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A b s t r a c t  

We analyze the contact process on random graphs gen- 
erated according to the preferential a t tachment  scheme 
as a model for the spread of viruses in the Internet.  We 
show tha t  any virus with a positive rate of spread from a 
node to its neighbors has a non-vanishing chance of be- 
coming epidemic. Quantitatively, we discover an inter- 
esting dichotomy: for a virus with effective spread rate 
)~, if the infection starts at a typical vertex, then it de- 

O/ I,,a(1/~) ,~ 
velops into an epidemic with probabili ty A t ~ J, 
but on average the epidemic probabili ty is A cO). 

1 I n t r o d u c t i o n  

There is compelling evidence that  many self-engineered 
networks, notably the Interne{, have scale-free struc- 
tures in the sense that  the degree distributions of these 
networks have power-law tails [11]. Motivated by these 
observations, there has been a great deal of study, both 
non-rigorous and rigorous, of the detailed structural 
properties of so-called preferential a t tachment  models 
and other models with power-law degree distributions; 
see [1], [4] and references therein for some of the non- 
rigorous and rigorous work, respectively. However, thus 
far, there has been much less work on the impact  of these 
structures on processes occurring on these networks. 

hi this paper, we give a rigorous analysis of pro- 
cesses which model the spread of viral infections on 
scale-fl'ee structures, and show how these processes 
differ markedly from epidemics on more conventional 
structures. Since there are also observations which indi- 
cate that  the network of human sexual contacts follows a 
power-law degree distribution [14], this work is relevant 
both in the context of the spread of computer  viruses 
on the Internet,  and the spread of sexually t ransmit ted 
diseases (STD). 

The standard model used in the study of viral in- 
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fections is called the contact process or the susceptible- 
infected-susceptible (SIS) model. In this model, every 
vertex is either infected or healthy (but susceptible). 
An infected vertex becomes healthy with rate 1 inde- 
pendently of the status of its neighbors. A healthy ver- 
tex becomes infected at a rate equal to the propagation 
ratio of the disease, .X, times the number of its infected 
neighbors. 

In our context, this model is describing the spread 
of viruses in a network in the presence of a particular 
class of antivirus software. Computers  with the software 
installed are not permanently immune from the virus, 
but  they are regularly scanned for the presence of 
the virus, and the software removes the virus if the 
computer  is found to be infected. A computer  can be 
infected by the same virus more than once, and each 
t ime it remains infected until the next scan by the 
antivirus software. Alternatively, the contact process 
also approximately describes the spread of epidemics 
in the presence of regularly updated antivirus software 
which confers permanent  immunity, but where viruses 
mutate.  In this case, the antivirus software prevents 
any given computer  fi'om being reinfected with the same 
virus, but does not prevent it from being reinfected with 
all muta ted  variants. 

The contact process has been studied extensively 
in the probabili ty community [13], but it is usually 
studied on bounded-degree or homogenous graphs. The 
most important  general result in that  context is the 
existence of epidemic thresholds. For infinite graphs it 
has been shown that  there exist two epidemic thresholds 
A1 _< A2. If A > A2, then with positive probabili ty 
the can spread and survive at any point of the graph. 
If ~1 < X < A2, the infection survives with positive 
probability, but  every vertex heals eventually almost 
surely. If A < A1, the infection dies out almost surely. 
As it turns out, A1 = .X2 for Z d, whereas A1 < A2 for 
regular trees (see [13] and [2(I, 19]). 

I t  is easy to see that ,  in a finite graph, the infection 
will eventually die out with probabili ty 1. However, 
there is still a natural  definition of epidemics in the 
finite case, as can be seen by considering finite subsets 
of well-studied infinite graphs, such as Z d. It  turns out 
that ,  for the cube [ -n ,  re] d, there is a Ac such that  if 
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h > Ac then with probability bounded away fi'om zero 
the infection survival time is exponential in n d, while if 
h < hc the infection dies out before time log(n) with 
probability 1 - o(n). Moreover, this hc is equal to the 
epidemic threshold for Z d. (See [13] for proofs of these 
statements.) Therefore, it is natural to say that  the 
infection becomes an epidemic if the time that  it takes 
for the infection to die out is super-polynomial in the 
number of vertices of the graph. 

Using the el)idemiologic models such as the SIS 
model for analyzing the spread of viruses has been sug- 
gested more than a decade ago by Kephart  and White 
[12]. Pastor-Satorras and Vespignani [17, 16] were the 
first group to study the contact process on scale-free 
graphs in the Barabgtsi-Albert model [2]. Using sim- 
ulation and (non-rigorous) mean-field equations, they 
argued that  the epidemic threshold h~ in scale-free net- 
works is 0. They also studied the actual data  and found 
supporting evidences for their observation. Other recent 
work on the spread of computer viruses on the Internet 
includes [15, 21, 8]. 

In this paper, we present what is, to the best of 
our knowledge, the first rigorous analysis of the contact 
process on scale-free graphs in preferential at tachment 
models. 

The contribution of this paper is two-fold. First, 
we introduce a new representation of the preferential 
at tachment model which we call the P61ya urn repre- 
sentation. Our representation, which we believe to be of 
independent interest, is a generalization of Bollob£s and 
Riordan's random pairing representation [3]. It gives 
a new proof of the main result of [3] and enables us 
to analyze a natural generalization of their representa- 
tion in which the vertices can also choose their neigh- 
bors uniformly at random with some probability; see 
also [18, 10, 6, 7] for other models with combinations 
of uniform and preferential attachment.  We believe this 
representation will also be useful in rigorous analysis 
of many other structural and dynamical properties of 
preferential at tachment graphs. 

Second, we use our new representation to ana- 
lyze the contact process on the preferential at tachment 
model. We show that,  as predicted by Pastor-Satorras 
and Vespignani [17, 16], the epidemic threshold is zero. 
The importance of this observation is that  it shows that  
even viruses with very small propagation rate have a 
positive chance of becoming epidemic. We also provide 
nmch more detailed estimates yielding matching upper 
and lower bounds, as functions of h, on the probability 
for an epidemic to occur - both for an epidemic begin- 
ning at a typical starting vertex and on average. In- 
terestingly, it turns out that  these two probabilities are 

quite ditibxent. In particular, the epidemic probability 
for an infection beginning at a typical vertex is a rather 
complicated function of h, which would therefore have 
been quite diifficult to ascertain by empirical means: 

(I.I) he(h'g(A--l) ~ 

whereas the average epidemic probability is simply 
boO). 

1.1 S t r a t e g y  o f  t h e  p r o o f  We end the introduction 
by giving an intuitive description of the proof of (1.1), 
without delving into the rather tortuous technical de- 
tails. The  proof breaks into two relatively independent 
parts, the first dealing with the contact process and the 
second dealing with the structure of the graph. 

The behavior of the contact process depends 
strongly on the degrees in the graph. In particular, 
we show that  if all degrees in a graph G are signifi- 
cantly smaller than A - l ,  then the disease wilt die out 
very quickly. If, on the other hand, the virus has reached 
a vertex of degree significantly larger than A -2, then the 
disease is very likely to survive for very long time in the 
neighborhood of this vertex. 

Therefore, we want to get an understanding of the 
degrees in a neighborhood of a vertex. We show, using 
our Pdlya urn representation of the scale-free graph and 
Bollobgs-Riordan's expanding environment method [3] 
that  for a typical vertex v, the largest degree of a vertex 
in a ball of radius k around v is, with high probability, (k!)e(1). 

In view of this, the closest vertex of degree ~-e(1) 
is at distance O(log(A-1)/ log log(A-i)),  and the ques- 
tion of survival of the disease boils down to whether 
the infection manages to arrive at a vertex of degree 
A - ° 0 ) .  Therefore the survival probability is the prob- 
ability that  the infection manages to arrive at distance 
O ( log(h-:  ) / log log(.k- 1 ) ), and this probability is given 
in equation (1.1). 

The analysis above is useful in understanding the 
behavior if we start  at a typical starting point. However, 
if we start  at a point of degree higher than h -2, then 
the process has a very good chance of surviving for a 
long time. The power-law degree distribution of the 
Barab~i-Alber t  graphs tells us that  h °(1) of the vertices 
have this degree, and therefore the average survival 
probability is h e(i) . 

1.2 S t r u c t u r e  o f  t h e  p a p e r  In Section 2, we pre- 
cisely define the model and state our results. In Section 
3, we present our P61ya urn representation of the scale- 
fl'ee graph, and give a number of technical lemmas that  
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enable easy analysis of the model. In Section 4, we 
use the construction of Section 3 to give estimates on 
the maximum degree in a neighborhood of a randomly 
chosen vertex. The main tool we use is the method 
of rapidly expanding neighborhoods, first introduced in 
[3]. In Section 5 we prove a few simple facts on the con- 
tact  process, and in the last section we give some details 
the proof of Theorem 2.1. Most of the more technical 
estimates are relegated to Sections 7, 8, and 9. 

2 D e f i n i t i o n  o f  t h e  M o d e l  a n d  S t a t e m e n t s  o f  
Resul t s  

The scale-free graph we define generalizes the model 
suggested by BarabAsi and Albert [2] and made rigorous 
in [3].  Fix an integer m > 2 and a real number 
0 < a < 1. Let {vi} be a sequence of vertices, and 
let Gi be the graph at t ime i. Then, G1 contains the 
vertex vl and no edges, and G 2  contains Vl and v2 and 
m edges connecting them. Given G ~ - i ,  we create Gn 
the following way: 

We add the vertex vn to the graph, and choose 
m vertices wl, . . . ,Wm,  possibly with repetitions, from 
Gn-1. Then we draw edges between vn and each of 
Wl .... , win. Repetitions in the sequence wl, ..., wm result 
in multiple edges in the graph Gn. 

The vertices Wl, ..., w ~  are chosen inductively as follows: 
With probability c~, Wl is chosen uniformly, and with 
probability 1 - c~, Wl is chosen according to the prefer- 
ential a t tachment  rule, i.e., for every i = 1 , . . . ,  n - 1, 
we take wl = vi with probability (deg~_ l(v~))/Z where 
Z is the nornmlizing constant 

n--1 

Z = E ( d e g n _ l ( V i ) )  = 2 m ( ' n  - 2 ) .  

i=1  

Then we proceed inductively, applying the same rule, 
but when determining wk, instead of the degree 
deg~_l (vi), we use 

# 
degn_l(vi ) = deg~_l(v~ ) + #{1 < j < k -  liw j = vi}. 

I t  should be noted that  the a = 0 case of our 
model differs slightly from the model of and Bollob£s 
and Riordan [3] in that  they allow (seff-)loops, while 
we do not. Both [3] and the model defined above 
allow multiple edges. One might argue tha t  the most 
natural  - -  though mathematical ly  harder - -  case is 
that  without multiple edges, i.e., when the wi are all 
conditioned to be different (for n > m) and are all 
determined according to the rule described for wl. I t  
turns out that  we can provide P61ya urn representations 
of any of these three variants for general a .  Here we 
will consider only the variant defined above, without 

loops but with multiple edges. In the fllll version of this 
paper, we will also give the more natural  variant without 
nmltiple edges, and show that  it does not change the 
final results. 

Our main results are the following: 

THEOREM 2.1. For every A > O, there exists N such 
that for a typical sample of the scale-free graph of size 
n > N ,  i f  we choose a uniform vertex v, then with 
probability 1-O(A2) ,  v is such that an infection starting 
at v will survive with probability bounded from below by 

(2.2) 

and from above by 

(2.3) 

C h,g ( l / .x )  
/~ 1 h ' g l ' i g ( l / A  ) 

C log(l/A) 
.~ 2 i,,g l,,g ( i /~) 

where Ci and C2 are constants not depending on A or 
n. 

The O(A2n) vertices left out in Theorem 2.1 turn 
out to have a dramatic  effect on the average survival 
probability, as demonstrated in the next theorem: 

T H E O R E M  2 . 2 .  For event A > O, there exists N such 
that for a typical sample of the scale-free graph of size 
n > N ,  i f  we choose a uniform vertex v and start 
the infection at v, then the infection will survive with 
probability bounded from below by 

(2.4) 

and from above by 

(2.5) 

where C3 and C4 are constants not depending on A or 
n. 

It  is interesting to mention tha t  the survival prob- 
ability of the contact process is much higher than the 
density of the percolation cluster which was proved in 
[5] to be between exp ( -O(A-2 ) )  and exp ( -O(A-1 ) ) .  

Another interesting comparison is with recent non- 
rigorous results of Pastor-Satorras and Vespignani [17] 
who calculate the percentage of infected nodes in the 
metastable  state, where they implicitly condition on the 
event of survival. Their calculation yields that  the den- 
sity of infected nodes is of the order of exp ( - ( 'mA ) - l ) .  
The comparison reveals another aspect of the inhomo- 
geneity of the scale-free network: In more homoge- 
neous graphs we expect these two quantities (the sur- 
vival probability and the density of infected nodes in 
the metastable  state) to be similar to each other. 
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3 P d l y a  U r n  R e p r e s e n t a t i o n  o f  the  
Barabfis i -Albert  Graph 

In early twentieth century, Pdlya proposed and analyzed 
the following model known as the Pdlya urn model [9]. 
We have a nmnber of urns, each holding a number of 
balls, and at each step, a new ball is added to one of the 
urns. The probabili ty that  the ball is added to urn i is 
proportional to IVi + u where Ni is the number of balls 
in the i-th urn and u is a predetermined parameter  of 
the model. 

Pdlya showed that  this model is equivalent to an- 
other process as follows. For every i, choose a param- 
eter (which we call "strength" or "at tract iveness")  Pi, 
and at each step, independently of our decision in pre- 
vious steps, put the new ball in urn i with probabili ty 
Pi. Pdlya specified the distribution (as a function of u 
and the initial number of balls in each urn) for which 
this mimics the urn model. A particularly nice exam- 
ple is the case of two urns, each start ing with one ball 
and u = 0. Then Pl is a uniform [0,1] variable, and 
P2 = 1 - Pl. He showed tha t  for general values of u 
and {Ni(0)}, the values of {Pi} are determined by the 
fl-distribution with appropriate  parameters.  

I t  is not hard to see tha t  there is a close connection 
between the preferential a t tachment  model of Barab~isi 
and Albert and the Pdlya urn model in the following 
sense: every new connection tha t  a vertex gains can be 
represented by a new ball added in the urn correspond- 
ing to tha t  vertex. We use this idea to give an equivalent 
description of the scale-flee graph which is easy to an- 
alyze. We will see throughout  the paper  the properties 
of this description tha t  make it useful for understanding 
the graph. 

3.1 F o r m a l  d e s c r i p t i o n  We describe an equivalent 
representation of the n-vertex Barabgtsi-Albert graph 
with m connections and probabili ty a of uniform con- 
nection. Let u be s.t. a = u/(1 + u). We take 
gh = 1, and for every 2 < k _< n, we take '~k to be 
distributed according to f l (m + mu,  2krn + kmu)  (Xhre 

say tha t  X ,-~ fl(a, b) if the density of X is x .... 0 -x )  '-1 Z 
with Z being the appropriate  normalization. See [22] 
for the properties of the fl distribution). For 1 < k < n, 
we take 

~k = 'g'k ~ I  (1 -- '¢j). 
j = k + l  

It  is easy to see that  ~k=ln cpk = 1. Let 

k 

lk = ~ ~k. 

For every a c [0,1], we define ~(a) = min{k : lk > 
a}. Let {Ui,k}l<i_<,,,l<k<,,, be independent random 
variables, uniform on [0, 1]. For k > j ,  we draw an 
edge between k and j if for some 1 < i < nz we have 

(3.6) j = g(Ui,klk-1). 

We allow multiple edges - -  the nmnber  of edges con- 
necting k to j is the nmnber  of values of i such that  
(3.6) is satisfied. The next l emma follows immediately 
fl'om the theory of Pdlya urns. 

LEMMA 3.1. The random graph described above has 
the same distribution as the n-vertex Bambdsi-Albert 
graph with m connections and probability ct of uniform 
connection. 

Lemma 3.1 gives us a representation of the 
Barabfisi-Albert graph with much more independence 
tha t  the original description, thus enabling us to do rig- 
orous calculations. 

In order to use Lemma 3.1 effectively, we need to 
have a few estimates on the values of lk, ~k and ~(a). 
These est imates are deferred to Section 7. 

4 M a x i m u m  D e g r e e  in a N e i g h b o r h o o d  o f  a 
Vertex  

In this section we state the main two propositions con- 
trolling the structure of the graph. These propositions 
say that ,  with high probability, all of the vertices in the 
ball Ht of radius t around a uniform vertex have degree 
smaller than (t!) 1°°, but there exists some vertex in Ht 
of degree (t!) O(1). 

The proofs of these propositions use the Pdlya urn 
representation and the methods of expanding neighbor- 
hoods. The details are presented in Sections 8 and 8.2. 

PROPOSITION 4.1. Let a be chosen uniformly in [0, 1], 
and let k = n(a). For eve7 T ~ there exists T such that 
with probability larger than 1 - e, for  every t > T,  every 
vertex in Ht has degree smaller than (t!) 1°°. 

PROPOSITION 4.2. Let a be chosen uniformly in [0, 1], 
and let k = g(a). There exists C > O, depending only 
on X, such that for every ~ there exists T such that with 
probability larger than 1 - e, for  every t > T,  there exist 
a vertex in Ht with degree larger than (t!) C. 

5 The  Contac t  Process  

The contact process is often studied as a model for the 
spread of infections. I t  has been the subject of intensive 
research, both rigorous work within the mathemat ics  
communi ty  [13, 20, 19], and numerical and simulation 
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analysis in the networking, social sciences and physics 
literature. An excellent reference for the mathematical  
background is Liggett [13]. 

In this model, every computer  or individual is 
represented by a vertex in a graph. A vertex is either 
healthy or infected. An infected vertex becomes healthy 
after an exponential t ime with mean 1, independently 
of the status of its neighbors. A healthy vertex becomes 
infected at a rate that  is proportional to the number of 
its infected neighbors. More formally: 

DEFINITION 5.1. The contact process with infection pa- 
rameter A on a graph G ( ~  E) is a continuous time 
Markov process 7It which can be identified at any time t 
by a subset A = {v • V : ~t(v) = 1} of vertices. The 
vertices in A are regarded as infected and the rest of the 
vertices are thought of as being healthy. The transition 
rates for" 'lit are given by 

A --~ A \ {v}, for v • A at rate 1 and 

A --~ A U {v}, for  v ¢ A at rate )~l{u • A : 
{u,v} • E}I. 

We assume that  at t = 0 one of the vertices of 
the graph is infected. This vertex is usually called the 
wot  or origin. In an iufinite graph, the disease might 
survive in the graph for an infinite time. However, it 
is easy to see that  in a finite graph the disease will 
eventually die out, i.e., A becomes empty  and remains 
empty  afterwards. 

In finite graphs, we s tudy the t ime that  it takes 
for the graph to become healthy. In particular, we say 
a disease becomes an epidemic if and only if the t ime 
that  it takes to die out is exponential in the number of 
vertices. 

We will show that  in a scale-free graph of size n, 
there is a/kn such tha t  with high probability, any disease 
with infection rate/k > ~n has a constant probahility of 
becoming epidemic, and An ~ 0 as n tends to infinity. 
This is in contrast to bounded-degree graphs in which 
with high probabili ty the disease dies out exponentially 
fast if A < 1/(2d); see [i3]. 

LEMMA 5.1. Let G be a graph with maximum degree d. 
Let S be the set of vertices ever to be i~fected in G, then 
P(ISI > k) < (4d~) k for every k. 

PTvof. We may assume without loss of generality that  
Ad _< 1/4. Define X to be the random variable 
indicating IAI at any time. The probabili ty tha t  two 
events (either a healthy node becoming infected or vice 
versa) happen at the same t ime is zero. Therefore, the 
transition rates for X are given by 

X ~ X - l ,  a t r a t e X a n d  

X --~ X + 1, at rate AIc(A , A)], 

where c (A , A )  = {{u,v} • E : u • A , v  • A}.  

Clearly, [c(A,A)I <- Xd .  Therefore, at any time, 
the next event increments X with probabili ty at most 

AX d )~d 
< Ad 

X + A X d  - l + A d  

and decrements X with probabili ty at least 

1 
- -  > 1 - A d .  
l + A d  

In order to infect more than k vertices , we will need 
at least k increments among the first 2k events, the 
probability of which is bounded above by 22k(Ad) k = 
(4dA) k, as desired. 

As a corollary of the proof, we get the following 
result: 

COROLLARY 5.1. Let G be a graph. Let v E G and let 
l be a positive integer. Assume that in the ball of radius 
l around v, all of the degrees are bounded by d. Start a 
contact process with parameter )~ < d -1 /2  at {v}. For 
T > O, let S (T)  be the event that AT ~ O, and let B(1) 
be the event that the infection never" leaves the ball of 
radius 1 around v. Then, for every T, 

P (S (T) IB( I ) )  < (2Ad) T. 

In the next lemma, we will s tudy the survival t ime 
of the contact process in a star. This lemma is crucial 
for the proof of our main theorem. We will show tha t  
with high probability, the disease survives in a star  for 
an exponential t ime in the number of vertices. 

The idea of the proof is as follows: When the center 
of the star becomes infected, it starts infecting the leaves 
at a very high rate. The number of leaves infected 
before the center becomes healthy again is high enough 
to ensure tha t  the disease will survive in the graph until 
the center becomes infected again. The proof of this 
lemma is in Section 9. 

LEMMA 5.2. Let G be a star graph, with center x and 
leaves y ~ , . . . ,  Yk. Let At  be the set of vertices infected 
at time t. There exists C such that 'if Ao = {x} then 
P(Aexp(Ck~2) ~ O) = 1 - o(k). 

6 P r o o f  o f  T h e o r e m  2 .1  

In this section we prove Theorem 2.1. The theorem 
breaks into two propositions, each of which is a simple 
corollary of the results of previous sections. Let Gn be 
the (random) Barab~ i -Albe r t  graph, and let vn be a 
uniformly chosen vertex in Gn. 
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The proof of Theorem 2.2 is very similar to that  of 
Proposition 6.1 below. 

PROPOSITION 6.1. For every n there exists An, with 
An ~ 0 as n tends to 0% such that for  every AG,,,v. > 
A > An, i f  we start an injection with parameter  A at Vn, 
it will survive with p~vbability bounded f rom below by 

AC 1 log(l/A) log h~g(1/A) , 

where C1 is a universal constant, and 

(6.7) P(Ac,,.,v, < x ) l / l O l o g ( 1 / x )  

i.e., Ac  ....... stochasticaUy dominates  a variable that does 
not depend on n. 

Conversely, we have: 

PROPOSITION 6.2. For every n there exists An, with 
An ~ 0 as n tends to co, such that for  every AG ...... > 
A > An, i f  we start an injection with parameter  A at vn, 
it will survive with pwbabil i ty  bounded f w m  above by 

C log(l/A) 
A ,2 h,g l,,g(a/x) 

where C~ is a universal constant and Ac . ,~ ,  is as in 
(6.~). 

Note that  the difference between the two proposi- 
tions is that  Proposition 6.1 bounds the survival prob- 
ability fi'om below, whereas Proposition 6.2 bounds the 
survival probability from above. 

Proof. [Proof of Proposition 6.1] Fix A. Let 

k0 = 10C -1 log(l/A) 
log log(l/A) 

where C is as in Proposition 4.2. By Lemma 8.2 and 
Proposition 4.2, with probability as in (6.7), Gn and Vn 
are so that  the k-neighborhood of Vn contains a vertex 
u (1) of degree larger than 

such that  
l,u(l) < 2-0"51°g(ko!) < A D 

for some D = D(m, u) > 0. Now, let u (2) be a parent 
of u 0), let u (3) be a parent of u (2), and continue up 
to u 0°g(n)/l°°). Then, lu(j) = Ujl~(~-~) where {Uj} 
are i.i.d, variables, uniform on [0, 1]. With probability 
larger than 1/2, 

lu(~) < lu(~) 

for all j = 2 , . . . ,  log(n)/100. Therefore, using Lemmas 
7.2 and 7.3, with probability larger than 1/4, for every 
j = 2 , . . . ,  log(n)/100, the degree of u 0) is larger than 

1.05 j (x- l -1)  

Thus far, we have the following: There exists a 
vertex u 0) of distance k0 from v n, and a sequence of 
vertices u (j), j = 2 , . . .  log(n)/100 such that: 

1. For every j ,  the degree of u (j) is bounded fi'om 
1 5 below by 1.05 j(x-~-l)  (-X) , i.e., the degrees of u (j) 

grow exponentially with j .  

2. The vertex u (j) is a neighbor of U ( j - l ) .  

Let v (1) = Vn ,V(2 ) , v (a ) , . . . , v  (k°) z u (1) be a path 
starting at v~ and reaching u 0). With probability 

__~__~) k° C ,,,gO/x) 

the infection reaches u (1). By iterative applications of 
Lemma 5.2, conditioned on the event that  the infection 
reaches u0),  with probability bounded away fi'om zero, 
the infection will reach u0Og(n)/100) and by another 
application of Lemma 5.2, the infection will survive up 
to time at least 

exp (CA 2. 1.05 l°g(n)/100) = exp(n ~) 

for s o m e .  = . (m ,  a,  A). 

Proof. [Proof of Proposition 6.2] Proposition 6.2 follows 
immediately from Lemrna 8.1 and Proposition 4.1, and 
Lemma 5.1 and Corollary 5.1. 

7 E s t i m a t e s  for  t h e  P61ya  U r n  R e p r e s e n t a t i o n  

In this section we complete the work started in Section 
3 by providing estimates for the quantities defined in 
that  section. Let 

m -Jr m u  

X - 2rn + m u  

Then the following hold: 

LEMMA 7.1. lk converges uni formly in p~vbability to 
( ~ ) x ,  i.e., for  every e there exist N such that i f n  > N ,  
then with probability lawer  titan 1 - e, for  every 1 < k < 
n ,  w e  h a v e  Ilk - -  (k/n) l < e. 

From Lemma 7.1 we get that: 
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LEMMA 7.2. For every e there exist N such that i f  
n > N then with probability larger titan 1 - e, for  every 
a c [0, 1], we have In(a) - aUXnl < en. 

For ~k, which is the (random) strength of the k-th 
vertex, the est imate is as follows: 

LEMMA 7.3. Let {~k}k=l be i.i.d, variables distributed 
F(m + mu) .  and let ~ = ~ " / ( 2 m  + mu) .  For every e 
there exist N and K such that for  every n > N there 
exists a coupling between 

k x _  )n 

and {~k}~-=K So that with probability larger than 1 - e, 

kX-1  
(1 - @#k 5_ q¢~. < (1 + e)(pk 

nx  

for  every K < k < n. 

Recall that  the F-distribution with paranmter  a is the 

distribution with density x"-l~xp(-x) with Z being Z 
the proper normalization. In particular, if a is an 
integer, then the F-distribution with parameter  a is the 
distribution of the sum of a independent exponentials 
with parmneter  1. 

8 E x p a n d i n g  N e i g h b o r h o o d  C a l c u l a t i o n  

We want to est imate the maximum degree of a vertex 
in a neighborhood of radius k around a random vertex 
v. This has already been done by Bollobgs and Riordan and 
[3] for the (looped) version of model without uniform (8.11) 
connections. In this section we show that  the ideas of 
Bollob~s and Riordan, when applied to the Pdlya urn 
description of the graph instead of the random pairing 
description, give good estimates for the maximum de- 
gree of a vertex in a neighborhood of radius k around 
a random vertex v in the more general setting (i.e., 
a > 0 ) .  

We star t  from a uniformly chosen vertex v. Let Oj 
be the set of vertices at distance exactly j from v. We 
take 

(8.12) 
Hj = U~=le~. 

Assume 

(8.8) n > e t2. 

Let 

a t ( i )  = # { k  e o t  : 2 - i  < lk ~ 2-i+1}.  

8.1 E v o l u t i o n  o f  Gt(.)  Fix n large, let a C [0, 1] and 
let k = n(a).  Let i be so tha t  a E [2 - i ,2 - i+1] .  We 
want to understand the distribution of the neighbors of 
k. k has two types of neighbors: the rn connections tha t  
k made when it joined the graph, and the connections 
tha t  newer vertices made to k when they arrived. 

For the first type,  let {Ui}~l  be m independent 
U([0,1])-s. The m connections are {n(a'Ui)  : i = 
1 , . . .  ,m} where a '  = l~(a) = a + O ( n - X ) .  Therefore, for 
each j > i, the nmnber  of neighbors of k in [2-J, 2 - j+ l ]  
is bounded from below and from above by constants 
times Bin(m, 2 i - j -1 ) .  

For the second type, fix j < i. The nmnber of 
connections from [2-J, 2 - j+ l ]  is 

E X h  
hlb,. C [2-J ,2- i+1] 

where Xh  "~ Bin(m, wk/lh). Therefore, the nmnber of 
neighbors of k in [2-J, 2 - j+ l ]  is bounded from below 
and fi'om above by constants times 

Wk ~ • 
(8.9) Poi (2  - j  S(w-~(2-j)) / 

From (8.9) and Lemmas 7.1, 7.2, and 7.3, we get that  
there exist constants 0 < C1,C2 < oc such that  for 
every t and j ,  
(8.1o) 

a t + l ( j )  ~ Poi [E2,-J<(i) 
where -4 and F_ denote stochastic domination and fl = 

X -1 - 1 satisfies 0 < 3 _< 1. From (8.10) and (8.11) we 
get (8.12) and (8.13) below, which are slightly weaker 
but are much more convenient to use: 

and 

(8.13) ,]) Gt+l ( j )  ~_ Poi Ct 23(i-J)Gt( i  

with 0 < Cu, Cl < oc. 
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8.2 P r o o f s  o f  t h e  U p p e r  a n d  L o w e r  B o u n d s  In 
this subsection we will show that  with high probability, 
all of the vertices in Ht have degree smaller than (t!) m°, 
but there exists a vertex of degree higher than (t!) m°. 
First we show the upper bound. This will be done using 
induction. For every t > 1, let Bt = [20 log(tI)l < 20t 2. 
The induction step is the following lemma: 

LEMMA 8.1. Let E} e) be ttte event that Ge+t(j) < 10. 
2-J(t!)  4 for every j.  Then 
(8.14) 

(e) (e) 1 o~ 
P(E~+l lE  ~ ) _ > 1 -  t-- ~ -  E 2 - d ( t ! ) 4 = l - ° ( t - 2 ) '  

j=B,, 

Proof. Since Ge+t(j) is integer, if we condition on 

E~ O, then Gt(j) = 0 for every j > Bt. Therefore, 
using (8.12), Gg+t+l(j) is stochastically dominated by 
a Poisson variable with parameter 

2_JBt(t!)4 < 2_ j ((t + 1)!) 4 
t 2 

for every j .  Therefore, by Markov's inequality, the prob- 
ability that  there exists j _< Bt such that  Ge+t+l(j) > 
1 0 . 2 - J ( ( t  + 1)!) 4 is bounded by 

Bt 1 
(8.15) t-- ~ < t-- ~. 

For j > Bt, the probability that  Gg+t+l(j) > 10.  
2-J ( ( t  + 1)!) 4 is the probability that  Ge+t+l(j) _> 1, 
and by Markov's inequality this is bounded by 

(8.16) 2-J(t!) 4. 

Equation(8.14) follows from (8.15) and (8.16). 

We can now prove the upper bound: 

PROPOSITION 8.1. Let a be chosen uniformly in [0, 1], 
and let k = n(a). For every e there exists T such that 
with probability lawer than 1 - e, for every t > T, every 
vertex in Ht has degree smaller than (t!) l°°. 

Proof. Let 1 be such that  a > 2 -I with probability 
1 - e/4, and let ~ < - l .  Also, let g be so large in 
absolute value that  

(8.17) ) 
t=--£ j=Bt  

Notice that  in (8.17) we are summing on the expression 
from (8.14). Let T > 1 - g ,  such that  (t!) m > ((t+g)!) 4 
for all t > T. By the choice of g, the probability of E ~  e 

is larger than 1 - e/4. Therefore, by Lemina 8.1, with 
probability larger than 1 - e/2, for every t > T, the 

event E~ e) occurs. 

Now, condition on the occurrence of n°°  E (e) I I t = T  t " 

Then for every t > T, the number of elements in Ht 
is no more than (t!) m, and 

min{lk : k C Ht} > 2 -B' > (t!l)2-----g. 

Therefore, using Lemmas 7.2 and 7.3, 

( t2"(t!)2°(x-1)) 1 
P 3 k E Ht such that  wk > < t~" 

n 

The degree of k is dominated by m plus a Poisson 
process with rate nwk/lk. Since lk > (t!) -2°, we get 
that  the probability that  there exists a vertex of degree 
larger than (t!) 1°° is bounded by (t!) -5°. This gives the 
required result. 

Now, we show that  with high probability, there 
exists a vertex v in Ht of degree (tT)" where # = #(X) > 
0. The proof is not much different from that  of the 
upper bound. Let C1 be so that  

(8.18) 2-Zc1 log(t!) > (t!)-0.25 

for every t. Let F t = C1 log(t!). Tile induction step 
follows from the following lemma: 

LEMlVIA 8.2. Let D~ e) be the event th, at Gg+t(j) > 10. 
2-~J(t!) 1/2 for every j < F,. Then 

(8.19) otto(e) r)(e)~_ e -t.  ~ . ~ t + l  ~ t  / > 1 -- 

Pro@ Condition on the event D} e). Ge+t+l(j) domi- 
nates a Poisson variable with parameter 

2 -z j  ~ 2 zi 
i=1 

_> 2-ZJl0( t  + 1)(t!) 1/2 

_> 2-ZJ = lOFt(t!) i/2 

_> 2-¢~J1000 = ((t + 1)!) 1/2 

> 1000((t + 1)!) 1/4 

for j < Ft+l. Therefore, for j < Ft+l, 

P (Ge+t+l(j) < lO" 2-l~J(t!) U2) < e x p (  

and summing up we get the desired result. 

((t--l-l~)!) 1/4 ) , 

The following proposition is the main result in the 
subsection: 
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PROPOSITION 8.2. Let a be chosen uniformly in [0, 1], 
and let k = n(a). There exists C > O, depending only 
on X, s'ttch that for every e there exists T such that with 
probability lawyer than 1 - e, for evew t > T,  there exist 
a vertex in Ht with degree larger than (t!) C. 

Pro@ First we need to choose £. Let k~ be a sequence 
of ancestors of k. Then, lk~ has the distribution of 
the product of i + 1 independent variables distributed 
U([0, 1]). In particular, with probability exponentially 
close to 1, lk, < 2 - i  (this is because of the inequality of 

O O  the means). Let T be such that  ~t=T < e/4, and let g 
be such that  with probability larger than 1 - e/4, lk~ is 
so small that  with probability larger than 1 - e/4, for 
every j < FT, the set U = {k' : k' connects to ki} is of 
size larger than 10 .2-SJ(T! )  1/2. 

Then, by Lemnm 8.2 we get that  with probability 
larger than 1 - 3 e / 4 ,  for every t > T, there exists 
v c Ht+e with l,, < 2 -0'51°g(t!). By Lemmas 7.2 and 
7.a, with probability larger than 1 - ee - t ,  the degree of 
this vertex is larger than 

(t!)0.5 log 2"(X-1-1) 

and the proof of the proposition is complete. 

9 P r o o f  o f  t h e  S tar  L e m m a  

Pwof. [Proof of Lemma 5.2] First, we will show that  the 
decrease in the nmnber of infected leaves during a period 
in which the central vertex is healthy can be bounded 
by a Gamma variable with parameter -iTX' Then, we 
will show that  the number of infected vertices when the 
center is infected can be simulated by a simple biased 
random walk on a line. For the first part, suppose we 
are at the state in which the vertex in the center of 
the star is healthy. Define I to be the random variable 
of the number of infected leaves. I is decreasing by 1 
at rate I. The center is becoming infected at rate/~I.  
Therefore, at any moment, the probability that  in the 

and the next event the center becomes infected is -i-TX 

probability that  I decreases by one is i-h-X" Clearly, 
this shows that  the number of infected vertices cured 
in a period in which the center is healthy is a random 
variable with the distribution G e o m ( ~ ) .  Now, in the 
period in which the center is infected, the number of 
infected leaves X has the fbllowing transition rates: 

X - + X - l ,  a t r a t e X a n d  

X ~ X + 1, at rate ~ [ k -  X I. 

One can easily verify that  X dominates the follow- 
ing process 

Y + Y - 1 ,  at rate ~Ak 

Y + Y + I ,  at rate ~Ak 
Y - ~ Y - 1 ,  at rate a = A k  

if Y = ¼kk 

if Y < ¼Ak 

where the initial value of Y is the number of in- 
fected leaves in the beginning of each period. Merging 
this with the number of leaves that  become healthy 
during the time in which the center is healthy, the 
following process will give a simple lower bound on the 
number of leaves infected in the contact process: 

If Y = ¼Ak 

Y -+ Y -  1 at rate ¼k~k 
Y + Y - Geom(l@~ ) at rate 1 

If Y < ~Ak 

Y + Y + i  at rate ~Ak 
Y --~ Y - 1 at rate ~Ak 
Y + Y - Geom(l@~ ) at rate 1 

Therefore, tile problem reduces to calculating the 
survival t ime of the system described above. This 
system is a factor .Xk + 1 speedup of the following 
discrete time system: 

If Y = }.~k 

Y - - ~ Y - 1  
Y ~ Y - Geom(l@X ) 

If Y < ~Ak 

Y - ~ Y + i  
Y + Y - 1  
y -+ Y - Oeom(l+~ ) 

with prob. ¼(1 - (Ak) -1) 
with prob. (Ak) -a 

with prob. ~(1 - (.Xk) -1) 
with prob. ~(1 (Ak) -1) 
with prob. (.Xk) -1 

and therefore it is enough to show that  the survival 
t ime of the above system is, with high probability, 
exponential. To do that,  it is sufficient to show that  
starting at Y = ~Ak the probability of hitting 0 before 
returning to ~Ak decays exponentially with .k2k. Let 
E be the event that  Y changes by more than 1 at least 
A2k/100 times before hitting 0 or returning to ¼Ak. The 
probability of this event is at most: 

P ( E ) + P  ( h i t t i n g 0  before returning to ¼Ak E C ) .  

First we want to bound P(E) :  For every value 0 < x < 
~Ak the probability of reaching -~Ak before the next 
occurrence of a change larger than 1 is at least 1/4 and 
therefore 

P ( E )  < 4 -~2k/1°°. 
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Now we want  to es t imate  

P ( h i t t i n g 0 b e f o r e r e t u r n i n g t o  ~)~k E c ) .  

Let t l  be the change in Y tha t  is larger than  1, let t2 
be the second and so on. Let Sl be the first change in 
Y of size 1, let s2 be the second and so on. Notice tha t  
the s-s and the t-s are independent  of each other,  sj is a 
Bernoulli  variable with P(s j  = 1) = 1 - P(s j  = - 1 )  = 
3 /4  and ti is the negative of a geometric variable with 
parameter  A/(1 + A) The  process hits 0 before re turning 
to ¼Ak only if there exist i < A2k/100 and j so tha t  
tl + t2 + . . . t ~  + st + s2 + . . . s j  < -¼Ak. {sj} is biased 
r andom walk, and therefore 

P ~ l : E s i < -  M~ < e  -ak/2° 
i = 1  

and 

P 
( ' / < A 2 k / 1 0 0 : E t i < -  Ak < e  - cx%.  

i = 1  

The  lemma now follows from the  above equations. 
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