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1 Introduction

Recently there has been much interest in studying large-scale real-world net-
works and attempting to model their properties using random graphs. Although
the study of real-world networks as graphs goes back some time, recent activity
perhaps started with the paper of Watts and Strogatz [55] about the ‘small-
world phenomenon’. Since then the main focus of attention has shifted to the
‘scale-free’ nature of the networks concerned, evidenced by, for example, power-
law degree distributions. It was quickly observed that the classical models of
random graphs introduced by Erdős and Rényi [28] and Gilbert [33] are not
appropriate for studying these networks, so many new models have been intro-
duced. The work in this field falls very roughly into the following categories.

1. Direct studies of the real-world networks themselves, measuring various
properties such as degree-distribution, diameter, clustering, etc.

2. Suggestions for new random graph models motivated by this study.

3. Computer simulations of the new models, measuring their properties.

4. Heuristic analysis of the new models to predict their properties.

5. Rigorous mathematical study of the new models, to prove theorems about
their properties.

Although many hundreds of interesting papers have been written in this area
(see, for example, the surveys [2, 27]), so far almost all of this work comes
under 1-4; to date there has been very little rigorous mathematical work in
the field. Our main aim in this article is to present some of this mathematical
work, including several new results. Even an overview of the work in 1-4 lies
outside our scope, so we shall present only those models which have been made
mathematically precise and for which results have been proved, and mention
only a few heuristic results for comparison with the theorems we present. For
similar reasons, we cannot even survey the ‘classical’ theory of random graphs,
referring the reader instead to [11] and [38]. However, we shall briefly describe
the classical models, as well as some results relevant for comparison; much of the
work on the new models has appeared in computer science and physics journals,
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and it may be that some of the authors are not aware of the related classical
results.

The rest of this article is organized as follows. In the next section we briefly
describe the classical models of random graphs. In section 3 we state some
theorems about these models chosen for comparison with recent results about
the new models. Section 4 is a brief digression concerning the Watts-Strogatz
‘small-world’ model. The rest of the article concerns ‘scale-free’ models; a brief
introduction is given in section 5. These models fall into two types. The first
takes a power-law degree distribution as given, and then generates a graph with
this distribution. Such models will not be considered here. The second type
arises from attempts to explain the power law starting from basic assumptions
about the growth of the graph. In section 6 we describe the Barabási-Albert
(BA) model, noting that their definition does not make mathematical sense. A
precisely defined model, the ‘LCD model’, along the lines of the BA model is de-
scribed in section 7, followed by a generalization due to Buckley and Osthus [20]
in the next section. In these and the following few sections we concentrate on
the degree distribution, presenting results showing that the models are indeed
scale-free. Sections 9 and 10 present such results for the ‘copying’ models of
Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins and Upfal [40], and the
very general models defined by Cooper and Frieze [24]. Section 11 describes
a model for directed graphs with ‘preferential attachment’ using both in- and
out-degrees, and gives the power laws for in- and out-degree distribution.

At this point we return to the LCD model, presenting results about prop-
erties other than degree sequence: the clustering coefficient is discussed in sec-
tion 12, the diameter in section 13 and ‘robustness’ in section 14.

The last section concerns a special case of the BA model that had been
studied considerably earlier; that of scale-free trees. In section 15, we present
results for small subgraphs (useful for the LCD model) and distance distribution.

Finally, in section 16 we conclude with a few remarks.

2 Classical models of random graphs

The theory of random graphs was founded by Erdős and Rényi in a series of
papers published in the late 1950s and early 1960s. Erdős and Rényi set out to
investigate what a ‘typical’ graph with n labelled vertices and M edges looks
like. They were not the first to study statistical properties of graphs; what
set their work apart was the probabilistic point of view: they considered a
probability space of graphs and viewed graph invariants as random variables.
In this setting powerful tools of probability theory could be applied to what had
previously been viewed as enumeration questions.

Throughout this section, and indeed the rest of this article, we consider mod-
els of labelled graphs. Although in the end one may choose to ignore the labels,
the models are naturally defined as generating graphs on a certain set of distin-
guishable vertices, rather than isomorphism classes of graphs. For definiteness
it is often convenient to assume that, when the graph has n vertices, the vertex
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set is [n] = {1, 2, . . . , n}.
In modern notation Erdős and Rényi considered the space Gn,M of all

(

N
M

)

graphs with vertex set [n] having M edges, where N =
(

n
2

)

is the number of all
possible edges between vertices in [n]. The set Gn,M is made into a probability
space by taking the elements of Gn,M equiprobable; Gn,M will denote a random
element of this space. We are interested in what happens as n → ∞, with
M = M(n) a function of n. We say that Gn,M has a certain property P with

high probability (whp) if

Pr(Gn,M has P) → 1

as n → ∞. (Here and in what follows it is always understood that M is a
function of n. The case when M is constant as n → ∞ is rather uninteresting.)
Following Erdős and Rényi, it is customary to say that a typical random graph
Gn,M has property P if Gn,M has P whp.

One of the main discoveries of Erdős and Rényi was that as M = M(n) in-
creases, the structure of a typical Gn,M tends to change suddenly. The following
is a simple but fundamental result from [28] about connectedness.

Theorem 1. Let Mω = n
2 (log n + ω), where ω = ω(n) is a function of n. If

ω → −∞ then a typical Gn,Mω
is disconnected, while if ω → ∞, a typical Gn,Mω

is connected.

In the 1950s, Austin, Fagen, Penney and Riordan [4], Gilbert [32, 33], and
Riddell and Uhlenbeck [50] also studied statistical properties of graphs, but
their approach was very different, using generating functions to obtain exact
enumeration formulae and then approximating these. The results obtained this
way were much weaker than those of Erdős and Rényi.

The model of random graphs introduced by Gilbert [33] (precisely at the
time that Erdős and Rényi started their investigations of Gn,M ) is, perhaps,
even more fundamental than Gn,M , and is more convenient to use. To define
Gilbert’s model, Gn,p, let {Xij : 1 ≤ i < j ≤ n} be an array of iid Bernoulli
random variables, with Pr(Xij = 1) = p and Pr(Xij = 0) = 1 − p, and let Gn,p

be the random graph on [n] in which two vertices i and j are adjacent if Xij = 1.
Less formally, to construct a random Gn,p ∈ Gn,p, put in edges with probability
p, independently of each other. Again p is often a function of n, though the case
p constant, 0 < p < 1, makes perfect sense. For M ∼ pN the models Gn,M and
Gn,p are almost interchangeable. (Note that, as usual, we commit a harmless
abuse of notation, using Gn,. for two different models. There is no danger of
confusion, as M → ∞ while 0 < p < 1.)

Since the early 1960s several other ‘classical’ models of random graphs have
been introduced. A graph process G̃n = (Gn,t)

N
t=0 on [n] is a nested sequence

of graphs, Gn,0 ⊂ Gn,1 ⊂ · · · ⊂ Gn,N such that Gn,t has precisely t edges.

The space G̃n of random graph processes consists of all N ! graph processes on
[n], endowed with the uniform (normalized counting) measure. Note that this
notation is consistent with that used earlier: the distribution of Gn,t, a ran-
dom graph process stopped at time t, is precisely the distribution of Gn,t as
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an element of Gn,t. A random graph process has a natural interpretation as a
dynamic Markov process; given Gn,0, . . . , Gn,t, at the next step Gn,t+1 is ob-
tained by adding one of the N − t remaining possible edges to Gn,t uniformly at

random. In studying G̃n one is mostly interested in the hitting times of certain
properties (those preserved by adding edges), that is, the random variable given
by the minimal t for which Gn,t has the property. For example, Theorem 1
claims that whp the hitting time of connectedness is at least n

2 (log n − ω(n))
and at most n

2 (log n − ω(n)) whenever ω(n) → ∞. In fact, whp, the hitting
time of connectedness is precisely the hitting time of having no isolated (degree
0) vertices.

To get a random element Gn,k-out of the space Gn,k-out, join each vertex
i to k other vertices chosen at random and take the union of all these edges.
Equivalently, let ~Gn,k-out be the random directed graph obtained by sending
arcs from each vertex to a set of k other vertices chosen uniformly at random;
the random graph Gn,k-out is the underlying simple graph of ~Gn,k-out. Note
that each Gn,k-out has at least kn/2 and at most kn edges; although kn is much
smaller than n

2 log n, the threshold of connectedness given by Theorem 1, for all
k ≥ 2, whp Gn,k-out is connected.

The space Gn,r-reg is simply the set of all r-regular graphs on [n] with the
uniform measure. Although this space is very easy to define, for larger values
of r it is not so easy to study.

The study of random graphs really took off in the mid 1970s; since then
several thousand papers have been written on the topic. Many of the results
are presented in the monographs [11] and [38].

3 Results for classical random graphs

In this brief review it would be impossible to survey even the more important
results about classical random graphs; all we shall do is present some results
that are analogous to a number of results about scale-free random graphs we
shall present later.

In addition to discovering the prevalence of ‘phase transitions’ for numerous
properties of random graphs, Erdős and Rényi [29] proved that the component
structure of a random graph process undergoes a sudden change around time
t ∼ n/2. This result about the emergence of the ‘giant component’ is the single
most important theorem of Erdős and Rényi about random graphs. Here we
state it only in a simplified form.

Theorem 2. Let c > 0 be a constant, and set p = c/n. If c < 1 then whp every

component of Gn,p has order O(log n). If c > 1 then whp Gn,p has a component

with (α(c) + o(1))n vertices, where α(c) > 0, and all other components have

O(log n) vertices.

Considerably more precise results have been proved by Bollobás [10],  Luczak [42],
and Janson, Knuth,  Luczak and Pittel [37]. The component of order Θ(n) whose
existence is guaranteed by Theorem 2 is usually called the giant component. If
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c is considerably larger than 1, then the giant component has a large robust
(highly connected) subgraph.

For p constant, the degree sequence of Gn,p is close to a sequence of n
iid Binomial random variables with probability p and mean np. (A very strong
precise result along these lines is given in [46].) For p = c/n, where c is constant,
the degree sequence is well approximated by a sequence of n iid Poisson random
variables with mean c. In particular, one has the following very weak result.

Theorem 3. Let Xk be the number of vertices of degree k in Gn,p where p = c/n,

with c > 0 constant. Then for k = 0, 1, . . .

Pr

(

(1 − ǫ)
cke−c

k!
≤ Xk

n
≤ (1 + ǫ)

cke−c

k!

)

→ 1

as n → ∞.

In a graph G, the distance d(u, v) between two vertices u and v is the length
(number of edges) of the shortest path between them. The diameter diam(G) of
a connected graph G is the maximum distance between two vertices; a discon-
nected graph is taken to have infinite diameter. The diameter of a random graph
has been studied by a great many people, including Burtin [21, 22], Bollobás [9]
and Bollobás and de la Vega [14]. If pn/ log n → ∞ and log n/ log(pn) → ∞
then whp the diameter of Gn,p is asymptotic to log n/ log(pn). In the range
we are interested in here, corresponding to the Θ(n) edges in scale-free random
graphs, Gn,p is disconnected, so the the diameter of Gn,k-out or Gn,r-reg is more
relevant. Let us state a weak form of a result from [14].

Theorem 4. Let r ≥ 3 and ǫ > 0 be fixed. Then

Pr

(

(1 − ǫ)
log n

log(r − 1)
≤ diam(Gn,r-reg) ≤ (1 + ǫ)

log n

log(r − 1)

)

→ 1

as n → ∞.

As we shall see, results vaguely resembling Theorem 4 hold for scale-free ran-
dom graphs. More or less by definition, the results corresponding to Theorem 3
are rather different.

4 The Watts-Strogatz ‘small-world’ model

In 1998, Watts and Strogatz [55] raised the possibility of constructing random
graphs that have some of the important properties of ‘real-world’ networks. The
real-world networks they considered included neural networks, the power grid
of the western United States and the collaboration graph of film actors. Watts
and Strogatz noticed that these networks were ‘small-world’ networks: their
diameters were considerably smaller than those of regularly constructed graphs
(such as lattices, or grid graphs) with the same number of vertices and edges.
More precisely, Watts and Strogatz found that real-world networks tend to be
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highly clustered, like lattices, but have small diameters, like random graphs.
That large social networks have rather small diameters had been noticed con-
siderably earlier, in the 1960s, by Milgram [47] and others, and was greatly
popularized by Guare’s popular play ‘six degrees of separation’ in 1990.

The importance of the Watts and Strogatz paper is due to the fact that
it started the active and important field of modelling large-scale networks by
random graphs defined by simple rules. As it happens, from a mathematical
point of view, the experimental results in [55] were far from surprising.

Instead of the usual diameter diam(G) of a graph G, Watts and Strogatz
considered the average distance

L(G) =
∑

{u,v}⊂V,u 6=v

d(u, v)/

(

n

2

)

,

where V is the vertex set of G and n is the number of vertices. Clearly L(G) ≤
diam(G), but in ‘most’ cases L(G) is not much smaller than diam(G). (For
example, for Gn,r-reg, r ≥ 3, whp these quantities are asymptotically equal.)

To measure the ‘cliquishness’ of a graph, for a graph G and vertex v, let
Cv(G) be the proportion of pairs of neighbours of v that are themselves neigh-
bours, and let C1(G) be the average of Cv(G) as v runs over the vertices. In
section 12 we shall give a more formal definition of this clustering coefficient

C1(G), together with a variant of it.
For a random r-regular graph, C1(Gn,r-reg) ∼ r−1

n , while

diam(Gn,r-reg) ∼ log n/ log(r − 1) :

the clustering coefficient is small, and so is the diameter. On the other hand,
as pointed out by Watts and Strogatz, many real-world networks tend to have
a largish clustering coefficient and small diameter. To construct graphs with
these properties, Watts and Strogatz suggested starting with a fixed graph with
large clustering coefficient and ‘rewiring’ some of the edges.

To be precise, let G be the graph Cr
n, the rth power of an n-cycle, where

n > 2r. Thus G is a 2r-regular graph of order n; two vertices are joined in G
if their distance in the n-cycle Cn is at most r. For n = 2rs, s ≥ 2, say, we

have diam(G) = s, and L(G) ∼ s/2 as s → ∞, while C1(G) = 3(r−1)
2(2r−1) . Let

G(p) be the random graph obtained from G by deleting each edge at random
with probability p, independently of the other edges, and then adding the same
number of edges back at random. Almost equivalently, G(p) is obtained from
G by ‘rewiring’ a proportion p of the edges. What Watts and Strogatz found
was that, even for a small value of p, L(G(p)) drops down to O(log n), while
C1(G(p)) stays close to 3/4; the introduction of a small number of random edges
reduces the diameter to O(log n).

Following this observation, much research was devoted to the ‘surprising’
phenomenon that the introduction of a little randomness makes the diameter
small (while various other graph invariants remain essentially unchanged). In
fact, it is far from surprising that a few random edges superimposed on a con-
nected ground graph give a graph of small diameter. For example, Bollobás and
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Chung [13] proved that a random matching added to a cycle gives a graph whose
diameter is about that of a random cubic graph. Similarly, for c > 0, adding cn
random edges to a tree of order n results in a graph of diameter O(log n). These
results (though not the precise constant given in [13]) are particular instances of
a general phenomenon which has been known much longer; they follow from the
fact that the diameter of Gn,r-reg (or of the giant component of Gn,p, p = c/n)
is O(log n).

The graphs obtained by rewiring some of the edges of a power of a cycle do
not resemble large-scale real-world networks, although they share some of their
characteristics. To model these networks, it is desirable to define new families
of random graphs rather different from from the classical models. This is the
topic of the next several sections.

5 Scale-free models

In 1999, Faloutsos, Faloutsos and Faloutsos [30] suggested certain ‘scale-free’
power laws for the graph of the Internet, and showed that these power laws fit
the real data very well. In particular, they suggested that the degree distribution
follows a power law, in contrast to the Poisson distribution for classical random
graphs given in Theorem 3. This was soon followed by work on rather vaguely
described random graph models aiming to explain these power laws, and others
seen in features of many real-world networks.

In fact, power-law distributions had been observed considerably earlier; in
particular, in 1926 Lotka [41] claimed that citations in academic literature follow
a power law, and in 1997 Gilbert [34] suggested a probabilistic model supporting
‘Lotka’s law’. Other early investigations into power-law distributions are due to
Simon [51] and Zipf [56].

The degree distribution of the graph of telephone calls seems to follow a
power law as well; motivated by this, Aiello, Chung and Lu [1] proposed a model
for ‘massive graphs’. This model ensures that the degree distribution follows a
power law by fixing a degree sequence in advance to fit the required power law,
and then taking the space of random graphs with this degree sequence. Thus
their approach is very different from the models we are interested in, where the
aim is to understand how power laws might arise, by finding simple rules that
generate random graphs satisfying such laws.

In the next sections we present several of these models, concentrating for the
moment on the degree sequence. Later in the article we return to one particular
model, the LCD model, presenting results about several other properties.

6 The Barabási-Albert model

Perhaps the most basic and important of the ‘scale-free’ random graph models,
i.e., models producing power-law or ‘scale-free’ behaviour from simple rules, is
the ‘BA model’. This was introduced by Barabási and Albert [5] in 1999:
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... starting with a small number (m0) of vertices, at every time
step we add a new vertex with m(≤ m0) edges that link the new
vertex to m different vertices already present in the system. To
incorporate preferential attachment, we assume that the probability
Π that a new vertex will be connected to a vertex i depends on the
connectivity ki of that vertex, so that Π(ki) = ki/

∑

j kj . After t
steps the model leads to a random network with t + m0 vertices and
mt edges.

The basic motivation is to provide a highly simplified model of the growth
of, for example, the world-wide web. New sites (or pages) are added one at
a time, and link to earlier sites chosen with probabilities depending on their
current ‘popularity’; this is the principle that ‘popularity is attractive’; this
principle presumably plays a role in the growth of real networks in a wide
range of contexts. It is customary to call this the ‘preferential attachment’ rule.
Barabási and Albert themselves, and many other people, gave experimental
and heuristic results about the BA model; we will return to a few of these later.
From a mathematical point of view, however, the description above, repeated
in many papers, does not make sense.

The first problem is getting started: how do we take probabilities propor-
tional to the degrees when these are all zero? Perhaps it makes sense to ignore
the explicit start from no edges given by Barabási and Albert, and start instead
from a small graph G0 with no isolated vertices, hoping that the choice of G0

makes little difference. While for many properties G0 turns out not to matter,
for others it matters very much. For example, in the case m = 1 the BA model
describes the growth of a tree, provided G0 is a tree. If G0 is disconnected,
say, then at all later stages the graph produced will also be disconnected. For
general m the initial graph G0 also has significant lasting effects, for example
on the expected maximum degree, which can change by a constant factor when
G0 is changed.

The second problem is with the preferential attachment rule itself, and arises
only for m ≥ 2; when we add a new vertex, say the t + 1st, we must join it to
a random set Nt+1 of m earlier vertices. In our notation, working always with
graphs on {1, 2, . . .}, the BA model says only that, for 1 ≤ i ≤ t,

Pr(i ∈ Nt+1) = mdt(i)/

t
∑

j=1

dt(j), (1)

where dt(i) is the degree of vertex i in the growing graph at time t. (Actually,
as can be seen from the quotation above, Barabási and Albert give this formula
without the factor of m. If we assume their formula is intended to hold sep-
arately for each edge added, then (1) follows. However, their description does
not allow us to add edges one by one independently, as it is specified that the
edges go to different vertices.) To fully describe the model, we must specify the
distribution of Nt+1, i.e., the probability that Nt+1 = S for each of the

(

t
m

)

possible sets S of earlier vertices. This distribution is not uniquely specified by
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giving the marginal probabilities that i ∈ Nt+1 for each earlier vertex i. To
see this note, for example, that the distribution of Nt+1 has

(

t
m

)

− 1 degrees of

freedom (the
(

t
m

)

probabilities must add up to 1) while there are only t marginal
probabilities specified by the BA description. Again one might hope that the
exact choice does not make much difference, and again this turns out to be
false. As shown by the following result, there is a range of models fitting the
BA description with very different properties.

Theorem 5. Let f(n), n ≥ 2, be any integer valued function with f(2) = 0
and f(n) ≤ f(n + 1) ≤ f(n) + 1 for every n ≥ 2, such that f(n) → ∞ as

n → ∞. Then there is a random graph process T (n) satisfying (1) such that,

with probability 1, T (n) has exactly f(n) triangles for all sufficiently large n.

In less formal language, Theorem 5 says, for example, that if you want log n
triangles when the graph has n vertices, there is a precise model satisfying the
BA description (except for the start, which cannot be satisfied) which achieves
this. Similarly, if you want nα triangles for any 0 < α ≤ 1, or any other plausible
function. Thus the clustering coefficient (see section 12) may also be tuned. The
only tiny caveat is that you may be forced to create a finite number of triangles
at the start. Note that this is different from the result in [36], which considers
a model outside the Barabási-Albert definition (triangles are created by adding
edges between existing vertices).

Proof. We give only an outline of the proof. We will work entirely with simple
graphs, with no loops or multiple edges, starting with T (2) a single edge. When
adding a new vertex v to a simple graph and joining it to two distinct existing
vertices, x and y, the number of triangles either remains the same, or goes up by
one. It goes up by one if and only if xy is an edge. Restating the theorem, we
must show that given T (n) we have two ways choosing x and y to define T (n+1),
each satisfying the Barabási-Albert preferential attachment rule (1): one where
xy is always an edge of T (n), and one where, except perhaps for finitely many
steps near the start, it never is.

The first case is easy: to guarantee a new triangle, take xy to be a random
edge of T (n). By definition of degree, the probability that a particular vertex w
is chosen as one of x and y is just the degree d(w) of w in T (n) over the total
number (2n − 3) of edges of T (n), so (1) is satisfied.

For the second case we must assign non-negative weights pxy = pyx to pairs
{x, y} ⊂ V (T (n)) with pxy zero for every edge, such that

∑

y 6=x pxy = d(x)/(2n−
3). Then

∑

{x,y} pxy = 1, so we may take pxy as the probability of joining
the new vertex to x and y. Such an assignment is possible under very mild
conditions; for example, the maximum degree of T (n) being at most n/3 is
more than sufficient. It is easy to check that in any process satisfying (1), the
maximum degree is at most O(n1/2) whp, so the result follows.

An extreme case of the process above, in which a triangle is added at every
step, was actually considered by Dorogovtsev and Mendes [27] (section IX C),
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without noting that it satisfies the Barabási-Albert description. In fact, it is
introduced there as a simpler alternative model for easier analysis.

As seen from the example above, in order to prove results about the BA
model, one must first decide on the details of the model itself. In the next
section we present one particular choice for how to do this which has several
advantages.

7 The LCD model and G
(n)
m

In this section we define precisely a random graph model introduced in [16]
satisfying the vague description given by Barabási and Albert. It turns out to
be convenient to allow multiple edges and loops; there will not be very many of
these, and in any case there seems no reason to exclude them from the point of
view of the interpretation: one web site may contain several links to another,
for example, or links to itself.

Consider a fixed sequence of vertices v1, v2, . . .. (Later we shall take vi = i;
the general case simplifies the notation when we merge vertices.) Let us write
dG(v) for the degree of the vertex v in the graph G. We define inductively a

random graph process (G
(t)
1 )t≥0 so that G

(t)
1 is a graph on {vi : 1 ≤ i ≤ t},

as follows: start with G
(0)
1 the empty ‘graph’ with no vertices, or with G

(1)
1

the graph with one vertex and one loop. Given G
(t−1)
1 , form G

(t)
1 by adding

the vertex vt together with a single edge between vt and vi, where i is chosen
randomly with

Pr(i = s) =

{

d
G

(t−1)
1

(vs)/(2t − 1) 1 ≤ s ≤ t − 1,

1/(2t − 1) s = t.
(2)

In other words, send an edge e from vt to a random vertex vi, where the prob-
ability that a vertex is chosen as vi is proportional to its degree at the time,
counting e as already contributing one to the degree of vt. (We shall see why
this is convenient later.) For m > 1, add m edges from vt one at a time,
counting the previous edges as well as the ‘outward half’ of the edge being
added as already contributing to the degrees. We choose this precise rule be-

cause it leads to the following equivalent definition: define the process (G
(t)
m )t≥0

by running the process (G
(t)
1 ) on a sequence v′1, v

′
2, . . ., and forming the graph

G
(t)
m from G

(mt)
1 by identifying the vertices v′1, v

′
2, . . . , v

′
m to form v1, identifying

v′m+1, v
′
m+2, . . . , v

′
2m to form v2, and so on.

For the rest of the article we shall take vi = i, so G
(t)
m is a graph on

[t] = {1, 2, . . . , t}. Note that the edges of G
(t)
m have a natural orientation, from

later vertices to earlier vertices, so ij is oriented from i to j if i > j. However,
as for studies of the BA model, we shall generally treat the graph as unori-
ented. For these models the orientation is not very interesting (indeed it may
be reconstructed from the graph even if the vertex labels are not given).

In addition to satisfying the basic mathematical criterion of being precisely

specified, the process G
(t)
m has several useful properties. One is that G

(t)
m can be
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defined in terms of G
(mt)
1 , a much simpler object, so questions about G

(t)
m can

be re-written in terms of G
(mt)
1 , and results can be proved this way. Another

very important property is the following: while the process G
(t)
1 is dynamic, the

distribution of the graph G
(n)
1 obtained at a particular time t = n has a simple

static description, the linearized chord diagram or LCD description, given in [16]:

An n-pairing is a partition of the set {1, 2, . . . , 2n} into pairs,
so there are (2n)!/(n!2n) n-pairings. These objects are sometimes
thought of as linearized chord diagrams (or LCDs) [52, 15], where an
LCD with n chords consists of 2n distinct points on the x-axis paired
off by semi-circular chords in the upper half plane. Two LCDs are
considered to be the same when one can be turned into the other
by moving the points on the x-axis without changing their order.
Thinking of pairings as LCDs, we shall talk of chords and their left
and right endpoints. We form a graph φ(L) from an LCD L as fol-
lows: starting from the left, identify all endpoints up to and including
the first right endpoint reached to form vertex 1. Then identify all
further endpoints up to the next right endpoint to form vertex 2,
and so on. For the edges, replace each chord by an edge joining the
vertex corresponding to its right endpoint to that corresponding to
its left endpoint.

As stated in [16], if L is chosen uniformly at random from all (2n)!/(n!2n)
LCDs with n chords (i.e., n-pairings), then φ(L) has the same distribution as a

random G
(n)
1 defined via the process G

(t)
1 given earlier.

To see this note that L can be obtained by taking a random LCD
L′ with n − 1 chords and adding a new chord whose right endpoint
is to the right of all n − 1 chords, and whose left endpoint lies in
one of the 2n−1 possible places, each chosen with equal probability.
This corresponds to adding a new vertex to φ(L′) and joining it to
another vertex with probabilities according to the degrees, exactly

as in the description of (G
(n)
1 ).

A simple result proved in [19] using the LCD description, which can also be
proved in other ways, concerns the degree sequence. We write #n

m(d) for the

number of vertices of G
(n)
m with in-degree equal to d, i.e., with (total) degree

m + d.

Theorem 6. Let m ≥ 1 and ǫ > 0 be fixed, and set

αm,d =
2m(m + 1)

(d + m)(d + m + 1)(d + m + 2)
.

Then with probability tending to 1 as n → ∞ we have

(1 − ǫ)αm,d ≤ #n
m(d)

n
≤ (1 + ǫ)αm,d

for every d in the range 0 ≤ d ≤ n1/15.
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This result gives a rigorous justification of the power-law dependence of the
degrees described in [6].

Let us remark that in the case m = 1, essentially this result had been proved
much earlier by Szymański [54] in a slightly different context (see section 15).

In the next few sections we describe other scale-free models for which power-
law degree distribution has been proved.

8 The Buckley-Osthus model

Two groups, Dorogovtsev, Mendes and Samukhin [26] and Drinea, Enachescu
and Mitzenmacher [25], introduced a variation on the BA model in which ver-
tices have an ‘initial attractiveness’: the probability that an old vertex is chosen
to be a neighbour of the new vertex is proportional to its in-degree plus a con-
stant ‘initial attractiveness’, which we shall write as am. The case a = 1 is
just the BA model, since there total degree is used, and each out-degree is m.
Buckley and Osthus [20] made this more general model precise along the lines of

the LCD model; for a fixed positive integer a, they define a process H
(t)
a,1 exactly

as G
(t)
1 is defined above, but replacing (2) with

Pr(i = s) =







din

H
(t−1)
a,1

(vs)+a

(a+1)t−1 1 ≤ s ≤ t − 1,
a

(a+1)t−1 s = t.

Note that when a = 1 the definition of H
(t)
a,1 reduces exactly to that of G

(t)
1 . As

for G
(t)
m , a process H

(t)
a,m is defined in [20] by identifying vertices in groups of m.

Buckley and Osthus established that the degree distribution of this model also

obeys a power law. Let us write #n
a,m(d) for the number of vertices of H

(n)
a,m

with in-degree d.

Theorem 7. Let m ≥ 1 and a ≥ 1 be fixed integers, and set

αa,m,d = (a + 1)(am + a)!

(

d + am − 1

am − 1

)

d!

(d + am + a + 1)!
.

Let ǫ > 0 be fixed. Then whp we have

(1 − ǫ)αa,m,d ≤
#n

a,m(d)

n
≤ (1 + ǫ)αa,m,d

for all d in the range 0 ≤ d ≤ n1/100(a+1). In particular, whp for all d in this

range we have
#n

a,m(d)

n
= Θ(d−2−a).

The proof is rather difficult, as the equivalent for H
(t)
a,1 of the LCD model for

G
(t)
1 is much more complicated. Dorogovtsev, Mendes and Samukhin [26] gave

a non-rigorous argument for a weaker form of this result, where the range of d
considered is bounded.
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9 The copying model

Around the same time as the BA model, Kumar, Raghavan, Rajagopalan,
Sivakumar, Tomkins and Upfal [40] gave rather different models to explain the
observed power laws in the web graph. The basic idea is that a new web page
is often made by copying an old one, and then changing some of the links. Let
us define one of these models by quoting almost verbatim from [40]:

The linear growth copying model is parametrized by a copy factor

α ∈ (0, 1) and a constant out-degree d ≥ 1. At each time step, one
vertex u is added, and u is then given d out-links for some constant
d. To generate the out-links, we begin by choosing a ‘prototype’
vertex p uniformly at random from Vt (the old vertices). The ith

out-link of u is then chosen as follows. With probability α, the
destination is chosen uniformly at random from Vt, and with the
remaining probability the out-link is taken to be the ith out-link of
p. Thus, the prototype is chosen once in advance. The d out-links
are chosen by α-biased independent coin flips, either randomly from
Vt, or by copying the corresponding out-link of the prototype.

The intuition behind this model is the following. When an author
decides to create a new web page, the author is likely to have some
topic in mind. The choice of prototype represents the choice of
topic—larger topics are more likely to be chosen. The Bernoulli
copying events reflect the following intuition: a new viewpoint about
the topic will probably link to many pages ‘within’ the topic (i.e.,
pages already linked to by existing resource lists about the topic),
but will also probably introduce a new spin on the topic, linking
to some new pages whose connection to the topic was previously
unrecognized.

As for the BA model, it turns out that the degree distribution does follow a
power law. Let Nt,r be the expected number of vertices of degree r in the graph
formed by the model outlined above at time t (when the graph has t vertices).
Among other results, the following was proved in [40].

Theorem 8. For r > 0, the limit Pr = limt→∞ Nt,r/t exists, and satisfies

Pr = P0

r
∏

i=1

1 + α/(i(1 − α))

1 + 2/(i(1 − α))

and

Pr = Θ
(

r−
2−α
1−α

)

.

When one looks only at the degree sequence, this copying model behaves
very similarly to models with preferential attachment; we shall return to this
in the next section. In other ways, however, the model is essentially different.
An obvious example is that copying will give rise to many more dense bipartite
subgraphs; part of the original motivation was to explain the appearance of
these in the web graph.
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10 The Cooper-Frieze model

Recently, Cooper and Frieze [24] introduced a model with many parameters
which includes the models of the last three sections as special cases, and proved
a very general result about the power-law distribution of degrees. In the undi-
rected case, the model describes a (multi-)graph process G(t), starting from
G(0) a single vertex with no edges. Their attachment rule is a mixture of pref-
erential (by degree) and uniform (uniformly at random, or ‘u.a.r’). Quoting
from [24]:

Initially, at step t = 0, there is a single vertex v0. At any step
t = 1, 2, ..., T, ... there is a birth process in which either new vertices
or new edges are added. Specifically, either a procedure new is
followed with probability 1−α, or a procedure old is followed with
probability α. In procedure new, a new vertex v is added to G(t−1)
with one or more edges added between v and G(t−1). In procedure
old, an existing vertex v is selected and extra edges are added at v.

The recipe for adding edges typically permits the choice of initial
vertex v (in the case of old) and the terminal vertices (in both cases)
to be made either u.a.r or according to vertex degree, or a mixture
of these two based on further sampling. The number of edges added
to vertex v at step t by the procedures (new, old) is given by
distributions specific to the procedure. The details of these choices
are given below.

The parameters fixed in advance are integers j0, j1 ≥ 1, and real numbers α,
β, γ, δ, p1, . . . , pj0 , q1, . . . qj1 between 0 and 1, with α < 1 and

∑

pi =
∑

qi = 1.
The procedure for defining G(t) from G(t − 1) is as follows (from [24]):

Choice of procedure at step t.
α: Probability that an old node generates edges.
1 − α: Probability that a new node is created.

Procedure new

p = (pi : i ≥ 1): Probability that new node generates i new
edges.

β: Probability that choices of terminal vertices are made uni-
formly.

1 − β: Probability that choices of terminal vertices are made
according to degree.
Procedure old

q = (qi : i ≥ 1): Probability that old node generates i new
edges.

δ: Probability that the initial node is selected uniformly.
1 − δ: Probability that the initial node is selected according to

degree.
γ: Probability that choices of terminal vertices are made uni-

formly.

14



1 − γ: Probability that choices of terminal vertices are made
according to degree.

In words:

The model creates edges in the following way: An initial vertex
v is selected. If the terminal vertex w is chosen u.a.r, we say v is
assigned to w. If the terminal vertex w is chosen according to its
vertex degree, we say v is copied to w. In either case the edge has an
intrinsic direction (v, w), which we may choose to ignore. We note
that sampling according to vertex degree is equivalent to selecting
an edge u.a.r and then selecting an endpoint u.a.r.

Note that although this ‘copying’ mechanism is not at all that of the ‘copying
model’ described in the previous section, as pointed out by Cooper and Frieze,
as far as the evolution of the degree sequence is concerned, the two are more
or less interchangeable. Note also that the mixture of uniform and preferential
attachment is easily seen to be equivalent to the preferential attachment with
constant initial attractiveness considered in section 8.

Given the generality of the Cooper-Frieze model, it is not surprising that
their result is rather difficult to state. Quoting again from [24], we must first
start with some notation.

Notation
Let µp =

∑j0
j=0 jpj , µq =

∑j1
j=0 iqj and let θ = 2((1−α)µp+αµq).

To simplify subsequent notation, we transform the parameters as
follows:

a = 1 + βµp +
αγµq

1 − α
+

αδ

1 − α
,

b =
(1 − α)(1 − β)µp

θ
+

α(1 − γ)µq

θ
+

α(1 − δ)

θ
,

c = βµp +
αγµq

1 − α
,

d =
(1 − α)(1 − β)µp

θ
+

α(1 − γ)µq

θ
,

e =
αδ

1 − α
, f =

α(1 − δ)

θ
.

We note that
c + e = a − 1 and b = d + f. (3)

Now define the sequence (d0, d1, ..., dk, ...) by d0 = 0 and for k ≥ 1

dk(a+bk) = (1−α)pk +(c+d(k−1))dk−1 +

k−1
∑

j=1

(e+f(k−j))qjdk−j .

(4)
Since a ≥ 1, this system of equations has a unique solution.
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Statement of results
The main quantity we study is the random variable Dk(t), the

number of vertices of degree k at step t. We let Dk(t) = E(Dk(t)).
We prove that for small k, Dk(t) ≈ dkt as t → ∞.

Theorem 9. There exists a constant M > 0 such that for t, k =
1, 2, . . . ,

|Dk(t) − tdk| ≤ Mt1/2 log t.

The number of vertices ν(t) at step t is whp asymptotic to (1−
α)t, see ... It follows that

d̄k =
dk

1 − α
.

The next theorem summarizes what we know about the dk:

Theorem 10.

(i) Ak−ζ ≤ dk ≤ B min{k−1, k−ζ/j1} where ζ = (1 + d + fµq)/(d +
f).

(ii) If j1 = 1 then dk ∼ Ck−(1+1/(d+f)).

(iii) If f = 0 then dk ∼ Ck−(1+1/d).

(iv) If the solution conditions hold then

dk = C

(

1 + O

(

1

k

))

k−x,

where C is constant and

x = 1 +
1

d + fµq
. (5)

We say that {qj : j = 1, ..., j1} is periodic if there exists m > 1
such that qj = 0 unless j ∈ {m, 2m, 3m, . . .}.

Let

φ1(y) = yj1 −
(

d + q1f

b
yj1−1 +

q2f

b
yj1−2 + · · · +

qj1f

b

)

.

Our solution conditions are:

S(i) f > 0 and either (a) d + q1f > 0 or (b) {qj} is not periodic.

S(ii) The polynomial φ1(y) has no repeated roots.

In summary, these results say that the ‘expected degree sequence’ converges
in a strong sense to the solution of a certain recurrence relation, and that under
rather weak conditions, this solution follows a power law with an explicitly
determined exponent and a bound on the error term. Cooper and Frieze also
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prove a simple concentration result, which we will not state, showing the number
of vertices of a certain degree is close to its expectation.

In addition to the undirected case, Cooper and Frieze consider what one
might call ‘semi-directed’ models, where one uses in- or out-degree for the pref-
erential attachment rule, but not both. In the next section we describe a simple
model which uses both.

11 Directed scale-free graphs

Although sometimes described in terms of directed graphs, with the exception
noted above all the models presented so far are to all intents and purposes
undirected, in the sense that the edge orientations are not used in an essential
way in defining the model. As the real-world networks motivating scale-free
random graphs are often directed, it makes sense to consider directed models,
and it is natural to consider ‘preferential attachment’ which depends on in-
and out-degrees. Such a model was introduced by Bollobás, Borgs, Chayes and
Riordan in [12]:

We consider a graph which grows by adding single edges at dis-
crete time steps. At each such step a vertex may or may not also
be added. For simplicity we allow multiple edges and loops. More
precisely, let α, β, γ, δin and δout be non-negative real numbers,
with α + β + γ = 1. Let G0 be any fixed initial graph, for ex-
ample a single vertex without edges, and let t0 be the number of
edges of G0. (Depending on the parameters, we may have to assume
t0 ≥ 1 for the first few steps of our process to make sense.) We
set G(t0) = G0, so at time t the graph G(t) has exactly t edges,
and a random number n(t) of vertices. In what follows, to choose a
vertex v of G(t) according to dout + δout means to choose v so that
Pr(v = vi) is proportional to dout(vi)+δout, i.e., so that Pr(v = vi) =
(dout(vi) + δout)/(t + δoutn(t)). To choose v according to din + δin

means to choose v so that Pr(v = vi) = (din(vi) + δin)/(t + δinn(t)),
where all degrees are measured in G(t).

For t ≥ t0 we form G(t+1) from G(t) according the the following
rules:

(A) With probability α, add a new vertex v together with an
edge from v to an existing vertex w, where w is chosen according to
din + δin.

(B) With probability β, add an edge from an existing vertex v
to an existing vertex w, where v and w are chosen independently, v
according to dout + δout, and w according to din + δin.

(C) With probability γ, add a new vertex w and an edge from
an existing vertex v to w, where v is chosen according to dout + δout.

The probabilities α, β and γ clearly should add up to one. To
avoid trivialities, we will also assume that α + γ > 0. When consid-
ering the web graph we take δout = 0; the motivation is that vertices
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added under step (C) correspond to web pages which purely provide
content - such pages never change, are born without out-links and
remain without out-links. Vertices added under step (A) correspond
to usual pages, to which links may be later added. While mathe-
matically it seems natural to take δin = 0 in addition to δout = 0,
this gives a model in which every page not in G0 has either no in-
links or no out-links, which is rather unrealistic and uninteresting!
A non-zero value of δin corresponds to insisting that a page is not
considered part of the web until something points to it, typically one
of the big search engines. It is natural to consider these edges from
search engines separately from the rest of the graph, as they are of a
rather different nature; for the same reason it is natural not to insist
that δin be an integer. We include the parameter δout to make the
model symmetric with respect to reversing the directions of edges
(swapping α with γ and δin with δout), and because we expect the
model to be applicable in contexts other than that of the web graph.

Our model allows loops and multiple edges; there seems no reason
to exclude them. However, there will not be very many, so excluding
them would not significantly affect our conclusions.

Note also that our model includes (a precise version of) the m = 1
case of the original model of Barabási and Albert as a special case,
taking β = γ = δout = 0 and α = δin = 1. We could introduce more
parameters, adding m edges for each new vertex, or (as in [24]) a
random number with a certain distribution, but one of our aims is
to keep the model simple, and the main effect, of varying the overall
average degree, can be achieved by varying β.

As for the other models, power law degree distribution is proved, this time
for in- and out-degrees separately. Setting

c1 =
α + β

1 + δin(α + γ)
and c2 =

β + γ

1 + δout(α + γ)
,

and writing xi(t) for the number of vertices of G(t) with in-degree i, and yi(t)
for the number with out-degree i, the following result is proved in [12].

Theorem 11. Let i ≥ 0 be fixed. There are constants pi and qi such that

xi(t) = pit + o(t) and yi(t) = qit + o(t) hold with probability 1. Furthermore, if

αδin + γ > 0 and γ < 1, then as i → ∞ we have

pi ∼ CIN i−XIN ,

where XIN = 1 + 1/c1 and CIN is a positive constant. If γδout + α > 0 and

α < 1, then as i → ∞ we have

qi ∼ COUT i−XOUT ,

with XOUT = 1 + 1/c2 and COUT is a positive constant.
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In the statement above, the o(t) notation refers to t → ∞ with i fixed, while
a(i) ∼ b(i) means a(i)/b(i) → 1 as i → ∞.

In addition, the joint distribution of in- and out-degrees is studied; formulae
are given for the limiting fraction ri,j of vertices with in-degree i and out-degree
j. As these are not very simple, we shall not reproduce them here.

For the rest of the article we return to the LCD model, turning our attention
to properties other than the degree sequence.

12 Clustering coefficient and small subgraphs

Following Watts and Strogatz, one of the basic properties of the scale-free ran-
dom graphs considered in many papers is the clustering coefficient C. As we
have seen in section 4, this coefficient describes ‘what proportion of the acquain-
tances of a vertex know each other’. Formally, given a simple graph G (without
loops and multiple edges), and a vertex v (with at least two neighbours, say),
the local clustering coefficient at v is given by

Cv(G) =
number of edges between neighbours of v

(

dG(v)
2

) , (6)

where dG(v) is the degree of v in G, so the denominator is the maximum possible
number of edges between neighbours of v, and 0 ≤ Cv(G) ≤ 1. There are then
two possible definitions for the clustering coefficient C = C(G) of the whole
graph. Perhaps the most often stated, is ‘C(G) is the average of Cv(G)’, i.e.,
taking the vertex set to be [n],

C(G) = C1(G) =
n
∑

v=1

Cv(G)/n. (7)

(Again we commit a slight abuse of notation, as 1 is also a vertex of the graph.)
This kind of ‘average of an average’ is often not very informative; the more
natural alternative is to weight by the denominator of (6), giving

C(G) = C2(G) =

(

n
∑

v=1

(

dG(v)

2

)

Cv(G)

)

/

n
∑

v=1

(

dG(v)

2

)

. (8)

This second definition is easily seen to have the following natural equivalent
form:

C2(G) =
no. of pairs ab, ac of adjacent edges for which bc is an edge

no. of pairs ab, ac of adjacent edges
,

which has the advantage that it makes sense when some degrees are less than
2. In turn we can re-write the equation above as

C2(G) =
3 × number of triangles

number of pairs of adjacent edges
. (9)
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In this form there is no problem applying the definition to multigraphs.
In some papers it is not clear which of the two definitions above is intended;

when it is clear, sometimes C1 is used, and sometimes C2. It is not often pointed
out that these definitions are different: for an extreme example, take G to be
a double star, where vertices 1 and 2 are joined to each other and to all other
vertices, and there are no other edges. Then Cv(G) is 1 for v ≥ 3 and 2/(n− 1)
for v = 1, 2. It follows that C1(G) = 1 − o(1), while C2(G) ∼ 2/n. In more
balanced graphs the definitions will give more similar values, but they will still
differ by at least a constant factor much of the time.

For this section we shall use C2(G) as the definition of the clustering coeffi-
cient C(G), and we shall prove the following result.

Theorem 12. Let m ≥ 1 be fixed. The expected value of the clustering coeffi-

cient C(G
(n)
m ) = C2(G

(n)
m ) satisfies

E(C(G(n)
m )) ∼ m − 1

8

(log n)2

n

as n → ∞.

To prove Theorem 12 we will count the number of triangles in G
(n)
m . More

generally, we describe a method for counting subgraphs isomorphic to any small
fixed graph.

When m = 1, the Barabási-Albert or LCD model is very simple, giving either
a tree or a forest with loops according to the precise definition chosen. Although
this model is less interesting than the general case, it has the advantage that
its small subgraphs can be analyzed precisely (see section 15). Because of the

exact choice made in the definition of G
(n)
m , these results then carry over to this

full model.
Let S be a graph on {1, 2, . . . , n} with loops allowed. Orient each edge ij

of S with i ≤ j from j to i. Let us write V +(S) for the set of vertices of S
from which edges leave, and V −(S) for those vertices at which edges arrive.
(These sets are, of course, not in general disjoint.) For i ∈ V (S) let din

S (i) be
the in-degree of i in S and let dout

S (i) be the out-degree. (A loop at i contributes
1 to each of din

S (i) and dout
S (i).) Finally, let CS(t) be the number of edges of S

‘crossing’ t, i.e., the number of edges ij of S with i ≤ t and j ≥ t.
Note that S is a fixed graph, not an isomorphism class of graphs; there are

(

n
3

)

different graphs S which are triangles, for example. When we say S is a

subgraph of G
(n)
1 , or write S ⊂ G

(n)
1 , we shall mean that exactly the edges of

S occur in G
(n)
1 , not that G

(n)
1 has a subgraph isomorphic to S. Suppose that

dout
S (i) ≤ 1 for every i, so S is a possible subgraph of G

(n)
1 .

Theorem 13. Let S be a possible subgraph of G
(n)
1 . With the notation above,

the probability pS that S ⊂ G
(n)
1 satisfies

pS =
∏

i∈V −(S)

din
S (i)!

∏

i∈V +(S)

1

2i − 1

∏

t/∈V +(S)

(

1 +
CS(t)

2t − 1

)

. (10)
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Furthermore,

pS =
∏

i∈V −(S)

din
S (i)!

∏

ij∈E(S)

1

2
√

ij
exp



O





∑

i∈V (S)

CS(i)2/i







 . (11)

The result is simple to prove once one finds the correct quantity to calculate
inductively; the details are given for a closely related model in section 15. Note
that the second product in (11) gives essentially what one would expect if edges

were present in G
(n)
1 independently of one another. The first product (and the

final factor) show that they are not.

We now pass to G
(n)
m . Rather than writing down a cumbersome general

formula, let us consider the case of triangles.

Theorem 14. Let m ≥ 1 be fixed. The expected number of triangles in G
(n)
m is

given by

(1 + o(1))
m(m − 1)(m + 1)

48
(log n)3

as n → ∞.

Proof. Recall that that G
(n)
m is obtained from G

(mn)
1 by identifying the vertices

in groups of m. Let a, b, c with 1 ≤ a < b < c ≤ n be given. Then abc

is a triangle in G
(n)
m if and only if there are integers m(a − 1) < i, i′ ≤ ma,

m(b − 1) < j, j′ ≤ mb, m(c − 1) < k, k′ ≤ mc such that the graph S with edges

ij′, jk′ and i′k is a subgraph of G
(mn)
1 . Now for this S, provided dout

S (v) ≤ 1
for all v, we have from (11) that

pS = η1

∏

x∈V −(S)

din
S (x)!

∏

xy∈E(S)

1

2
√

xy
= η2

∏

x∈V −(S)

din
S (x)!

1

8m3abc
,

where the ‘correction factors’ η1, η2 are bounded, and tend to 1 if a → ∞.
Given 1 ≤ a < b < c ≤ n, what are the possible choices for i, i′, j, j′, k, k′?
Note first that k, k′ must be distinct, giving m(m − 1) choices, as if k = k′

then dout
S (k) = 2. There are m2 choices for j, j′. Finally we may have i = i′,

in which case din
S (i) = 2 and din

S (v) ≤ 1 for every other v, or i 6= i′ in which
case din

S (v) ≤ 1 for all v. There are m(m − 1)m2m = m4(m − 1) choices with
i = i′ and m(m − 1)m2m(m − 1) = m4(m − 1)2 choices with i 6= i′. Hence the

expected number of triangles with vertices a, b, c in G
(n)
m (recall that G

(n)
m is a

multigraph, so may contain several triangles with the same vertex set) is given
by

η3

(

m4(m − 1)2
1

8m3abc
+ m4(m − 1)21

1

8m3abc

)

= η3
m(m − 1)(m + 1)

8abc
,

where η3 is bounded and tends to 1 as a → ∞. Summing over a, b and c with
1 ≤ a < b < c ≤ n we see that the main contribution is from terms with a → ∞,
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and the expected number of triangles in G
(n)
m is given by

(1 + o(1))
∑

1≤a<b<c≤n

m(m − 1)(m + 1)

8abc
∼ m(m − 1)(m + 1)

48
(log n)3,

proving Theorem 14.

One can use the same method to prove the following more general result.

Theorem 15. Let l ≥ 3 be fixed. Then the expected number of l-cycles in G
(n)
m

is of the form

(1 + o(1))Cm,l(log n)l

as n → ∞ with m ≥ 2 fixed, where Cm,l is a positive constant. Furthermore, as

m → ∞ we have Cm,l = Θ(ml).

Finding the exact constants in the result above becomes harder as l increases;
for example, given 1 ≤ a < b < c < d < e ≤ n there are 12 ways to arrange
a 5-cycle with these vertices. In 8 of these arrangements there are two vertices
with two edges coming in from the right. In the other four there is only one

such vertex. When passing to G
(mn)
1 there may thus be 0,1 or 2 vertices with

in-degree 2.
Note that Theorems 14 and 15 contradict the heuristic value of nl/4 for the

number of l-cycles given by Farkas, Derényi, Barabási and Vicsek [31] on the
basis of eigenvalue distribution.

Let us finish this section by returning to the clustering coefficient, calculated
according to (9). Having estimated the number of triangles, we only need to

know the number of pairs of adjacent edges. Let us write P2 = P2(G
(n)
m ) for the

number of pairs of adjacent edges ab, ac in G
(n)
m .

Theorem 16. Let m ≥ 1 and ǫ > 0 be fixed. Then

(1 − ǫ)
m(m + 1)

2
n log n ≤ P2(G(n)

m ) ≤ (1 + ǫ)
m(m + 1)

2
n log n

holds whp as n → ∞.

Proof. The result is easy to prove using the methods above, so we give only a
brief sketch.

There are three types of contribution to P2: we may have b, c ≤ a, b ≤ a < c

(equivalent to c ≤ a < b) or a < b, c. Since all out-degrees in G
(n)
m are at most

m, there can only be O(n) pairs of the first two types. Hence, using the methods
above (skipping the details),

E(P2(G(n)
m )) = O(n) + (1 + o(1))

∑

1≤a<b<c

2m3 + m3(m − 1)

4m2a
√

bc

∼ m(m + 1)

2
n log n.

Standard martingale methods can be used to show that P2 is concentrated
within O(n) of its mean, completing the proof.
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Note that both the number of triangles and the number of pairs of adjacent
edges are not quite what one might expect just by looking at the individual edge
probabilities (or the degrees). One difference is an extra factor of (m + 1)/m
appearing in both, from the correlation between the presence of edges ab and ac
when a < b < c. The other is a factor (m−1)/m only in the number of triangles,
from the fixed out-degrees. These factors are often ignored, for example in [39].

Combined with Theorem 14 and the definition (9), the result above shows

that the expected clustering coefficient C of G
(n)
m is asymptotically

m − 1

8

(log n)2

n
,

proving Theorem 12. Note that the clustering coefficient is very different from
the experimental value C ∼ n−0.75 given for m = 2 by Barabási and Albert [2],
or the heuristic C ∼ n−0.25 that would follow from the claims of Farkas, Derényi,
Barabási and Vicsek [31]. Klemm and Eguiluz [39] give an ‘analytic’ value of

C1(G) ∼ m

8

(log n)2

n

for C1(G); this is off by a constant factor for two reasons. One is that the
heuristic used ignores the factor (m−1)/m mentioned above. The other is that,
while the aim is clearly to calculate C1(G), a heuristic used is to replace the top
and bottom of (6) by their expectations. This introduces an error which, for

G
(n)
m , one can check is a roughly constant factor; it turns out that this error is

roughly the ratio between C2(G) and C1(G), explaining the similarity between
the formula above and the true form of C2(G) given in Theorem 12.

13 Pairings on [0, 1] and the diameter of the LCD

model

So far the results concerning the LCD model have been obtained directly either
from (2) or from the discrete combinatorial interpretation in terms of pairings.

In [16] another way of generating G
(n)
m was introduced; this formulation, in

terms of pairings of random real numbers, is useful for proving more complicated
results, as it allows the re-introduction of independence to a significant extent.

Let N = mn. The idea is that to obtain our LCD with N chords, instead
of pairing off fixed points 1, 2, . . . 2N , we shall pair off random points in the
interval [0, 1]. In fact, taking iid uniformly random points x1, . . . , x2N , we may
as well pair x2i−1 with x2i for all i; the randomness of the order in which the
xi appear when moving from 0 to 1 guarantees that the LCD obtained is the
uniformly random LCD we require.

We now consider generating the pairing starting with the right endpoints.
As in [16], we call a random variable with density function 2x, 0 < x < 1, an
M2(0, 1) random variable. Let us write li, ri for the left and right endpoints of
the chord x2i−1x2i, so {li, ri} = {x2i−1, x2i} with li < ri. Then Pr(ri ≤ t) =
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Pr(x2i−1, x2i ≤ t) = t2, so the ri are iid M2(0, 1) random variables. Also, given
r1, . . . , rN , the random variables l1, . . . , lN are independent with li uniformly
distributed on [0, ri].

To express the LCD we have defined as a pairing on {1, 2, . . . , 2N}, we must
sort all the xi together. We do this by first sorting the ri, and then considering
between which ri each li lies.

The construction for G
(mn)
1 is as follows: we start with N = mn iid M2(0, 1)

random variables, r1, . . . , rN . Sort these into increasing order, to obtain R1, . . . , RN ,
setting R0 = 0. Let L′

1, . . . , L
′
N be independent, with L′

i uniform on [0, Ri].
Then our LCD L is given by pairing L′

i and Ri. As the right endpoints

R1, . . . , RN are already in order, if Rj−1 < L′
i < Rj then in the graph G

(mn)
1

obtained as φ(L) (see section 7), vertex i sends its out-going edge to vertex j.
(Throughout we of course ignore the probability zero event that two endpoints
are the same.)

For G
(n)
m we must merge vertices in groups of m, so what will really matter

is where the mth, 2mth etc. right endpoints lie. Simplifying very slightly, the
construction is as follows: let the Ri be defined as above. For 1 ≤ i ≤ n
set Wi = Rmi, taking W0 = 0. To obtain exactly G

(n)
m we should consider N

independent random variables which we denote Li,r, 1 ≤ i ≤ n, 1 ≤ r ≤ m, with
Li,r uniform on [0, R(m−1)i+r]. In fact it is often good enough to work only with

the Wi, taking Li,r uniform on [0, Wi] = [0, Rmi]. The graph G
(n)
m is obtained by

taking edges from i to m (not necessarily distinct) vertices ti,1, . . . , ti,m obtained
as follows: ti,r is the integer t for which Wt−1 < Li,r < Wt.

In summary, the following is an almost exact alternative description of G
(n)
m .

(The modifications to make it exact are implicit in the paragraph above.)
Let random variables Wi be defined as above, and set wi = Wi − Wi−1.

Given the Wi, define independent random variables ti,r, 1 ≤ i ≤ n, 1 ≤ r ≤ m,
with

Pr(ti,r = j) =

{

wj/Wi j ≤ i,
0 j > i.

(12)

Then the graph formed by taking edges from i to ti,r has (essentially) the same

distribution as G
(n)
m . The power of this approach is that we may condition on

the Wi, assuming they have ‘typical’ properties. Then the ti,r are conditionally
independent.

As a simple application of this approach, we observe that the maximum

degree of G
(n)
m has the following rather unpleasant description. Let X1, X2, . . .

be the points of a Poisson process on [0,∞] with rate m, so, setting X0 = 0,
the variables Xi − Xi−1 are iid exponentials with mean 1/m. Let Yi =

√
Xmi,

and let Dm = max{Yi − Yi−1, 1 ≤ i < ∞}, noting that this maximum exists
with probability one. Note that the distribution of Dm depends on m only. Let

∆(G
(n)
m ) denote the maximum degree of G

(n)
m .

Theorem 17. Let m ≥ 1 be fixed. Then ∆(G
(n)
m )/(2m

√
n) converges in distri-

bution to Dm as n → ∞.
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Proof. As before, here we can only give a sketch. Note that if U is a random
variable which is uniform on [0, 1], then

√
U has a M2(0, 1) distribution, since

Pr(
√

U ≤ t) = Pr(U ≤ t2) = t2. Loosely speaking, it follows that for large
n, the distribution of the squares of the first few Ri is given by a Poisson
process of rate mn on [0, ǫ], for ǫ sufficiently small, so we may take R2

i = Xi/n,
or Ri =

√

Xi/n. Then the Wi are given by Yi/
√

n, so max{wi} is given by

Dm/
√

n. Finally, given the Wi, the degree in G
(n)
m of a particular early vertex j

is concentrated about its expectation of (2 + o(1))mnwj .

A much more substantial result proved using this description of G
(n)
m is the

diameter formula in [16]. Before stating this result, let us pause for a moment
to consider what we might expect the diameter to be. Computer experiments
presented by Barabási, Albert and Jeong [3, 7] and heuristic arguments given by

Newman, Strogatz and Watts [48] suggest that G
(n)
m should have diameter of the

form A + B log n. At first sight, such a small diameter might seem surprising,
but it is in line with the Watts-Strogatz small-world phenomenon described in
section 4. What would we expect from the point of view of random graphs?
Certainly at most Θ(log n): as described in section 4, even a small amount of
global randomness gives logarithmic diameter. In fact one might expect the
diameter to be even smaller: the unbalanced degree distribution pushes up the
number of small paths, and thus, perhaps, pushes the diameter down. As shown
in [16], this is indeed the case, though it is not very easy to prove.

Theorem 18. Fix an integer m ≥ 2 and a positive real number ǫ. Then whp

G
(n)
m is connected and has diameter diam(G

(n)
m ) satisfying

(1 − ǫ) log n/ log log n ≤ diam(G(n)
m ) ≤ (1 + ǫ) log n/ log log n.

The lower bound is relatively straightforward, based on counting the ex-
pected number of paths between two fixed vertices using techniques similar to
those in section 12. The upper bound, proved via a neighbourhood expansion
argument, is much more complicated. Essential use is made of the indepen-
dence introduced by conditioning on the Wi, but even with this there are many
complications.

As pointed out in [16], and independently by Cohen and Havlin [23], there
is a heuristic argument giving the correct diameter of log n/ log log n. (This is
just the standard neighbourhood expansion argument without the details; it is
important to take the whole degree sequence and not apply some form of cutoff.)
However one must be careful with such heuristics. For example, they apply also
to the case m = 1, where, as shown by Pittel [49] in the context of scale-free
trees, the diameter is Θ(log n).

14 Robustness and vulnerability

Another property of scale-free graphs and the real-world networks inspiring
them which has received much attention is their ‘robustness’.
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Suppose we delete vertices independently at random from G
(n)
m , each with

probability q. What is the structure of the remaining graph? Is it connected?
Does it have a giant component? A precise form of the question is: fix 0 < q < 1.

Suppose vertices of G
(n)
m are deleted independently at random with probability

q = 1 − p. Let the graph resulting be denoted Gp. For which p is there a
constant c = c(p) > 0 independent of n such that with high probability Gp has
a component with at least cn vertices? What is the critical value of p below
which no such constant exists?

As noted in [16], it is easy to see from the neighbourhood expansion ar-
gument used there that there is no critical p. Once the neighbourhoods of a
given vertex reach a certain size (which happens with some positive probabil-
ity), they continue expanding, and the vertex is almost certainly joined to the
vertex surviving in Gp with lowest index. However, it turns out that this ‘giant’
component becomes very small as p approaches zero. To estimate its size we

can use the pairing model to relate the structure of G
(n)
m to a certain scale-free

branching process; here we shall only give an outline of the argument, referring
the reader to [18] for the rather technical details.

Theorem 19. Let m ≥ 2 and 0 < p < 1 be fixed, and let Gp be obtained from

G
(n)
m by deleting vertices independently with probability 1 − p. Then as n → ∞,

whp the largest component of Gp has order (c(p, m) + o(1))n for some constant

c(p, m) > 0. Furthermore, as p → 0 with m fixed, c(p, m) = exp(1/O(p)).

Proof. Recall from the pairing model that each vertex i sends out m edges,
to targets ti,1, . . . , ti,m, where the ti,r are independent and for j ≤ i we have,
essentially,

Pr(ti,r = j) = wj/Wi

for random quantities wj and Wi =
∑i−1

j=0 wi defined earlier. To a good approx-
imation (in a sense we shall not make precise here), as long as i → ∞ we can
replace Wi by the value

√

i/n around which it is concentrated. Also, wi is the
‘waiting time’ from Wi−1 for m samples from a distribution with density 2mnx,
0 < x < 1. So to a good approximation the wi are given by

wi =
Zi

2mnWi
=

Zi

2m
√

in
,

where the Zi are iid, each with a distribution Z the sum of m independent
exponential random variables with parameter 1, so Z has density

fZ(x) =
xm−1e−x

(m − 1)!
. (13)

To this degree of approximation we have

Pr(ti,r = j) =
wj

Wi
∼ Zj

2m
√

jn

√

n

i
=

Zj

2m
√

ij
. (14)
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Re-scaling, let us write i = αn, and consider the probability that ti,r = j for
some j with j ∈ [βn, (β + dβ)n] and Zj ∈ [y, y + dy]. Since there are ndβ
vertices j in this range, of which a fraction fZ(y)dy will have Zj in the required
interval, this probability is approximately

ndβfZ(y)dy
y

2m
√

αnβn
=

yfZ(y)

2m
√

αβ
dydβ, (15)

provided β < α. Similarly, let us fix a vertex i with i = αn and Zi = x and
consider the probability that there is a vertex j > i with j ∈ [βn, (β + dβ)n]
and Zj ∈ [y, y + dy] sending an edge to i. Again there are ndβ vertices j in the
right range, a fraction fZ(y)dy of which have Zj in the right range, so using
(14) again this probability is approximately

mndβfZ(y)dy
x

2m
√

αnβn
=

xfZ(y)

2
√

αβ
dydβ. (16)

(Here the initial factor of m comes from each vertex sending out m edges inde-
pendently).

Motivated by the above let us define a birth process as follows: in generation
t ≥ 0 there will be a finite number N(t) of ‘vertices’. Each vertex v has three
numbers associated with it: α(v) ∈ (0, 1), corresponding to the α in i = αn
above, x(v), corresponding to Zi above, and an integer l(v) which will be either
m or m−1. This tells us the number of ‘left-children’ of v: as we work outwards
from an initial vertex of G

(n)
m finding all vertices at distance 1, then distance 2,

etc., there are two ways we can reach a new vertex w from an old vertex w′;
from the right (so w < w′ and tw′,r = w for some r) or from the left. In the next
step there will be m or m − 1 new left-children of w (vertices tw,s, 1 ≤ s ≤ m)
respectively.

A vertex v in generation t with α(v) = α and x(v) = x gives rise to pro-
visional offspring in generation t + 1 as follows: v gives rise independently to
exactly l(v) provisional left-children w1, . . . , wl(v). For each i we have l(wi) = m,
and the values βi = α(wi) and yi = x(wi) are chosen according to the density
(15), with 0 < βi ≤ α. Also, v gives rise to a Poisson number of provisional
right-children w, each with l(w) = m − 1, with the chance of v giving rise to a
provisional right-child w having α(w) ∈ [β, β + dβ] and x(w) ∈ [x, x + dx] given
by (16), for α ≤ β < 1.

To obtain the next generation, we take all the provisional children of the
current generation, and keep each with probability p, independently of the oth-
ers.

Let us write N = N l,α,x
p for the process defined above, starting with a single

vertex v having l(v) = l, α(v) = α and x(v) = x. Note that the definition of N
does not involve n. Let us write c(v) for the total number of descendants of v in
all generations, which may be infinite. There is a certain ‘survival probability’
s(p, l, α, x) = Pr(c(v) = ∞). By elementary probability theory, we have

s(p, l, α, x) = lim
t→∞

Pr(c(v) ≥ t),
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and hence
s(p, l, α, x) = Pr(c(v) ≥ (log n)10) + o(1), (17)

say, as n → ∞. From the remarks of the last few paragraphs, when n is large
the process Nm,α,x

1 gives a good approximation to the initial growth (up to

(log n)10 vertices, say) of the neighbourhoods of a vertex i in G
(n)
m with i = αn

and Zi = x. Once the neighbourhoods reach size (log n)10, with high probability
i is in the giant component. Using (17), it follows that for α bounded away from
0 and 1 and for any fixed x, the probability that such a vertex lies in the giant
component of Gp is given by s(p, m, α, x) + o(1).

Fix 0 < p < 1; from now on we suppress dependence on p. Let us write L(α)
for the chance that a particular potential left-child w of a vertex v with α(v) = α
and x(v) = x itself survives, and has c(w) = ∞. Note that this probability does
not depend on x. Also, let us write r(α, x) for the chance that some potential
right-child w of v survives and has c(w) = ∞. Since c(v) is finite if and only if
c(w) is finite for all surviving children w of v, we have

s(p, l, α, x) = 1 − (1 − L(α))l(1 − r(α, x)). (18)

Since the density (16) is proportional to x, it is easy to see that r(α, x) has the
form

r(α, x) = 1 − e−xR(α)

for some function R depending on α only. (R is the negative of the log of the
chance that all right-children of v die out, if α(v) = α and x(v) = 1.) Using
again that c(v) = ∞ if and only if at least one child w of v survives and has
c(w) = ∞, it is easy to see that

L(α) = p

∫ α

β=0

∫ ∞

y=0

(

1 − (1 − L(β)m)e−yR(β)
) yfZ(y)

2m
√

αβ
dydβ.

Indeed, given v, the last factor gives (from (15)) the chance that the particular
potential left-child w of v we are considering has α(w) = β and x(w) = y. From
(18) the factor in brackets is the chance that c(w) = ∞. The first factor p is
the chance that w itself is actually born in the first place. From the form (13)
of fZ(y) it turns out that the y integral is easy to do, giving

L(α) =
p

2
√

α

∫ α

β=0

1√
β

(

1 − (1 − L(β)m)

(1 + R(β))m+1

)

dβ. (19)

Similarly, one can check that

R(α) =
p

2
√

α

∫ 1

β=α

1√
β

(

1 − (1 − L(β)m−1)

(1 + R(β))m

)

dβ. (20)

The pair of equations above may have more than one solution (in particular,
both L and R identically zero is a solution); standard probability theory tells
us that the functions L and R are the (unique) maximal solution to (19),(20).
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From the equations above it is easy to deduce Theorem 19 (as well as more
detailed results). Using monotonicity of the functionals on the right hand side
one can find upper and lower bounds on L(α) and R(α) and hence on the
expected size of the giant component of Gp. Concentration follows immediately
since the proof shows that all vertices are in very small components (order
O((log n)10), say) or the giant component, and the number of vertices in very
small components can be shown to be concentrated by standard martingale
methods.

The situation when the graph G
(n)
m is deliberately attacked is rather different.

Given the actual (random) graph, determining the ‘best’ attack is not an easy
problem, and is in any case not realistic. Here we consider the natural, simple
approach of deleting the earliest vertices, up to some cutoff cn. This time there
is a value c < 1 beyond which there is no giant component in what remains.

Theorem 20. Let Gc be obtained from G
(n)
m by deleting all vertices with index

less than cn, where 0 < c < 1 is constant, and let cm = (m − 1)/(m + 1). If

c < cm then whp Gc has a component with Θ(n) vertices. If c > cm then whp
Gc has no such component.

Proof. We just give an outline, using the methods above. Considering the quan-
tities analogous to L(α) and R(α) but defined for Gc, we obtain equations iden-
tical to (19) and (20) except that now p = 1, and the lower limit in the integral
in (19) is c rather than 0. Near the critical probability, the functions L and
R will be small, and hence close to the solution of the linearized form of the
equations. It is easy to solve these linearized equations; a non-zero solution
exists if and only if c = cm, and one can deduce the result.

15 The case m = 1: plane-oriented recursive

trees

A simple special case of the BA model that has been considered in several papers
is the m = 1 case, where each vertex sends a single edge to an earlier vertex,
giving rise to a tree. In this context the LCD model is not the most natural
interpretation of the BA description, as it gives rise to a forest with loops. It
turns out that essentially the m = 1 case of the BA model had been considered
more than a decade before [5].

For m = 1, the generally accepted interpretation of the imprecise description
in [5] is to start with one vertex, the root which has an extra ‘virtual edge’ coming
in to it from nowhere, so the degree of the root at the start counts as 1. Thus
at time t, when there are t vertices, although there are t − 1 edges in the tree,
the effective sum of the degrees is 2(t−1)+1. As has occasionally been pointed
out, this precise version of the m = 1 model is not at all new; it is exactly the
standard model for random plane-oriented recursive trees. A tree on a labelled
vertex set V = {1, 2, . . . , t} is recursive if each vertex other than 1 is joined to
exactly one earlier vertex. In other words, the tree can be grown by adding the
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vertices in numerical order, joining each new vertex to some old vertex. Uniform
random recursive trees, grown one vertex at a time by joining the new vertex
to an old vertex chosen uniformly at random, have been studied for some time;
see, for example, the survey [44].

A plane-oriented tree is one with a cyclic order at each vertex, induced, for
example, by drawing the tree in the plane. When a new vertex v is added to a
plane-oriented recursive tree T and joined to an existing vertex w, the number
of different plane-oriented recursive trees that may result is given by the degree
d of w in T , as there d different ways in which the new edge can meet the
vertex w. In fact, as in the BA model, the standard definition treats the first
vertex, the root, differently, effectively imagining an edge from the root going
off to infinity. In this way branches of plane-oriented recursive trees are again
plane-oriented recursive trees. Plane oriented recursive trees were introduced
by Szymański [54] in 1987 (although with a slightly different treatment of the
root) and have been studied since in several papers, including [8, 43, 45, 54].

For this section by Tn we shall mean the random plane-oriented recursive
tree with n vertices, with vertex set {1, 2, . . . n}, or, equivalently, the Barabási-
Albert scale-free random tree given by (a precise version of) the m = 1 case of
the model introduced in [5]. Formally, T1 consists of a single vertex 1 with no
edges. For n ≥ 2, given Tn−1, the tree Tn is constructed by adding a new vertex
n and joining it to and old vertex v, 1 ≤ v ≤ n − 1, with

Pr(v = j) =
dn−1(j)

2n − 3

for j ≥ 2 and

Pr(v = 1) =
dn−1(1) + 1

2n − 3
,

where dn−1(j) is the degree of the vertex j in the tree Tn−1. As the tree grows
out from the root we shall say that the new vertex added as above is a child of
v, and that v is its parent.

Note that definition of Tn is very similar to that of G
(n)
1 as given in section

7.
Since Tn has been around for some time, it is not surprising that various

properties are known already. For example, the ‘load scaling’ considered in [53]
and [35] was already determined in a more precise form in [45] (see also [17]).
In contrast, while [53] claims that the distribution of shortest path lengths has
also been established, this is not the case as far as we know; it is certainly not
in the references cited.

Here we shall show how to calculate exactly the probability that a certain

subgraph is present in Tn. A form of this result for G
(n)
1 was used in section 12

to study clustering and small subgraphs of G
(n)
m . From this result one can also

obtain the distribution of shortest paths.
Based on the work in [16] it is possible to write down a formula for the

probability that a particular subgraph is present in Tn. The key is to consider
a certain sequence of expectations that can be calculated inductively. As the
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formulae are a little complicated, we start with some motivation. Note that
throughout this section, as in section 12, we are asking whether a particular
subgraph S is present in Tn, not whether some subgraph isomorphic to S is
present. Thus for example S may consist of the edges {2, 3}, {3, 7} and {2, 8}.
Then Pr(S ⊂ Tn) is taken to mean the probability that in Tn we have exactly
these edges (so the parent of 3 is 2, that of 7 is 3 and that of 8 is 2), not the
probability that Tn contains a path of 3 edges.

Let us write ft for the parent of vertex t. Then, given Tt, the probability
that ft+1 is i is proportional to the degree of i in Tt; more precisely, from the

definition of Tn we have Pr(ft+1 = i | Tt) = dt(i)
2t−1 , where dt(i) is the degree of

i in Tt. Taking expectations, we see that Pr(ft+1 = i) = E(dt(i))/(2t − 1), so
we would like to know the expectations E(dt(i)). These are easy to calculate:
E(di(i)) = 1 for all i ≥ 1, and in going from Tt to Tt+1 the degree of i increases
by one if ft+1 = i, which happens with probability dt(i)/(2t − 1). Thus

E(dt+1(i)) = E(dt(i)) +
E(dt(i))

2t − 1
=

2t

2t − 1
E(dt(i)),

giving E(dt(i)) =
∏t−1

s=i
2s

2s−1 .
More generally, suppose that S is a fixed graph consisting of a set S′ of edges

with both ends numbered less than j, say, and one more edge from k to i, with
i ≤ j < k. Given that S′ ⊂ Tj we will have S ⊂ Tk if and only if fk = i, and
the probability of the latter event depends on the degree of i, as before. Thus
we would like to calculate E(dt(i) | S′ ⊂ Tt). Once we have this expectation for
t = j, its values for t = j + 1, . . . , k − 1 can be calculated inductively as before.
The problem occurs when two edges end at the same vertex: if S′ = S′′ ∪ {ij},
say, then while we have Pr(S′ ⊂ Tj) = E(dj−1(i) | S′′ ⊂ Tj−1)/(2j − 3), the
event that fj = i is more likely when dj−1(i) is large, so E(dj(i) | S′ ⊂ Tj) is
not related in a simple way to quantities we have already calculated.

The key turns out to be to consider rising factorials: [d]r = d(d + 1) · · · (d +
r). We keep track of an expectation involving [dt(i)]r for each vertex i of the
subgraph S which will have r edges coming into it in the future (times later
than t).

From now on, fix a graph S which is possible as a subgraph of Tn for large
n. (So S has no loops, and for each vertex i, there is at most one edge in S from
i to an earlier vertex.) For t ≥ i let Rt(i) be the number of j > t such that ij
is an edge of S, i.e., the number of edges in S coming in to i after time t. Let
St consist of those edges ij of S for which i, j ≤ t, let

Xt =
∏

ij∈E(St)

Iij∈E(Tt)

∏

i∈V (S),i≤t

[dt(i)]Rt(i),

and set λt = E(Xt). Here IA is the indicator function of the event A. Note that
λ0 = 1, while for t large (at least the largest vertex in S) we have Xt = IS⊂Tt

,
so λt = Pr(S ⊂ Tt), the quantity we wish to calculate.
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Lemma 21. For t ≥ 0 we have

λt+1 = Rt+1(t + 1)!
1

2t − 1
λt (21)

if there is an edge {k, t + 1} in S with k ≤ t, and

λt+1 = Rt+1(t + 1)!

(

1 +
CS(t + 1)

2t − 1

)

λt (22)

otherwise, where CS(t + 1) is the number of edges ij ∈ E(S) with i ≤ t and

j > t.

Proof. Since in Tt+1 the degree of t + 1 is always exactly 1, we can write Xt+1

as
Xt+1 = Rt+1(t + 1)!Y, (23)

where
Y =

∏

ij∈E(St+1)

Iij∈E(Tt+1)

∏

i∈V (S),i≤t

[dt+1(i)]Rt+1(i).

Suppose first that S does not contain an edge {k, t + 1} with k ≤ t. Then
St+1 = St, and for each i ≤ t we have Rt+1(i) = Rt(i). Also, as each edge ij of
St+1 = St has i, j ≤ t, for each such edge we have Iij∈E(Tt+1) = Iij∈E(Tt). Thus,
in this case,

Y =
∏

ij∈E(St)

Iij∈E(Tt)

∏

i∈V (S),i≤t

[dt+1(i)]Rt(i).

Note that this is exactly the formula for Xt except that dt(i) has been replaced
by dt+1(i). Now let us fix Tt, and hence Xt, and consider the random choice of
ft+1, the vertex that the next new vertex joins to. We will have Y = Xt unless
ft+1 is a vertex of S, as all relevant degrees will be the same in Tt+1 as in Tt.
What happens if ft+1 = j for some j ∈ V (S)? Then dt+1(j) = dt(j) + 1, so

[dt+1(j)]Rt(j) = [dt(j) + 1]Rt(j) =
dt(j) + Rt(j)

dt(j)
[dt(j)]Rt(j),

and, as all other degrees stay the same, Y −Xt = XtRt(j)/dt(j). Now for each
j ∈ V (S), j ≤ t, the probability that ft+1 = j is just dt(j)/(2t − 1). Thus the
expected difference Y − Xt is given by

E(Y − Xt) =
∑

j∈V (S),j≤t

dt(j)

2t − 1
XtRt(j)/dt(j) = Xt

CS(t + 1)

2t − 1
.

Taking expectations of both sides gives E(Y ) = (1 + CS(t + 1)/(2t− 1)) E(Xt),
which together with (23) proves (22).

We now turn to (21). Suppose that {k, t + 1} is an edge of S with k ≤ t.
Given Tt, we have Y = 0 unless ft+1 = k, which happens with probability
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dt(k)/(2t − 1). Supposing that ft+1 is equal to k, what is Y ? In this case
St+1 = St ∪ {k, t + 1}, and, since we have {k, t + 1} ∈ E(Tt+1), we have

∏

ij∈E(St+1)

Iij∈E(Tt+1) =
∏

ij∈E(St)

Iij∈E(Tt).

For i ≤ t, i 6= k we have dt+1(i) = dt(i), while dt+1(k) = dt(k) + 1. Also,
Rt+1(i) = Rt(i) for i 6= k, while Rt+1(k) = Rt(k) − 1. Thus

∏

i∈V (S),i≤t

[dt+1(i)]Rt+1(i) = [dt(k) + 1]Rt(k)−1

∏

i∈V (S),i≤t,i 6=k

[dt(i)]Rt(i)

=
1

dt(k)

∏

i∈V (S),i≤t

[dt(i)]Rt(i).

Thus, in this case, if ft+1 = k then we have Y = Xt/dt(k). Since this event
has probability dt(k)/(2t − 1), we have E(Y | Tt) = Xt/(2t − 1). Taking the
expectation of both sides gives E(Y ) = E(Xt)/(2t − 1) = λt/(2t − 1). Together
with (23) this proves (21).

Lemma 21 has the following immediate consequence. For a possible subgraph
S of Tn, orient each edge ij ∈ E(S) with i < j from j to i. As in section 12,
we write V +(S) for the set vertices of S from which edges leave, and V −(S) for
those vertices at which edges arrive. (These sets are not in general disjoint.)
For i ∈ V −(S) let din

S (i) be the in-degree of i in S (so din
S (i) = Ri(i)), let dout

S (i)
be the out-degree, and dS(i) the total degree of i in S.

Corollary 22. Let S be a possible subgraph of Tn. With the notation above,

the probability pS that S ⊂ Tn satisfies

pS =
∏

i∈V −(S)

din
S (i)!

∏

i∈V +(S)

1

2i − 3

∏

t/∈V +(S)

(

1 +
CS(t)

2t − 3

)

. (24)

Furthermore,

pS =
∏

i∈V −(S)

din
S (i)!

∏

ij∈E(S)

1

2
√

ij
exp



O





∑

i∈V (S)

CS(i)2/i







 . (25)

Proof. The first statement follows immediately from Lemma 21; replace t by
t− 1 in (21) and (22), and write pS = λn = λn/λ0 as the product of the factors
appearing in these equations.

The second statement follows by simple approximations: for all x ≥ 0 we
have log(1 + x) = x + O(x2). Thus for c ≥ 0,

log

(

j−1
∏

t=i+1

(

1 +
c

2t − 3

)

)

=

j−1
∑

t=i+1

( c

2t
+ O(c2/t2)

)

=
c

2
log

(

j

i

)

+ O(c2/i).
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Writing the vertices of S in order as v1, . . . , vl, let ck = CS(vk+1) be the number
of edges in S from {vk+1, . . . , vl} to {v1, . . . , vk}. Then for vk < t < vk+1 we
have CS(t) = ck, so

pS =
∏

i∈V −(S)

din
S (i)!

∏

i∈V +(S)

1

2i

l−1
∏

k=1

(vk+1/vk)ck/2 exp



O





∑

i∈V (S)

CS(i)2/i







 .

(One can easily check that the error from replacing 2i − 3 by 2i in the second
product is absorbed by the final error term.) Now the final exponent of vk is
just

−dout
S (vk) + ck−1/2 − ck/2.

Since ck = ck−1 − dout
S (vk) + din

S (vk), this is just −dS(vk)/2. Finally, there is
one factor of two in the denominator for each edge, so (25) follows.

Essentially this result, but stated for the related model G
(n)
1 , was used in

section 12 to find the clustering coefficient of G
(n)
m . We finish this section with a

direct application of Corollary 22 to Tn from [17]. We write Ek = Ek(n) for the
expected number of (shortest) paths in Tn of length k, so

∑∞
k=1 Ek(n) =

(

n
2

)

.

Theorem 23. Suppose that k = k(n) satisfies k/ log n → α, where 0 < α < e.
Then

Ek = Θ(n1+α log(e/α)/
√

log n), (26)

as n → ∞. Furthermore, if k = log n + x
√

log n where x = x(n) = o(log n),
then

Ek ∼ n2

2

1√
2π log n

e−x2/2 (27)

as n → ∞.

Note that the second statement says that the distribution of path lengths is
asymptotically normal with mean and variance log n.

16 Conclusion

Most but not all of the rigorous results concerning models of large-scale real-
world networks we have reviewed confirm the computer experiments and heuris-
tic calculations performed on these models. In many cases, the results are
surprisingly difficult to prove, and need techniques not used in the theory of
classical random graphs. However, much remains to be done.

There is a great need for models of real-life networks that incorporate many
of the important features of these systems, but can still be analyzed rigorously.
The models defined and analyzed in this article are too simple for many ap-
plications, but there is also a danger in constructing models which take into
account too many features of the real-life networks. Beyond a certain point, a
complicated model hardly does more than describe the particular network that
inspired it.

34



If the right balance can be struck, well constructed models and their careful
analysis should give a sound understanding of growing networks that can be used
to answer practical questions about their current state, as well as to predict their
future development.
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