
STAT 206: Random Graphs and Complex Networks Spring 2003Leture 7: Critial behavior of the Erd}os-Renyi modelLeturer: David Aldous Sribe: Andrej BogdanovIn this leture we investigate the size of the giant omponent in the Erd}os-Renyi random graph model withedge probability p � 1=n. In this model, the presene of eah edge in the graph is deided by an independentoin ip with suess probability p. We show that for p slightly bigger than 1=n, the giant omponent hassize of order n2=3. There are several proofs of this result, and we will opt for an intuitive, bak-of-envelopeheuristi argument. This argument has the advantage of showing o� some sophistiated onepts fromprobability like the Central Limit Theorem and Brownian motion.At the heart of this argument is a random proess that, starting from an arbitrary vertex v, exposes theneighbors of v, their neighbors, and so on, until the whole omponent of v is revealed. The sizes of theomponents are found by analyzing the dynamis of this proess. For the Erd}os-Renyi model, the relevantstatistis an be omputed exatly, giving a detailed piture of the behavior of omponent sizes near p = 1=n.7.1 The breadth �rst spanning forest of a graphLet G be a (non-random) graph on vertex set [n℄. The breadth �rst spanning forest of G is the spanningforest generated by the breadth �rst searh algorithm:Until all verties of G have been visited,1. Pik a vertex v that has not been visited yet. Put v in a queue Q.2. While Q is nonempty, pull a vertex v from the head of Q, draw edges to all its neighbors that have notbeen previously visited, and put these hildren at the tail of Q.Here is an example:
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A nie property of this onstrution is that all the edges of G whih fail to be inluded in the breadth �rstspanning forest onnet desendants of the same generation. For the random graph G(n; p � 1=n) we expetto see few suh ross edges.We will need a few more notions related to the breadth �rst searh algorithm. Suppose we interrupt thealgorithm before it terminates. Say a vertex v has been visited if it was in the queue Q at some point before,7-1



7-2 Leture 7: Critial behavior of the Erd}os-Renyi model
or at the time of the interruption. Say v has been proessed if v has been in Q at some point before theinterruption, but is not there at the time of the interruption. For instane, suppose we have just �nishedputting vertex 4 from our example in Q, and we interrupt the algorithm. At this point, the algorithm hasvisited the verties 1; 2; 3; 4; 5; 6, but has proessed only verties 1; 2 and 3.From here on, we will assume that the verties of G are labeled in their order of visitation in the breadth�rst spanning forest F , just like in the piture. Given this labeling, we de�ne a (deterministi) walkw(0); w(1); : : : ; w(n) by the formulaw(i) = w(i� 1) + (number of hildren of i in F )� 1;with w(0) = 0. For example, for the above graph the walk will look like this:
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Notie that the size of the �rst omponent is the smallest i suh that w(i) = �1. More generally, the lastvisited vertex of the kth omponent is the smallest i suh that w(i) = �k. This is true for any graph, andwe will use it to study the sizes of omponents in the random graph G(n; p).7.2 A little bit of probabilityIn the graph G(n; p), the walk w(0); w(1); : : : ; w(n) is a random proess. The key parameter of the proess isthe distribution of the inrements w(i)�w(i� 1) onditioned on the past w(i� 1); : : : ; w(0). Let Di denotethe number of all verties that have been visited but not proessed (exluding i itself) when the algorithmreahes vertex i. At this point, the probability of an edge between i and any vertex that has not been visitedis independent of the past. Sine the set of andidate neighbors for i is exatly the set of non-visited verties,the distribution of w(i) � w(i� 1) is binomial with n� i�Di samples and suess probability p.We are interested in the limiting behavior of the proess w(0); w(1); : : : as n ! 1. If, for the moment,we ignore the ontribution of the Di, the di�erenes w(i) � w(i � 1) are independent random variables. Ifwe keep i small ompared to n, these are also almost identially distributed. Therefore, at least to a �rstapproximation, we an model w(i) as a sum of independent, identially distributed random variables. Wean now appeal to a elebrated statement of probability theory that desribes the limiting behavior of suhsums:Theorem 7.1 (The Central Limit Theorem) Let X1; X2; : : : be independent and identially distributedrandom variables with mean 0 and variane 1. Fix t > 0 and let X(m)t = (X1 + : : : + Xbmt)=pm. Asm!1, X(m)t onverges in distribution to a normal mean 0, variane t random variable X(1)t .If we now let the \time" t vary, we an think of X(1)t as a ontinuous olletion of random variables. Anotherelebrated theorem says that this olletion is a ontinuous random proess known as Brownian motion.Unfortunately, we annot apply the Central Limit Theorem to our analysis, as our random variables w(i)�w(i � 1) are not quite independent. It would be nie if there were some form of the Theorem that allows
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dependenies between the Xi. Unlike independene, of whih there is only one kind, statistial dependeniesome in many varieties. As Tolstoy might have said, \All independent variables are alike, all dependentones are dependent in their own way." However, there is a version of the Central Limit Theorem that oversexatly our form of dependene. Roughly, this version of the theorem says:Theorem 7.2 (The CLT and Brownian motion for martingales) Let X1; X2; : : : be random variablessuh that for all i, E[XijX1; : : : ; Xi�1℄ � 0 and Var[XijX1; : : : ; Xi�1℄ � 1. Fix t > 0 and let X(m)t =(X1+ : : :+Xbmt)=pm. As m!1, X(m)t onverges in distribution to a normal mean 0, variane t randomvariable X(1)t . Moreover, the olletion (X(1)t )t�0 desribes Brownian motion.7.3 Dynamis of the walk on the Erd}os-Renyi random graphWe now apply these observations to the random graph G(n; p). With a bit of hindsight, we set p = 1n + �n4=3 .It turns out that this is the appropriate saling for whih, as we vary � from �1 to 1, we will observe theemergene of a omponent of size O(n2=3) in the random graph.In our omputation, we will ignore the ontribution of the Di, whih an be shown negligible. We haveE[w(i)� w(i� 1)jw(0); : : : ; w(i� 1)℄ � E[Binom(n� i; p)� 1℄ = �n1=3 + in + �in4=3and Var[w(i) � w(i� 1)jw(0); : : : ; w(i� 1)℄ � (n� i)p(1� p) � 1:We now apply the Central Limit Theorem for martingales to the sequene Xi = w(i)� w(i� 1)�E[w(i)�w(i� 1)jw(0); : : : ; w(i� 1)℄. For m = n2=3, this givesXmt = w(mt) � mXi=1 t� �n1=3 + in + �in4=3� = �tn1=3 � 12 t2n1=3 + o(n1=3)so that, as n!1, w(tn2=3)� (�t� t2=2)n1=3n1=3 d�! X(1)t :Rearranging terms, we obtain w(tn2=3)n1=3 d�! �t� t2=2 +X(1)t :This is Brownian motion superimposed on the parabola �t� t2=2. For � > 0, the evolution of w(tn2=3)=n1=3as a funtion of t will look like this:
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The size of the kth omponent is tn2=3, where t is the smallest value at whih the urve dips below the liney = �kn�1=3. For � > 0, the urve might dip under zero a few times before it \takes o�", at whih pointthe giant omponent in G(n; p) begins to form. This omponent will keep growing roughly until the time atwhih the limiting proess intersets the t axis. In expetation, this happens when t = 2�, so that the giantomponent has size � 2�n2=3. After this point, the proess follows the drop of the parabola, and we do notexpet to see any more large omponents. For � < 0, the funtion �t� t2 is dereasing over the whole rangeof t, and no giant omponent will appear.


