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Give random capacities C to the edges of the complete n-vertex graph. Consider the
maximum flow Φn that can be simultaneously routed between each source-destination
pair. We prove that Φn → φ where the limit constant φ depends on the distribution
of C in a simple way, and that asymptotically one need use only one- and two-
step routes. The proof uses a reduction to the following random graph problem.
Make a random graph in which each edge is blue with probability pb or scarlet with
probability ps < pb/2 or neither. Then we can find edge-disjoint triangles, with
exactly one scarlet edge and exactly two blue edges, which exhaust almost all the
scarlet edges. We show this by analyzing a simple greedy algorithm for which one
expects a differential equation approximation. The approximation can be justified in a
direct way using the local weak convergence methodology, which may more generally
be useful in formalizing differential equation approximations in randomized graph
algorithm contexts.

1. Introduction

This paper is part of a project studying optimal flows through random networks, where
a network has both a graph structure and extra structure such as capacities and costs on
edges, and where we are in the “multicommodity flow” setting with simultaneous flows
between each source-destination pair. We plan a survey elsewhere. Possible models span
a broad spectrum from realistic to mathematically tractable, and at the latter end are
models based on the complete graph. Including study of such models within a project is
natural both for mathematical completeness and for comparison purposes.

Consider first the setting of an arbitrary finite connected undirected graph G. Let
φ > 0. A flow of volume φ/2 between vertex v and vertex w has net out-flow = φ/2
at v, net out-flow = −φ/2 and w, and zero net out-flow at other vertices. For such a
flow write fv,w(e) ≥ 0 for the absolute value of the flow volume across an undirected
edge e. Suppose we have such a flow simultaneously for each ordered pair (v, w) with
w #= v; call this collection a uniform flow of volume φ and write f(e) :=

∑
(v,w) fv,w(e)
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for the combined volume of flow across the undirected edge e. Suppose now we are given
capacities C(e) for edges e. Then the maximum uniform flow volume (MUFV) is defined
to be the largest φ such that there exists a uniform flow of volume φ which satisfies the
capacity constraints

f(e) ≤ C(e) ∀e. (1.1)

One modeling paradigm, seeking to combine the spatial inhomogeneity of real networks
with mathematical tractability, is to consider some standard family Gn of n-vertex
graphs, and to assume the edge-capacities C(e) are random (specifically, are i.i.d. copies
of a reference r.v. C). Now the MUFV is a r.v. Φn, and one can seek to study its n →∞
behavior.

Apparently, and somewhat surprisingly, such questions have not been studied before.
There is literature [4, 3, 2, 5] on flows with a single source-destination pair and on flows
from top to bottom of a square, but these fall into the one-commodity setting of the
max-flow min-cut theorem, rather than our multicommodity setting.

In this paper we consider the complete graph, and in [1] we consider a similar problem
on the m ×m square grid. An interesting observation is that in both these models the
limit constants for Φn depend on the distribution of C (not just on its expectation EC),
but for rather different reasons in the two models. An intermediate model is the cube
{0, 1}d, and here we conjecture that the limit constant does depend only on EC when C
is bounded away from zero.

1.1. Statement of results
Consider the complete n-vertex graph whose edges e have independent random capacities
C(e) whose common distribution satisfies

P (C ≥ c0) = 1; some c0 > 0. (1.2)

EC < ∞. (1.3)

Note that the function

φ → 2E max(φ− C, 0) − E max(C − φ, 0)

in continuous and strictly increasing from −EC to ∞ as φ increases from 0 to ∞, and
so we can define a constant 0 < φ∗ < ∞ as the unique solution of

E max(C − φ∗, 0) = 2E max(φ∗ − C, 0). (1.4)

Theorem 1.1. Under assumptions (1.2,1.3) the MUFV Φn satisfies Φn → φ∗ in prob-
ability as n →∞.

The intuition is very simple. Suppose we wish to route a uniform flow of volume φ. First
route as much flow as possible across the direct edge, that is route volume min(φ, Cv,w)
across edge {v, w}. This leaves an unsatisfied demand for volume max(φ − Cv,w, 0) of
flow. Now the mean surplus capacity per edge is E max(C − φ, 0). We try to route the
unsatisfied demand via 2-step paths with surplus capacity; for this to work it seems
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evidently necessary that

E max(C − φ, 0) ≥ 2E max(φ− Cv,w, 0).

Conversely, this should be sufficient because the set of edges with surplus capacity forms
a dense random graph which should be sufficiently well-connected to permit the desired
2-step paths.

The “necessary” part is indeed easy to formalize (Lemma 2.1). For the converse, we
start by proving (section 2) a reduction to the following “random graph” result. To
motivate this reduction, consider the case where the edge-capacity C takes only values
{0, 1, 2} and where we seek to route a uniform flow of volume 1. Then traffic across
capacity-0 edges (colored scarlet, say) needs to be routed through two capacity-2 edges
(colored blue, say). Colors are mnemonics for smaller and bigger capacity.

Proposition 1.2. Fix 0 < ps < pb/2 with ps + pb ≤ 1. Randomly color the edges of
the complete n-vertex graph as blue (probability pb) or scarlet (probability ps) or neither
(probability 1 − pb − ps). Then there exists a collection of edge-disjoint triangles, each
triangle having one scarlet edge and two blue edges, such that the number Nn(v) of scarlet
edges incident at v which are not is some triangle satisfies

n−1 max
v

Nn(v) → 0 in probability. (1.5)

Proposition 1.2 is proved in section xxx by analysing the natural greedy algorithm. The
particular method of justifying the natural differential equation approximation is perhaps
of wider methodological interest, so will be discussed at xxx.

The assumption (1.2) is used only in the proof of Lemma 2.3, and we conjecture that
it can be eliminated.

xxx mention old paper by Frank Kelly (neat, but not diretly relevant).

2. The reduction argument

2.1. The upper bound
The upper bound in Theorem 1.1 is provided by

Lemma 2.1. limn P (Φn ≥ φ) = 0, φ > φ∗.

Proof. Fix a realization of the edge-capacities. Suppose a uniform flow of volume ρ
exists. For an edge (v, w)

∑

e

(fv,w(e) + fw,v(e)) ≥ ρ if C(v, w) ≥ ρ

≥ C(v, w) + 2(ρ− C(v, w)) if C(v, w) ≤ ρ

because in the latter case volume of at least ρ−C(v, w) must use at least a 2-step route.
Combining the two cases,

∑

e

(fv,w(e) + fw,v(e)) ≥ min(ρ, C(v, w)) + 2 max(ρ− C(v, w), 0).
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Summing over edges e′ = (v, w) and using the capacity constraint (1.1),
∑

e

C(e) ≥
∑

e′

(min(ρ, C(e′)) + 2 max(ρ− C(e′), 0)) .

Dividing by
(n
2

)
and recalling we supposed that the uniform flow exists, we have shown

Qn :=
1(n
2

)
∑

e′

C(e′)− 1(n
2

)
∑

e′

(min(ρ, C(e′)) + 2 max(ρ− C(e′), 0)) ≥ 0 on {Φn ≥ φ}.

But as n →∞ the quantity Qn converges in probability to

q := EC − (E min(ρ, C) + 2E max(ρ− C, 0)) = E max(C − ρ, 0)− 2E max(ρ− C, 0).

If ρ > ρ∗ then q < 0 and hence we must have limn P (Φn ≥ φ) = 0.

2.2. The reduction
In this section we assume the truth of Proposition 1.2 and show how to deduce the lower
bound in Theorem 1.1, stated as Lemma 2.3. Note that the condition ρ < ρ∗ is equivalent
to

r :=
E max(ρ− C, 0)
E max(C − ρ, 0)

<
1
2
. (2.1)

Lemma 2.2. Suppose C is integer-valued and bounded, and suppose ρ is an integer sat-
isfying (2.1). Then, for (v, w) outside some random subset Bn of edges, we can construct
flows of volume ρ between v and w such that the capacity constraint (1.1) holds and such
that

n−1 max
v

|{e ∈ Bn : e incident at v}|→ 0 in probability.

Proof. We first construct a finite setM of “marks” µ and a joint distribution (C; ξ1, ξ2, . . . , ξ|C−ρ|)
which associates |C − ρ| distinct random marks ξj with a realization of C, such that the
following two properties hold.
(i) For each mark µ ∈ M there exists exactly one value i = is(µ) ∈ {0, 1, . . . , ρ − 1}
such that P (C = i, some ξj = µ) > 0 and there exists exactly one value i = ib(µ) ∈
{ρ + 1, ρ + 2, . . .} such that P (C = i, some ξj = µ) > 0.
(ii) For each mark µ ∈M

P (C = is(µ), some ξj = µ)
P (C = ib(µ), some ξj = µ)

= r

for r at (2.1).
The construction is illustrated in Figure 2.2. Set pi = P (C = i). Partition a line of length
E max(ρ − C, 0) =

∑ρ−1
i=0 (ρ − i)pi into (ρ − i) consecutive intervals of lengths pi (for

i = 0, 1, . . . , ρ−1). Partition a line of equal length E max(ρ−C, 0) = rE max(C−ρ, 0) =∑
i>ρ r(i − ρ)pi into (i − ρ) consecutive intervals of lengths rpi (for i = ρ + 1, ρ2, . . .).

Now identify the two lines, and let M be the set of intervals µ arising as the intersection
of some interval in the first partition with some interval in the second partition. Given
C = i, choose random points uniformly (with respect to length) from each of the |i− ρ|
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rp5 rp6 rp6 rp7 rp7 rp7 rp8 rp8 rp8 rp8

p1 p1 p1 p2 p2 p3

! ! ! ! ! ! !
Figure 1. Construction of marks. Here ρ = 4. The middle line shows the intervals which are the
marks µ. On the left is a typical set of 3 marks associated with a value C = 1. On the right is a
typical set of 4 marks associated with a value C = 8.

intervals of length pi or rpi; each such point is in some intersection-interval µ, so let the
marks ξ1, . . . , ξ|i−ρ| be these intersection-intervals. Properties (i) and (ii) are immediate
from the construction.

To prove the lemma, associate each original edge of the complete graph with a real-
ization of (C; ξ1, ξ2, . . . , ξ|C−ρ|) and replace the original edge by |C − ρ| edges marked
(ξ1, ξ2, . . . , ξ|C−ρ|) and colored scarlet (if C < ρ) or blue (if C > ρ). Now fix a mark µ
and consider all edges with mark µ. By (ii) the hypothesis of Proposition 1.2 is satisfied,
so we can find edge-disjoint triangles with two scarlet edges and one blue edges, all with
mark µ, satisfying (1.5). Repeat for all marks. For each scarlet edge in one of the trian-
gles, route unit flow between its end-vertices by using the two blue edges in the triangle.
Then (1.5) and the finiteness of number of marks establish the lemma.

Lemma 2.3. Assume (1.2,1.3) and let φ < φ∗. Then limn P (Φn ≥ φ) = 1.

Proof. Define
Ck = min(2−k*C2k − 1+, k)

for k sufficiently large that 2−k < c0 for c0 at (1.2). So 0 ≤ Ck ≤ C − 2−k. Define ρk as
the largest multiple of 2−k for which

E max(Ck − ρk, 0) > 2E max(ρk − Ck, 0).

It is easy to check that ρk ↑ ρ∗ as k → ∞. Thus it is sufficient to show that, for each
fixed large k,

P (uniform flow of volume ρk exists) → 0 as n →∞. (2.2)
By applying Lemma 2.2 to the integer-valued quantities 2kCk and 2kρk, then rescaling,
we find that for (v, w) outside some random subset Bn of edges such that

qn := max
v

qn(v)
n−2 → 0 in probability

qn(v) := |{e ∈ Bn : e incident at v}|
we can construct flows of volume ρk between v and w such that the total flow volume
f(e) satisfies the capacity constraints f(e) ≤ Ck(e) ∀e. Because Ck(e) ≤ C(e) − 2−k,
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each edge has unused capacity of at least 2−k. So between each pair (v, w) ∈ Bn route a
flow of volume ρk by spreading the flow uniformly over all 2-step paths. The volume of
flow across an edge (v′, w′) created in this way is at most

ρk

(
qn(v′)
n−2 + qn(w′)

n−2

)
≤ 2ρ∗qn.

So if 2ρ∗qn < 2−k there exists a feasible flow of volume ρk, establishing (2.2).
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