn] ≤ lim inf
n→∞

E[Nn] = 2 .

This observation almost completes the proof of Theorem 5.4, and the next
lemma does the rest. It is all we need to confirm that the expectation of the
sum (5.11) is zero.

Lemma 5.6.
E[N ] = 2 . (5.12)

In fact, only half of the lemma remains to be proved; we just need to show
E[N ] ≥ 2. To begin, we consider an edge e = (r, v) that is incident to the root
r of MSF (G). If we write f for “finite” and ∞ for “infinite,” then each such
edge must be one of four possible types

(f, f), (f,∞), (∞, f), and (∞,∞)

according to the cardinality of the respective components of MSF (G∞) \ {e}
that contain r and v. We will write Nff , Nf∞, N∞f , and N∞∞ for the
numbers of edges of the corresponding types.

From the definition of the minimal spanning forest, we know that every
vertex is in an infinite component of the MSF, so Nff is always zero. A more
important observation is that unless r has infinite degree, the argument given
in the caption of Figure 9 gives us

2Nf∞ +N∞∞ ≥ 2 . (5.13)
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Fig. 9. If the root of G∞ has finite degree, we are sure to have 2Nf∞ + N∞∞ ≥ 2
because no edge of the MSF of G∞ can connect two finite components of the MSF
and because in the three remaining cases one always has either Nf∞≥1 or N∞∞≥2.

The key step turns out to be a very simple involution invariance argument that
shows that Nf∞ and N∞f have the same expectation. Once this is confirmed,
one can complete the proof of the lemma by noting that the bound (5.13)
gives us

E[N ] = E[Nf∞] + E[N∞f ] + E[N∞∞]
= 2E[Nf∞ + E[N∞∞] ≥ 2 .

Finally, to establish the equality of E[Nf∞] and E[N∞f ], we first recall
the measure µ̃ that one uses to define involution invariance. For any directed
edge e→ we have

E[Nf∞] = µ̃{e→ is of type (f,∞)} ,

and we also have

E[N∞f ] = µ̃{e→ is of type (∞, f)}
= µ̃{e← is of type (f,∞)} ,

where e← is the reversal of e→. Now, since G∞ is involution invariant, we
have equality of reversals, so

µ̃{e← is of type (f,∞)} = µ̃{e→ is if type (f,∞)} ,

and we find at last that E[N∞f ] = E[Nf∞]. This completes the proof of
Lemma 5.6, and hence completes the proof of Theorem 5.4 as well.
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A Thought on Involution Invariance

The way that involution invariance does its work is by telling us that “what-
ever is true from the perspective of the root r” is also true from the perspective
of the root’s neighbor v. In the case of a connected graph, one can chain this
argument from vertex to vertex and conclude that “whatever is true from
the perspective of one vertex is true from the perspective of any other ver-
tex.” This statement is far from precise, but the derivation of the identity
E[N∞f ] = E[Nf∞] suggests that it provides honest guidance.

Results Related to the MST Convergence Theorem

The MST Convergence Theorem given here is new, and it generality serves
to underscores the benefit of working with the local weak convergence of se-
quences of G�-valued random variables. The simplicity of Theorem 5.4 should
not conceal the fact that it contains as special cases both the basic conver-
gence theory for MSTs for weighted complete graphs developed by Aldous [1]
and the corresponding theory for random Euclidean points developed by Al-
dous and Steele [6]. Avram and Bertsimas [12] independently studied both of
these cases, and one further finds that their calculations are also much more
transparent when viewed in the light of local weak convergence.

5.4 A Heuristic That Works by Focusing on the Unknown

The greedy algorithm gave us an excellent matching on the PWIT, but it
lacked involution invariance and did not help a bit in our hunt for a good
matching on Kn. Moreover, the symmetry of the PWIT makes it hard to see
how one can do better; almost any matching one might find by good guessing
is likely to face the same failings that were met by the greedy matching. Nev-
ertheless, a good involution invariant matching can be found, provided that
one takes a hint from the analysis of the maximal partial matching problem.

The overarching plan is to consider the minimal cost per vertex of an in-
volution invariant perfect matching on the PWIT and to treat this cost as
an “unknown.” We then begin the hunt for an equation that contains this
unknown, and, in due course, heuristic considerations will lead us to a distri-
butional identity. This identity can then be solved rigorously, and its solution
can be used in turn to build a joint process with one marginal being a PWIT
and another marginal being random variables that satisfy the distributional
identity. These auxiliary variables can then used to construct an “inclusion
rule” that provides a test for an edge’s membership in the matching on the
PWIT.

One small wrinkle this time is that we will focus on a simple difference,
rather than the more subtle bonus that we used before. Specifically, we focus
on the difference

D(T ) = C(T )− C
(
T \ {r}

)
,
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where C(T ) is the minimal cost of a perfect matching of T and C(T \ {r})
is the minimal cost of a perfect matching of the graph T \ {r}. Naturally,
both C(T ) and C(T \ {r}) are infinite, so D(T ) is not really well defined.
Nevertheless, in our analysis of the maximal partial matching problem we
met a similar difficulty, and we still managed to prevail. We have every reason
to hope for a similar outcome this time.

If j is a child of the root, then we let T j denote the descendants of j and
we view T j as a rooted graph with root j. We then introduce the analogous
heuristic difference D(T j), and note that even thoughD(T ) andD(T j) are not
honestly defined, one can continue in the brave tradition of physical scientists
and argue that nevertheless they should satisfy the distributional identity

D(T ) = min
1≤j<∞

{
ξj −D(T j)

}
. (5.14)

To see this, we first note that the minimal cost of a matching that contains
the edge (r, j) from the root r to the vertex j has cost

ξj + C
(
T j \ {j}

)
+
∑

i:i�=j
C(T i) (5.15)

and that C(T ) is just the minimum of all of these values. Also, we have the
direct identity

C
(
T \ {r}

)
=

∑

1≤i<∞
C(T i) . (5.16)

The difference of equations (5.15) and (5.16) is just ξj −C(T j)+C(T j \ {j}),
so in the end we see that

C(T )− C
(
T \ {r}

)
= min

1≤j<∞

{
ξj − C(T j) + C

(
T j \ {j}

)}
. (5.17)

5.5 A Distributional Identity with a Logistic Solution

Equation (5.14), or its expanded equivalent (5.17), motivates us to begin our
rigorous analysis by first considering the distributional identity

X
d= min

1≤i<∞

{
ξi −Xi

}
−∞ < X <∞ , (5.18)

which we interpret to be an identity for a distribution F that is fully specified
by supposing (1) X ∼ F , (2) the Xi are independent, (3) Xi ∼ F for all
i = 1, 2, ..., and (4) the sequence {Xi} is independent of the process 0 < ξ1 <
ξ2 < · · · which is a Poisson process with constant intensity equal to one.

Naturally, one wants to know about the existence and uniqueness of a dis-
tribution F that satisfies this distributional identity. The next lemma provides
an answer of striking simplicity.
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Lemma 5.7 (Logistic Solution of a Distributional Identity). The unique
solution of the identity (5.18) is the logistic distribution

F (y) = 1/(1− e−y), −∞ < y <∞ (5.19)

corresponding to the density function

f(y) = (ey/2 + e−y/2)−2, −∞ < y <∞ .

Better Than a Proof – A Derivation

Rather than just give a direct verification of this lemma, one does better
to see how the probability theory of the distributional identity leads one to
discover the connection to the logistic distribution. Thus, for the moment, we
assume that the distribution F satisfies the identity (5.18), and we will try to
calculate F .

We first note that the distributional identity (5.18) asserts that

1− F (y) = P

(
min

1≤i<∞
{ξi −Xi} ≥ y

)

where the {Xi : i = 1, 2, ...} on the righthand side are i.i.d. with distribution
F and {ξi : i = 1, 2, ...} is an independent Poisson process. Therefore, if we
consider the collection of points P in R

2 given by { (ξi, Xi) : i = 1, 2, ...} we
see that P is a Poisson process on (0,∞)× (−∞,∞) with intensity dzdF . As
a consequence, we have

1− F (y) =P
(
no point of P is in {(z, x) : z − x ≤ y}

)

= exp
(
−
∫∫

z−x<y
dz dF (x)

)

= exp
(
−
∫ ∞

0

{1− F (z − y)} dz
)

= exp
(
−
∫ ∞

−y
{1− F (u)}du

)
.

When we differentiate this identity we find

F ′(y) =
(
1− F (−y)

)(
1− F (y)

)
, (5.20)

and the symmetry of this equation implies that the density F ′(·) is symmetric.
As a consequence, we see that equation (5.20) is equivalent to

F ′(y) = F (y)
(
1− F (y)

)
,

which is easily seen to be separable. We can rewrite it as
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dy =
dF

F (1− F )
=
dF

F
+

dF

1− F

and solve by inspection to find

y = log
F

1− F
or F (y) = 1/(1− e−y) .

Thus, F is simply is the logistic distribution. It is famous for popping up in
odd places, but its appearance here still a bit surprising. The remainder of
our analysis does not call on any theory of the logistic distribution beyond
the easily checked fact that it has variance π2/3.

5.6 A Stochastic Process that Constructs a Matching

With the explicit solution of the distributional identity (5.18) in our hands, the
next step is to construct a joint process where the distributional identity (5.18)
suggests an inclusion criterion that can be used to define a good matching on
the PWIT. Specifically, we will construct simultaneously (1) a PWIT and (2)
a special collection of random variables that are associated with the edges of
the PWIT. The variables in this special collection are intended to mimic the
differences D(T j) that led us to the logistic recursion. To put this plan into
action, we will need to introduce some notation that makes more explicit the
consequences of cutting a PWIT at one of its edges.

Notation for a Split PWIT

When we take a PWIT and delete the edge (u, v) we get two disjoint trees
that we can view as being rooted at u and v respectively. To help keep track of
these trees (and the difference functionals that we will associate with them),
we assign to each edge of the PWIT a pair of directed edges.; formally, we just
distinguish between (u, v) and (v, u). Given any graph G we let EG denote
the set of edges obtained by directing the edges of G, and, if T is a PWIT
with edge weights ξe, then we give the same weight to each of the directed
edges associated with e. Finally, if e = (u, v) is a directed edge and X(e)
is a random variable associated with that edge, we will often simply write
X(u, v). In the case of the PWIT, the weight of the directed edge ξe will also
be written as ξ(u, v). By definition we have ξ(u, v) = ξ(v, u), but, typically,
X(u, v) and X(v, u) will be different.

Lemma 5.8 (Triple Tree Process). There exists a process (T , ξe, X(e) :
e ∈ ET ) where T is a PWIT with associated edge lengths { ξe : e ∈ ET } and
where {X(e) : e ∈ ET } is stochastic process indexed by the directed edges of
T with the three following properties:

(i). for each directed edge e = (u, v) ∈ ET we have

X(u, v) = min{ξ(v, w)−X(v, w) : (v, w) ∈ ET , w �= u} (5.21)
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(ii). for each e ∈ ET that is directed away from the root of T the random
variable X(e) has the logistic distribution, and

(iii). for each pair of oppositely directed edges (u, v) and (v, u) in ET , the
random variables X(u, v) and X(v, u) are independent.

The proof of Lemma 5.8 is easy and instructive; it shows how one can
exploit a distributional identity to construct useful processes on trees and
other graphs. To begin, we fix an integer g ≥ 1 and then for each directed
edge (u, v) with u in generation g and v in generation g + 1 (relative to the
root), we create by fiat an independent logistic random variable X(u, v). We
next use the identity (5.21) to define X(e) for each edge within g generations
of the root. This construction gives us a collection Cg of random variables
whose joint distribution satisfies properties (i), (ii) and (iii) for all vertices in
the first g generations. Moreover, the distribution of the collection Cg is equal
to the marginal distribution of the larger collection Cg+1 restricted to the first
g generations, so by the Kolmogorov consistency theorem there is a collection
C∞ such that for each g the marginal distribution of C∞ restricted to first g
generations is equal to the distribution of Cg. �

A Useful Addendum to the Triple Tree Lemma

Once the triple process is in hand, one can go further; in fact, one can show
that the process has some intrinsic independence properties that are not an
explicit part of the construction. Moreover, we will find that this additional
independence has a key role in our later computations.

First we take a fixed 0 < x <∞, and we condition on the event that there
exist an edge a the root that has length x. We call this edge (r, v) and note
that as in Figure 10, the edge determines two subtrees of the PWIT that one
could label T (r, v) and T (v, r). As we have noted before, a Poisson process
conditioned to have a point at x is again a Poisson process when this point is
deleted, so by the definition of the PWIT we see that T (u, v) and T (v, u) are
conditionally independent copies of the original PWIT. We therefore find an
addendum to Lemma 5.8:

u v

T (v, u)

T (u, v)

Fig. 10. When one cuts a PWIT at an edge, one obtains two trees that one can
label by using the directed edges associated with the cut edge. The tree T (u, v)
labelled by the directed edge (u, v) has the root v and contains all of the edges that
follow v in the direction of (u, v).
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Some of the double edges

into and out of v

Infinitely many

edges are not drawn.

X(u, v)

X(v, u)

� �

�

�

�

vu

Fig. 11. The edges that feature in the identity for X(u, v) are those directed edges
out of v indicated by the solid arrows; note that the edge (v, u) is not one of these.
Note also that the weight ξe of an edge does not depend on its direction, but the
value of X does.

(iv). conditional on the existence of an edge (r, v) from the root having length
x, the random variables X(r, v) and X(v, r) are independent random
variables with the logistic distribution.

Construction of an Excellent Matching on T

For the triple process (T , ξ,X) given by Lemma 5.8, one can use the additional
information carried by the X process to specify a good matching on T . As
before, the idea is to use an inclusion criterion that is motivated by the
heuristic derivation of the distributional identity (5.18).

To define this matching, we first consider the map ϕ : V → V on the set
V of vertices of the PWIT that is given by ϕ(v) = v∗ where v∗ is the vertex
for which ξe −X(e) is minimized when e = (v, v∗). The next lemma confirms
that the set of edges (v, v∗) is a matching; we will subsequently show that it
is a good one. More precisely, one can show that this matching is optimal in
the sense that no other involution invariant matching of a PWIT can have
a lower average expected length per edge.

Lemma 5.9 (Matching Lemma). The set of edges (v, v∗) defined by the
rule ϕ(v) = v∗ is a matching on the special PWIT T .

To prove Lemma 5.9, we first note that it is exactly equivalent to showing
that ϕ is idempotent; that is, we must show that (v∗)∗ = v for all v ∈ V .
Now, by the definition of ϕ and the recursion (5.21) for X , we have
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ξ(v, v∗)−X(v, v∗) = min
{
ξ(v, y)−X(v, y) : (v, y) ∈ T

}

< min
{
ξ(v, y)−X(v, y) : (v, y) ∈ T , y �= v∗

}

= X(v∗, v) ,

or, a bit more simply

ξ(v, v∗) < X(v, v∗) +X(v∗, v) . (5.22)

On the other hand, if z is a neighbor of v other than v∗, then we have

ξ(v, z)−X(v, z) > min
{
ξ(v, y)−X(v, y) : (v, y) ∈ T

}

= min
{
ξ(v, y)−X(v, y) : (v, y) ∈ T , y �= z

}

= X(z, v) .

This inequality tells us ξ(v, z) > X(v, z) +X(z, v) whenever z �= v, so we see
that v∗ is the unique neighbor of v that satisfies the inclusion criterion (5.22).

We can therefore see that we could have just as well defined ϕ(v) as the
unique v∗ satisfying the criterion (5.22). Finally, if one notes that both sides of
the criterion (5.22) are symmetric we see that ϕ(ϕ(v)) = v, just as we hoped
to show.

Wisdom of a Matching Rule

Given the maneuvering that led us to the matching rule r∗ = ϕ(r), one has
a right to expect that there is no invariant matching that has a lower expected
cost per vertex. The next lemma asserts that this expectation is justified.

Lemma 5.10 (Optimality on the PWIT). Let M denote any matching of
T that is involution invariant. If (r, s) is the edge of M that contains the root
r of T , then one has

E[ξ(r, s)] ≥ E[ξ(r, r∗)] . (5.23)

The proof of Lemma 5.10 is unfortunately too lengthy to be included here,
and even a convincing sketch would run beyond our boundaries, so for most
details we must refer the reader to Proposition 18 of Aldous [4], which addi-
tionally proves that inequality (5.23) is strict except when the matching M is
almost surely identical to the matching defined by ϕ.

5.7 Calculation of a Limiting Constant: π2/6

If Mopt is the matching given by Lemma 5.9 and if r∗ = ϕ(r) is the vertex
that is matched to the root r by Mopt, then the expected value per edge of the
weight of the Mopt is simply equal to E[ξ(r, r∗)]. This expected value turns
out to be surprisingly easy to compute.
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Lemma 5.11.

E[ξ(r, r∗)] =
π2

6

To prove the lemma we first fix 0 < x <∞ and then we condition on the
event Ax that there exists an edge (r, v) incident to the root of T that has
length x. The inclusion criterion (5.22) then tells us r is matched to v if and
only if we have

x < X(r, v) +X(v, r) .

By the addendum to Lemma 5.8 we know that conditional on the event Ax
the pair

(
X(r, v), X(v, r)

)
same distribution as a pair (X,Y ) of independent

logistics, so by the uniform intensity of the Poisson process on [0,∞) we have

E[ξ(r, r∗)] =
∫ ∞

0

xP (x < X + Y ) dx =
1
2
E[(X + Y )21(X + Y > 0)] .

Finally, the symmetry of the logistic distribution lets us rewrite the last ex-
pectation as

1
4
E[(X + Y )2] =

1
2
E[X2] = π2/6 ,

where in the last step we used the fact noted earlier that the logistic distri-
bution has variance π2/3.

5.8 Passage from a PWIT Matching to a Kn Matching

We are now in position to sketch the connections that complete the proof of
Theorem 5.1, and we begin by noting that the observations in hand already
give us one half of the theorem. For each n we let Mn denote the optimal
matching on Kn and we view Mn as a G�-valued random variable by setting
the root of Mn to be the root of Kn. By the tightness of the joint process
(Mn,Kn) we know that for every subsequence of n = 1, 2, ... there is a further
subsequence nj such that (Mnj ,Knj ) converges weakly in G�×G�. By Skoro-
hod’s theorem and our earlier analysis of the weak limit of Kn, we may even
assume that

(Mnj ,Knj )→ (M, T ) with probability one , (5.24)

where T is a PWIT and M is a matching on T . Moreover, from the fact that
Mn is randomly rooted, we see that M is involution invariant.

Now, if c(Mn) denotes the cost of matching the root in Mn and c(M)
denotes the cost of the edges that meets the root of T , then from the limit
(5.24) and the definition of the topology on G�, we have

c(Mnj )→ c(M) with probability one .

From this limit, Fatou’s Lemma, and Lemma 5.11 we then find
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lim inf
n→∞

E[c(Mnj )] ≥ E[c(M)] ≥ π2/6 .

Finally, by the generality of the subsequence {nj}, we therefore find in the
notation of Theorem 5.1 that

lim inf
n→∞

2
n
E[Cn] ≥ π2/6 . (5.25)

This proves half of the equality (5.1) of Theorem 5.1; the bad news is that
this is the easy half.

The Harder Half – and Its Two Parts

The harder half of Theorem 5.1 breaks into two natural steps. First one needs
to show that there is a low-cost ε-feasible matching for Kn for large values
of n, and then one needs to show that such an ε-feasible matching can be
modified to provide an honest matching without substantially increasing the
total cost.

To make this plan precise, we first recall that an ε-feasible matching of
a graph G with n vertices is a subset M∗ of edges of G with the property that
each vertex of G is in some edge of M∗ and at most εn elements of M∗ fail
to be isolated from the other elements of M∗. The fact that one can cheaply
convert a low-cost ε-feasible matching of Kn to an honest low-cost complete
matching of Kn is (almost) purely combinatorial. We do not deal here with
that part of the argument, but one can refer to Proposition 2 of Aldous [3]
for a proof of an analogous result in the context of bipartite matching.

How to Use a Matching on a PWIT to Find One on Kn

We continue to work with the special PWIT T that was constructed as part
of Triple Tree Process of Lemma 5.8, and we let M denote the matching
defined on T that was constructed in Lemma 5.9. Next, we fix a � > 0, and
we let N�(r, T ) denote the neighborhood of radius � about the root r of T .
We view N�(r, T ) as an element of G� with root r, and we let N�(r,Kn)
denote the analogously defined �-neighborhood of the root of Kn. Here one
should note that N�(r, T ) is always a tree since it is a subtree of T , but the
corresponding neighborhood of Kn given by N�(r,Kn) will not necessarily be
a tree. Nevertheless, since � is fixed, the probability that N�(r,Kn) is a tree
will go to one as n becomes large.

Now, for any G ∈ G� that is a feasible realization of N�(r, T ) and for any
w ∈ T , we let q(w|G) denote the conditional probability that r is matched to
w in M given the event that the neighborhood N�(r, T ) is isomorphic to G
as an element of G�. We will use q(w|G) to guide a sampling process on Kn

that we can use to help build a matching.
Specifically, for any 1 ≤ n <∞ we define a subset M(�, n) of the directed

edges of Kn by the following process: for each u ∈ Kn we choose (u, v) with
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probability q(v|N�(u,Kn) ). Also, in just the same way, we define a subset
M(�,∞) of the directed edges of T – that is, for each u ∈ T we choose the
directed edge (u, v) with probability q(v|N�(u, T )). The key observation is
that the event A(�,∞) defined by

A(�,∞) = { r is in exactly two edges of M(�,∞) }

satisfies the identity

P (A(�,∞)) = 1− η(�) where η(�) → 0 as �→∞ . (5.26)

Thus, if we collapse each directed loop {(u, v), (v, u)} of M(�,∞) to a single
undirected edge, then for large � we have a high probability of obtaining an
honest matching on T .

Now, we consider the analogous events for Kn. Specifically, we let A(�, n)
denote the event that (1) the root r of Kn is in exactly two directed edges of
M(�, n) and (2) these edges have the form (r, v) and (v, r) for some v. The
local weak convergence of Kn to T and the definition of η(�) then tells us
that

lim
n→∞

P (A(�, n) ) = 1− η(�) . (5.27)

Next, we let Mu(�, n) denote the set of undirected edges one obtains by col-
lapsing each directed loop {(v, w), (w, v)} of M(�, n) into a single undirected
edge. One can then show that the limit (5.27) implies that there is an ε(�)
such that ε(�)→ 0 as �→∞ for which we have

lim inf
n→∞

P (Mu(�, n) is ε(�)-feasible) ≥ 1− ε(�) . (5.28)

Finally, to complete our sketch of the proof of Theorem 5.1, we just note that
one can now use local weak convergence to relate the costs of the edges of
Mu(�, n) to the costs of those in the matching M on T , and, in due course,
one can use this correspondence to show that the asymptotic mean cost of
Mu(�, n) is at most n/2 times π2/6. This is precisely what one was brought
to expect from the calculation in Lemma 5.11, and thus it completes the
sketch.

When one looks back on this construction, one can confirm that the basic
idea of sampling from a locally defined conditional distribution is pleasantly
general. In fact, there are many problems where a similar sampling method
can be applied, and this method of conditional sampling seems to express one
of the more fundamental ways that one can exploit local weak convergence.
Further elaboration of the sampling construction is expected to be part of
Aldous and Steele [7].

5.9 Finally – Living Beyond One’s Means

One of the original motivations for the study of the assignment problem
was the discovery of Karp [37] that under the model of independent uni-
form costs cij the value of An provides an impressively tight lower bound on
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the minimal cost of a tour of the vertex set of the complete directed graph
where the cost of using the directed edge (i, j) is cij . This discovery led in
turn to sustained exploration of algorithms that use the assignment problem
and branch and bound techniques for the travelling salesman problem (cf.
Balas and Toth[13]), and it also motivated more detailed investigations of the
precision of An as an approximation for the TSP cost (cf. Karp and Steele
[39]).

While the objective method is particularly well focused on issues such as
the convergence of the means E(An) and the determination of this limit, it
does not provide any information on the variance of An or other measures of
concentration of An. For such information, other methods must be applied.

For example, Karp and Steele [39] used combinatorial and coupling meth-
ods to show that with high probability the greatest cost of an edge in an
optimal assignment of size n is O(log2 n/n), and Talagrand [62] used this ob-
servation to illustrate one of his isoperimetric inequalities to show that there
is a constant 0 < c <∞ such that

Var(An) ≤ c

n
(logn)4 for all n ≥ 1 .

More recently, Frieze and Sorkin [23] improved the bounds of Karp and
Steele [39] to show that with high probability the longest edge in O(log n/n),
and the same technique was then further refined by Lee and Su [45] to show
that there are positive constants c1 and c2 such that

c1n
−5/2 ≤ Var(An) ≤ c2

n
(logn)2 . (5.29)

Despite the wide gap between the bounds (5.29) they are the best that are cur-
rently known. Nevertheless, one certainly expects that in fact there is σ2 > 0
such that

Var(An) ∼ σ2

n
as n→∞ . (5.30)

Unfortunately, the objective method is powerless to help, and for the moment
at least, the conjecture (5.30) seems to be far over the horizon.

6 Problems in Euclidean Space

The objective method is especially well suited for many problems of Euclidean
combinatorial optimization. Typically, one begins with an optimization prob-
lem that is driven by a sample {Xi : 1 ≤ i ≤ n} of independent random
variables with the uniform distribution on the unit d-cube [0, 1]d, so after
choosing a random “root” I that is uniformly distributed on {1, 2, ..., n} and
independent of the {Xi}, one can take immediate advantage of the classical
fact that

n1/d(Xi −XI : 1 ≤ i ≤ n) d−→ P0 as n→∞ , (6.1)
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where P0 = P ∪ {0} and P is a homogenous Poisson process on R
d with

uniform intensity equal to 1.
Now, throughout this survey, we have interpreted the indicated conver-

gence as local weak convergence as defined in Section 2, so it may seem unfair
to call this result classical. Nevertheless, once one agrees to interpret the two
sides of the limit (6.1) as rooted geometric graphs where the root is the ver-
tex at the origin of R

d and where the edge lengths are given by Euclidean
distances, then (up to an irrelevant rotation) local weak convergence (6.1) is
in fact equivalent to the traditional weak convergence of point process theory.

The bottom line is that for problems of combinatorial optimization for
points in R

d, the Poisson limit (6.1) assumes the role that Grimmett’s
Lemma 2.3 played for the uniform trees and that Aldous’s Theorem 4.1 played
for the exponentially weighted complete graphs. Thus, for Euclidean problems
the first step of the objective method comes gratis ; the game only begins with
the introduction of an optimization problem.

6.1 A Motivating Problem

One of the early motivations for the objective method was a problem sparked
by an empirical observation of R. Bland, who noted from simulations of an
algorithm for the MST that for n independent uniformly distributed points
in the unit square that one consistently finds that

∑

e∈MST

|e|2 → c > 0 as n→∞ ,

where |e| denotes the usual Euclidean distance from u to v when e = (u, v).
Stimulated by Bland’s observation, Steele [58] proved that if the random vari-
ables {Xi} are independent and have a distribution µ with compact support,
then for all 0 < α < d one actually has

n(α−d)/d
∑

e∈MST

|e|α → c(α, d)
∫

Rd

f(x)(d−α)/d dx a.s. , (6.2)

where f is the density of the absolutely continuous part of µ and c(α, d) is
a constant that depends only on α and d. This result goes beyond Bland’s
conjecture in several respects, but, ironically, the subadditive method used in
Steele [58] falls short of covering the motivating case α = d. This is where the
objective method entered the picture.

Benefits of Hindsight – and A Proper Point of View

Fifteen years ago it was not clear how one could make further progress on
Bland’s conjecture, but with the benefit of hindsight a good plan is obvi-
ous. One simply needs to extend the Poisson convergence (6.1) to the joint
convergence the point sets and the corresponding spanning trees.
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When this was done in Aldous and Steele [6], there was some mystery to
emergence of a forest as the limit of a sequence of minimal spanning trees. Now
the reasons for the appearance of the minimal spanning forest are understood
more deeply, and, if one simply applies the MST Convergence Theorem of
Section 5.3 to the Poisson limit (6.1), one obtains a theorem that explains
most of the qualitative behavior of the MST of a random sample from the
d-cube.

Theorem 6.1. For the randomly rooted normalized sample

Sn = n1/d(Xi −XI : 1 ≤ i ≤ n)

of independent random variables with the uniform distribution on [0, 1]d, one
has the joint local weak convergence

(
Sn, MST (Sn)

) d−→
(
P0, MSF (P0)

)
. (6.3)

A Question of Means

On a conceptual level, the limit (6.3) tells one almost everything there is to
say about MST (Sn) for large n. Nevertheless, there are inevitably technical
hurdles to be cleared when one applies Theorem 6.1 to a concrete problem. For
example, to obtain the convergence of the mean of MST (Sn), one needs some
information on the uniform integrability of the set of variables {MST (Sn) :
n = 1, 2, ..}.

Uniform integrability of this sequence was proved in Aldous and Steele [6]
by direct estimates, and later the “lens geometry” of the MST and spacefilling
curves were used in Chapter 5 of Steele [60] to give more inclusive moment
bounds. In the end, one finds for all p ≥ 1 and all d there is a constant βd > 0
such that for random uniform samples of size n from the d-cube one has

∑

e∈MST

|e|d → βd in Lp as n→∞ .

Moreover, one can identify the limit constant βd in terms of the limit object
by the formula

βd =
1
2
E

[∑

e∈R
|e|d

]
<∞ (6.4)

where R is the set of edges of the MSF of P0 that are incident to the root at
the origin of R

d.
The objective method almost always gives one a characterization of the

limit constant in terms of the limit object, and we have seen examples in
Sections 3 through 5 where this characterization could be pressed to provide
an exact determination of the limit constant. In this respect, Euclidean prob-
lems are different. Despite tantalizing characterizations such as that provided
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by formula (6.4), none of the limit constants of finite dimensional Euclidean
optimization have been determined analytically. The reason for this failing
seems to be that in the Euclidean case, one does not have the self-similarity
that is crucial to the recursions that lead us to the limit constants in results
like Theorem 3.4 and Theorem 5.1.

6.2 Far Away Places and Their Influence

Throughout the theory of Euclidean combinatorial optimization, one finds
hints that tractable problems must be local in some sense; or, looked at the
other way around, one finds that in tractable problems the points that are far
away cannot have much influence on the problem’s solution in the neighbor-
hood of a near-by point. This intuition can be formalized in several ways, but
the recently introduced notion of stability is perhaps most in tune with the
philosophy of the objective method.

Sums of Local Contributions

To begin, we consider nonnegative functions of the form ξ(x;X ) where x ∈ R
d

and X is a subset of R
d that is locally finite in the sense that each bounded

subset of R
d contains only finitely many elements of X . Also, if a is a positive

scalar and y ∈ R
d we denote the usual dilations and translations of X by

aX := {ax : x ∈ X} and y + X := {y + x : x ∈ X} .

If we assume ξ is translation invariant in the sense that

ξ(y + x; y + X ) = ξ(x;X ) for all y and X ,

then the sum Hξ(X ) defined by setting

Hξ(X ) :=
∑

x∈X
ξ(x;X ) (6.5)

is also translation invariant in the sense that Hξ(y + X ) = Hξ(X ) for all
y ∈ R

d. Moreover, sums of this form (6.5) may be used to represent almost
all of the functionals of interest in Euclidean combinatorial optimization.

For example, the length of the MST of X may be written as Hξ(X ) if we
take ξ(x;X ) to be half of the sum of the edges of the MST that are incident
to x, so

ξ(x;X ) =
1
2

∑

y∈X
|x− y|1( (x, y) ∈MST (X ) ) .

For a less obvious example, consider the representation Hξ(X ) of the number
of connected components of the nearest neighbor graph of X . In this case we
can take
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ξ(x;X ) = 1/card(Cx)

where Cx is the component of the nearest neighbor graph of X that contains
the vertex x. Essentially all of the Euclidean functionals discussed in Steele
[60] or Yukich [65] may be represented as Hξ(X ) for an appropriate choice of
ξ(x;X ).

Stable Functionals and the Influence Function

One benefit of the representationHξ(X ) is that the summands ξ(x;X ) suggest
a natural way to formalize the idea of local dependence. To explain this idea,
we first take r > 0 and let B(x; r) denote the Euclidean ball of radius r
about x, then, for any locally finite point set S ⊂ R

d and any integer m ≥ 1
we set

ξ(S;m) := sup
n∈N

(
ess supm,n{ξ(0; (S ∩B(0;m)) ∪ A)}

)

and where ess supm,n denotes the essential supremum with respect to Lebesgue
measure on R

dn and where A ⊂ R
d \B(0;m) is a set of cardinality n. Analo-

gously, we define

ξ(S;m) := inf
n∈N

(
ess infm,n{ξ(0; (S ∩B(0;m)) ∪ A)}

)
,

and we think of and ξ(S;m) and ξ(S;m) as measures of the changes that one
may make by a finite additions to S outside a ball of radius m. The interesting
case occurs when these two possibilities are comparable for large m.

Definition 6.2 (Stable Functionals and the Influence Function). The
functional ξ is said to be stable on the locally finite set S provided that one
has

lim
m→∞

ξ(S;m) = lim
m→∞

ξ(S;m) . (6.6)

Moreover, when ξ is stable on S, we let ξ∞(S) denote the value of the common
limit and we call ξ∞(S) the influence function of ξ on S.

The locally finite sets that are of most interest to us are naturally the
realizations of homogeneous Poisson processes, and one should note that if Pτ
is the homogeneous Poisson process with constant intensity τ on R

d then the
sequence of random variables {ξ(Pτ ;m) : m = 1, 2, ...} is nonincreasing and
the sequence {ξ(Pτ ;m) : m = 1, 2, ...} is nondecreasing. Thus, both sequences
converge almost surely, and we see that ξ is almost surely stable on Pτ if the
two limits are equal with probability one. Many of the natural functionals
ξ(x;X ) of Euclidean combinatorial optimization have this property, and there
are some useful consequences of this fact.
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A Weak Law of Large Numbers

Now consider a sequence X1, X2, . . . of independent d-dimensional random
variables that have a common density f . Next, set Xn = {X1, ..., Xn} and
consider the scaled summand

ξn(x;X ) := ξ(n1/dx;n1/dXn) (6.7)

together with the corresponding scaled sums

H̃ξ(Xn) :=
∑

x∈Xn

ξn(x;Xn) =
∑

x∈Xn

ξ(n1/dx;n1/dXn) .

When ξ is stable for almost every realization of any homogeneous Poisson
process, these sums typically satisfy a weak of large numbers; in fact, this
notion of stability was introduced in Penrose and Yukich [53] for the purpose
of framing such weak laws. The next theorem is typical of the results obtained
there.

Theorem 6.3. For each constant 0 < τ < ∞ we suppose that ξ is almost
surely stable for the homogenous Poisson process Pτ with intensity τ , and we
let ξ∞(Pτ ) denote the corresponding influence function. If the sequence

{
ξ(n1/dX1;n1/dXn) : 1 ≤ n <∞

}
is uniformly integrable , (6.8)

where observations in the sample Xn = {X1, X2, ..., Xn} are i.i.d. with den-
sity f on R

d, then the influence function satisfies

I[τ ] = E[ξ∞(Pτ )] <∞ for each 0 < τ <∞ such that f(τ) > 0 , (6.9)

and the normalized sums satisfy

n−1H̃ξ(Xn)→
∫

Rd

I[f(x)]f(x)dx inL1 . (6.10)

Consequences of Homogeneity

Many of the functionals addressed by Theorem 6.3 have the property that
there is a constant γ > 0 such that

ξ(a x; aX ) = aγξ(x;X ) for all a ∈ R
+ ,

and, in this case the righthand side of the limit (6.10) is more simply written
as

E[ξ∞(P1)]
∫

Rd

f(x)(d−γ)/ddx . (6.11)

Moreover, when ξ is scale invariant, or homogeneous of order 0, the limit
(6.11) simply boils down to E[ξ∞(P1)], and the limit given by Theorem 6.3
does not depend on the density of underlying point set. Formula (6.11) also
makes it clear that although ξ∞ may at first seem subtle to define, it has an
inevitable place in the limit theory of the normalized sums H̃ξ.
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Confirmation of Stability

Theorem 6.3 applies to many problems of computational and it provides limit
laws for the minimal spanning tree, the k-nearest neighbors graph ([34], [20]),
the Voronoi graph [32], the Delaunay graph, and the sphere of influence graphs
([27], [33]). Nevertheless, before Theorem 6.3 can be applied, one needs to
prove the associated summands ξ(x,X ) are indeed stable on Pτ for all 0 ≤
τ <∞.

In some cases, stability may be proved easily, but, in other cases, the
proof may be quite challenging. For example, even the stability of the MST
is not easy without the help of some powerful tools. For example, Penrose
and Yukich [53] prove stability MST with help from the idea of a blocking set,
which is a set of points that effectively isolates the MST in a neighborhood
of the origin from any influence by points outside of a certain large disk. This
basic structure was introduce by Kesten and Lee [40] (cf. Lemmas 3 and 5),
and it provides one of the keys to the of the central limit theory for the MST
as further developed by Lee ([43], [44]).

A Cox Process Coupling

Finally, we should note that the proof of Theorem 6.3 given in Penrose and
Yukich [53] calls on an interesting coupling argument that is likely to have
further applications. The key observation is that one may simulate samples
that closely approximate the samples from a general density f with help from
a Cox process that has a random but conditionally uniform intensity. This
approximation provides one with a new way to convert results for uniform
samples to results for nonuniform samples, and, in the right circumstances,
it seems to have advantages over older methods where one first approximates
f by a locally flat density and then creates a coupling. Nevertheless, each
method ultimately relies on some sort of smoothness of the sums H̃ξ.

6.3 Euclidean Methods and Some Observations in Passing

There are so many connections between percolation theory, minimum span-
ning trees, and the objective method that we cannot survey them in detail,
but we do want to review a few developments that seem particularly infor-
mative. The first of these is a recent observation of Bezuidenhout, Grimmett,
and Löffler [16] that draws a simple connection between MSTs and the notion
of free energy that originates in statistical mechanics.

MSTs, Free Energy, and Percolation Connections

To begin, if V is a subset of R
d and α > 0, we let Γ (α, V ) denote the graph

with vertex set V and edge set consisting of pairs (x, y) of elements of V such
that |x − y| ≤ α. Next, we let P denotes the homogeneous Poisson process
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on R
d with unit intensity, and take S(α) to be the size of the connected

component of Γ (α,P ∪{0}) that contains 0, the origin of R
d, and, finally, we

define κ(α), the free energy of the Poisson process, by setting

κ(α) = E
[
1/S(α)

]
.

The free energy turns out to have a remarkably simple relationship to the
empirical distribution of the edge lengths of the minimal spanning tree Tn of
the set Vn = P∩[−n, n]d. Specifically, if we consider the empirical distribution
of the set of edge lengths of Tn,

Fn(α) = (|Vn| − 1)−1
∑

e∈Tn

1(|e| ≤ α) ,

then we have the succinct limit

lim
n→∞

Fn(α) = 1− κ(α) a.s. and in L1 . (6.12)

This engaging identity may be explained in just a few lines. The key ob-
servation is that if ν(α, n) denotes the number of connected components of
the graph Γ (α,P ∩ [−n, n]d), then by counting the missing edges we have

Fn(α) =
|Vn| − ν(α, n)
|Vn| − 1

. (6.13)

To finish off, one now just needs to note that the Ergodic Theorem for the
Poisson process can be used to show

lim
n→∞

ν(α, n)/|Vn| = E
[
1/S(α)

]
:= κ(α) a.s. and in L1 ,

so the limit (6.12) follows immediately from the identity (6.13).
Naturally, if one is to make good use of this observation more work is

needed, and the real effort in Bezuidenhout, Grimmett, and Löffler [16] goes
into the development of the analytical properties of the free energy and its
analogs for Bernoulli site percolation. In that setting, they show that the free
energy defect H(α) = 1−κ(α) is indeed a distribution function, and they also
show that one has the convergence of the corresponding mth moments for all
0 ≤ m <∞,

∫ ∞

0

αmdFn(α) →
∫ ∞

0

αmdH(α) a.s. and in L1 .

A Second Percolation Connection – Forest vs. Tree

When the minimal spanning forest for the Poisson process was introduce in
Aldous and Steele [6], there was a strong suspicion that the minimal spanning
forest might actually be a tree – at least in low dimensions. This conjecture



64 David Aldous and J. Michael Steele

was confirmed in dimension d = 2 by Alexander [8], Example 2.8, but, the
question remains open for dimension d ≥ 3.

The suspicion now is that the MSF of the Poisson process is not a tree if
the dimension is sufficiently high, and Theorem 2.5, part (ii), of Alexander [8]
provides some indirect evidence for this conjecture. Because of results of Hara
and Slade ([28], [29]) that show one does not have percolation at the criti-
cal point for dimension d > 19 for Bernoulli bond percolation, Alexander’s
theorem implies that in high dimensions a related MSF does not have any
doubly infinite paths. If one relies on the analogies between Bernoulli bond
percolation, Bernoulli site percolation, and continuum percolation, Alexan-
der’s result suggests in turn that if the MSF of the Poisson process is a tree,
then in high dimensions that tree must consist of a sequence of finite trees
that are connected to one singly infinite path. Finally, for such a structure to
cover all of the point of a Poisson process, this path would then be forced to
wander around space in a way that does not seem feasible.

Inclusion Criteria and Computational Complexity

Almost all of the probability problems of Euclidean combinatorial optimiza-
tion may be framed in terms of a graph Gn that depends on a random
sample {X1, X2, ..., Xn} in R

d, and for many of these problems the subad-
ditive method introduced by Beardwood, Halton and Hammersley [14] pro-
vides a competing technology to the objective method. Although the objective
method has intuitive and analytical advantages in almost every case where it
applies, there are still instances where the only concrete results have been
found with the subadditive method.

For example, subadditive methods work quite naturally for traveling sales-
man problem (TSP), but when one tries to apply the objective method to the
TSP one some deep and interesting questions emerge. Specifically, one needs
to define an analog T of the traveling salesman tour for the Poisson process
in R

d, and in practical terms this means one needs to specify an inclusion cri-
terion that tells one when an edge (x, y) is in T . We were able to provide such
an inclusion criterion for the maximal matching problem, and classical results
for the MST suggested the defining criterion for the minimal spanning forest.
On the other hand, the theory of computational complexity suggest that one
is unlikely to find an inclusion criterion that will provide a suitable analog for
the TSP of the Poisson process. The basic intuition is that no problem that
is NP-complete for finite sets of points can be expected to have an inclusion
criterion that provides a suitable limit object on the Poisson process.

Further Comparison to Subadditive Methods

In addition to the examples suggested by computational complexity, there are
other cases where subadditive methods seem to have an advantage over the
objective method. One such situation is provided by the asymptotic analysis



The Objective Method 65

of heuristic methods, and the greedy matching problem [11] is perhaps the
most natural example.

Nevertheless, there are surely cases where subadditive methods have been
used in the past, but where the objective now provides an easier or more
informative approach. Confirmed cases on this list include the limit theory
for MST with power weighted edges [58] and MST vertex degrees [61]; and,
with some systematic effort, the list can probably be extended to include
the theory of Euclidean semi-matchings [59], optimal cost triangulations [56]
and the K-median problem [35]. Moreover, there are many cases where the
objective method quickly gives one the essential limit theory, yet subadditive
methods appear to be awkward to apply. Here the list can be made as long as
one likes, but one should certainly include the limit theory for Voronoi regions
[32] and the sphere of influence graphs ([27], [33]).

6.4 Recurrence of Random Walks in Limits of Planar Graphs

Most of the local weak limits that we have surveyed here have their origins in
combinatorial optimization, but the objective method and the theory of local
weak convergence can also be applied to problems that are more purely prob-
abilistic. One striking example is given by the recurrence theory for random
walks on planar graphs recently given by Benjamini and Schramm [15].

Theorem 6.4. Suppose that G is a G�-valued random variable that is a weak
limit in G� of a sequence {Gn[Xn] : n = 1, 2, ...} of uniformly rooted random
graphs where

(1) for each n ≥ 1, the graph Gn is planar with probability one, and
(2) max{deg(v) : v ∈ Gn} ≤M <∞ for all n ≥ 1,

then with probability one, the random walk on the graph G(ω) is recurrent.

This theorem is clearly part of the theory of local weak convergence, but
the theorem and its proof differ greatly the other results in this survey. Even
a sketch of the proof of Theorem 6.4 would take us far off our path, but we
should at least note that one key to the proof is the remarkable Circle Packing
Theorem of Koebe [41]. This theorem says that if a finite graph G = (V,E)
is planar, then there exist a collection C of circles in the plane with disjoint
interiors and a one-to-one correspondence φ : V → C such that (x, y) ∈ E if
and only if the circles φ(x) and φ(y) make contact.

From the perspective of this survey, there are two attractive features of
Theorem 6.4. First, its very difference serves as a reminder that there must be
other, as yet unimagined, areas where the theory of local weak convergence can
play a natural role. Second, Theorem 6.4 suggest a useful generic question:
What are the properties of a sequence of random rooted finite graphs that
are preserved under local weak convergence? In many cases this question is
bound to yield only pedestrian answers, but the Benjamini-Schramm Theorem
shows that there are indeed cases when the generic question can lead one to
remarkable results.
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7 Limitations, Challenges, and Perspectives

This treatment of the objective method is part survey and part tutorial. The
basic intention has been to make the objective method more accessible, while
also illustrating its effectiveness on problems with some subtlety and sub-
stance. Any survey has an element of advocacy, and here we certainly hoped
to show the objective method in a positive light. Nevertheless, one should be
aware of the method’s limitations.

Some Intrinsic Limitations

First, the objective method deals with reasonably complex entities such as the
Skeleton Tree PGW∞(1), the PWIT, or – de minimus – the Poisson process
in R

d. In many cases, one can make immediate and effective use of these off-
the-shelf structures, but in more original problems, one is forced to invent (or
discover) new objects. Any such object begins life as the weak limit in G� of
a sequence of random finite graphs with uniformly distributed random roots,
but, if it is to be used with effect, one almost always needs an independent
characterization. This highly constructive feature of the objective method
means that it seldom provides short proofs. Ironically, this remains so even
when the result that one wants to prove is “conceptually clear” from the point
of view offered by the limiting object.

Second, when one focuses directly on a limit object, one tends to lose al-
most all trace of how one gets to that limit. As a consequence, the objective
method is typically ill suited for obtaining information about rates of conver-
gence. To be sure, there are special circumstances where rates may be found;
for example, the recursion used in our analysis of the maximum partial match-
ing problem provides at least some rate information. Nevertheless, this is an
exception that reflects the hybrid nature of one particular problem.

Third, the theory of local weak convergence has a substantial limitation
on the type of information that it can provide. Basically, the method only ad-
dresses those problems that may be reduced to a calculation in a neighborhood
of a randomly chosen root. For example, we are able to address total-sum-of-
length problems only because of a lucky piece of arithmetic; the sum of the
lengths of the edges in a graph with n vertices is just n times the expected
value of half of the sum of the lengths of the edges incident to a randomly
chosen root.

Many similar sounding problems are not so lucky. For example, consider
the problem of calculating the expected length of the longest path in the MST
of a uniform random sample of size n from the unit square. This problem
sounds quite similar to the total length question, but, on reflection, one finds
that it cannot be reduced to a calculation that just depends on a neighborhood
of a random root; thus, it falls outside of the scope of the objective method. For
the same reason, the objective method cannot help us show that the variance
of An is asymptotic to σ2/n, nor can it help with more general measures of
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concentration. Local weak convergence is always a prisoner that cannot escape
the neighborhoods of a random root.

A Current Challenge: The Largest Independent Set

The limitations on the objective method are substantial, but one still finds
a wide range of challenges for which the objective method offers the most
likely path for progress. Here we will just discuss one problem that we find
especially attractive.

An independent set S in a graph G is collection of vertices such that no two
elements of S are joined by an edge of G, and the independence number α(G)
is the maximum cardinality of an independent set in G. The independence
number is one of the most studied quantities of graph theory, and it also leads
one to an interesting test of potential of the objective method.

For any integer k ≥ 3 there is a standard and model for a random k-regular
graph with n vertices, and the properties of these graphs a studied in detail in
the monographs of Bollobás [17] and Janson, et.al. [96]. Now, if one starts to
think about the independence number of a random k-regular graph Gk,n, one
almost immediately comes to conjecture that there exists a constant αk > 0
such that

lim
n→∞

n−1E[α(Gk,n)] = αk . (7.1)

The origins of this conjecture are lost in the mists of time, and no doubt it has
occurred independently to many people. From the perspective of this survey,
one of its interesting features is that it offers several parallels to the random
assignment problem as that problem was understood circa 1986.

For example, no one has yet proved that indicated limit (7.1) actually
exists – yet no one doubts that it does. Moreover, some concrete limits have
already been place on the possible size of αk. Specifically, Frieze and Suen [24]
studied the greedy algorithm for constructing an independent set for G3,n, and
they have proved

lim inf
n→∞

n−1E[α(G3,n)] ≥ 6 log(3/2)− 2 = 0.432 · · · (7.2)

Finally, the methods of statistical mechanics have already found a role. In
particular, Hartmann and Weigt [31] have used the replica method to study
the independence number in a model that is closely related to Gk,n.

When we view conjecture (7.1) from the perspective of the objective
method, we do not need long to hit on a promising plan. In fact, we can
take one step almost automatically, since it is reasonably obvious that Gk,n
converges in G� to the randomly rooted infinite k-regular tree T . Thus, the
intrigue only begins once one starts to look for a large involution invariant
independent subset S of T , and, remarkably enough, an attractive candidate
comes to mind almost immediately.

To define our candidate S, we first flip a coin. If it comes up heads, we
take the root r to be an element of S, and then we add to S every other vertex
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on the paths that descend from r, but if the coin comes up tails, we take all
of the children of r to be in S and then add to S every other vertex on the
paths that descend from these children. The set S is clearly an independent
set in T , and one can check that S is involution invariant. No checking is
needed to see that S has density one-half, and, since no independent set can
have density larger than one-half, the principles developed in Section 3 might
seem to suggest that we are well on our way to proving that αr = 1/2 for
all r.

Unfortunately, we meet a bump in the road. Our candidate S cannot be
realized as the weak limit of a sequence of independent subsets of Gn,k, even
though S does satisfy the necessary condition of involution invariance. The
problem with S is that it exhibits a extreme form of long-range dependence,
and, in this particular case, one can exploit that dependence to show that S
is not the weak limit of sequence independent subsets of Gn,k as n→∞.

Thus, we come back to the challenge of defining an independent subset T
that can be realized as the limit of independent subsets of the sequence Gn,k,
n = 1, 2, .... One natural thought is that it may be possible to characterize
αk as the maximum density of an involution invariant random independent
set in T that does not exhibit some particular type of long-range dependence,
but, so far, there are only the faintest hints how one might specify the precise
form of dependence that one should rule out.

Some Final Perspectives

One can never know how a mathematical theory will evolve, and even well-
informed guesses are still just guesses. Nevertheless, the objective method and
the theory of local weak convergence have a certain inevitability to them that
invites speculation.

At the most concrete level, the objective method helps one to decouple
two basic tasks: the proof of the existence of a limit and the determination
of a limit constant. This contrasts with analytic methods where techniques
based on recursions and generating functions typically address these two tasks
simultaneously. It also contrasts with subadditive methods where one may
prove the existence of a limit and then be left without any serious indication
of its numerical value.

At a more abstract level, the objective method helps one focus on the most
essential elements of a complex limit theorem. Just as one finds in the tradi-
tional theory of weak convergence that Brownian motion appears as the limit
of many different processes, one finds in the theory of local weak convergence
that basic objects such as the skeleton tree and the PWIT appear as the limit
of many different processes. These new structures do not have the amazing
universality of Brownian motion, yet they do have some measure of univer-
sality. Moreover, even though these semi-discrete structures are simpler than
Brownian motion, they still have substantial internal structure that can sup-
port concrete computation; the calculation in Lemma 4.3 showing that ζ(3)
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is the average length per vertex of the PWIT provides one example. Finally,
the list of objects is surely far from exhausted, and perhaps, it has only been
begun.

One surely expects to see new local weak limits with all the charm of the
skeleton tree or the PWIT. Recent support for this view is offered by Angel
and Schramm (2002) which proves local weak convergence of uniform random
triangulations of the sphere with n vertices to a limit random triangulation of
the plane and by Gamarnik (2002) where arguments motivated by the PWIT-
based analysis of the random assignment are applied to a linear programming
relaxation of random K-SAT.

Finally, we should note that the objective method is tightly bound with
the theory of recursive distributional equations. For example, the fixed point
equations (3.10) and (5.18) were at the heart of our analysis of the minimum
cost perfect matching problems, and this situation seems to be typical. In
fact, equations that characterize an unknown distribution by equality in dis-
tributional with a function of a collection of independent copies of itself arise
in a wide variety of probabilistic settings. Aldous and Bandyopadhyay (2002)
provide a survey of such equations, both with and without direct connections
to the objective method.
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36. Janson, S., Luczak, T., and Ruciński (2000): Random Graphs. Wiley Inter-
science Publishers, New York.

37. Karp, R.M. (1979): A patching algorithm for the non-symmetric traveling sales-
man problem. SIAM Journal on Computing, 8, 561–573.

38. Karp, R.M. (1987): An upper bound on the expected cost of an optimal assign-
ment. In: Discrete Algorithms and Complexity: Proceedings of the Japan-U. S.
Joint Seminar, Academic Press, New York.

39. Karp, R.M. and Steele, J.M. (1985): Probabilistic analysis of heuristics. In The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimzation.
Lawler, E.L, Lenstra, J.K, Rinnooy Kan, A.H.G., and Smoys, D.B. (eds), Wiley,
NY, 181–205.

40. Kesten, H. and Lee, S. (1996): The central limit theorem for weighted minimal
spanning trees on random points. Annals of Applied Probability, 6, 495–527.

41. Koebe, P. (1936): Kontaktprobleme der Konformen Abbildung. Ber. Sächs.
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50. Mézard, M. and Parisi, G. (1987): On the solution of the random link matching
problem. J. Physique, 48, 1451–1459.

51. Parisi, G. (1998): A conjecture on radom bipartite matching. ArXiv Condmat
9801176.

52. Penrose, M.D. (1996): The random minimal spanning tree in high dimensions.
Ann of Probability, 24 1903–1925.

53. Penrose, M.D. and Yukich, J.E. (2002): Weak laws of large numbers geometric
probability, Annals of Applied Probability, to appear.TS

3

54. Propp, J. and Wilson D. (1998): Coupling from the past: a user’s guide, In
D. Aldous and J. Propp, editors, Microsurveys in Discrete Probability, number
41 in DIMACS Ser. Discrete Math. Theoret. Comp. Sci., pages 181–192.



72 David Aldous and J. Michael Steele

55. Steele, J.M. (1981): Subadditive Euclidean functionals and non-linear growth in
geometric probability. Annals of Probability, 9, 365–376.

56. Steele, J.M. (1982): Optimal triangulation of random samples in the plane.
Annals of Probability, 10, 548–553.

57. Steele, J.M. (1987): On Frieze’s ζ(3) limit for the lenths of minimal spanning
trees, Discrete Applied Mathematics, 18, 99–103.

58. Steele, J.M. (1988): Growth rates of Euclidean minimal spanning trees with
power weighted edges. Annals of Probability, 16, 1767–1787, 1988.

59. Steele, J.M. (1992): Euclidean semi-matchings of random samples. Mathematical
Programming, 53, 127–146, 1992.

60. Steele, J.M. (1997): Probability Theory and Combinatorial Optimization, NSF-
CBMS Volume 69. Society for Industrial and Applied Mathematics, Philadel-
phia.

61. Steele, J.M., Shepp, L.A. J.M. Eddy, W. (1987): On the number of leaves of
a Euclidean minimal spanning tree. J. Appl. Probab., 24, 809–826.

62. Talagrand, M. (1995): Concentration of measure and isoperimetric inequalities
in product spaces. Publ. Math. IHES, 81, 73–205.

63. Vitter, J.S. and Flajolet, P. (1990): Analysis of algorithms and data structures.
In Handbook of Theoretical Computer Science, volume A: Algorithms and Com-
plexity (Chapter 9), North-Holland, 431–524.

64. Walkup, D. W. (1979): On the expected value of a random assigmnent problem.
SIAM J. Comput., 8, 440–442.

65. Yukich, J.E. (1998): Probability Theory of Classical Euclidean Optimization
Problems, Lecture Notes in Mathematics, 1675, Springer-Verlag, New York.


