
Preface

If you place a large number of points randomly in the unit square, what
is the distribution of the radius of the largest circle containing no points?
Of the smallest circle containing 4 points? Why do Brownian sample paths
have local maxima but not points of increase, and how nearly do they have
points of increase? Given two long strings of letters drawn i.i.d. from a
finite alphabet, how long is the longest consecutive (resp. non-consecutive)
substring appearing in both strings? If an imaginary particle performs a
simple random walk on the vertices of a high-dimensional cube, how long
does it take to visit every vertex? If a particle moves under the influence
of a potential field and random perturbations of velocity, how long does it
take to escape from a deep potential well? If cars on a freeway move with
constant speed (random from car to car), what is the longest stretch of
empty road you will see during a long journey? If you take a large i.i.d.
sample from a 2-dimensional rotationally-invariant distribution, what is the
maximum over all half-spaces of the deviation between the empirical and
true distributions?

These questions cover a wide cross-section of theoretical and applied
probability. The common theme is that they all deal with maxima or min-
ima, in some sense. The purpose of this book is to explain a simple idea
which enables one to write down, with little effort, approximate solutions
to such questions. Let us try to say this idea in one paragraph.

(a) Problems about random extrema can often be translated into prob-
lems about sparse random sets in d ≥ 1 dimensions.

(b) Sparse random sets often resemble i.i.d. random clumps thrown down
randomly (i.e., centered at points of a Poisson process).

(c) The problem of interest reduces to estimating mean clump size.

(d) This mean clump size can be estimated by approximating the under-
lying random process locally by a simpler, known process for which
explicit calculations are possible.

(Part (b) explains the name Poisson clumping heuristic).
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This idea is known, though rarely explicitly stated, in several specific
settings, but its power and range seems not to be appreciated. I assert that
this idea provides the correct way to look at extrema and rare events in
a wide range of probabilistic settings: to demonstrate this assertion, this
book treats over 100 examples. Our arguments are informal, and we are not
going to prove anything. This is a rather eccentric format for a mathematics
book — some reasons for this format are indicated later.

The opening list of problems was intended to persuade every probabilist
to read the book! I hope it will appeal to graduate students as well as
experts, to the applied workers as well as theoreticians. Much of it should
be comprehensible to the reader with a knowledge of stochastic processes at
the non-measure-theoretic level (Markov chains, Poisson process, renewal
theory, introduction to Brownian motion), as provided by the books of
Karlin and Taylor (1975; 1982) and Ross (1983). Different chapters are
somewhat independent, and the level of sophistication varies.

Although the book ranges over many fields of probability theory, in each
field we focus narrowly on examples where the heuristic is applicable, so
this work does not constitute a complete account of any field. I have tried
to maintain an honest “lecture notes” style through the main part of each
chapter. At the end of each chapter is a “Commentary” giving references
to background material and rigorous results. In giving references I try to
give a book or survey article on the field in question, supplemented by
recent research papers where appropriate: I do not attempt to attribute
results to their discoverers. Almost all the examples are natural (rather
than invented to show off the technique), though I haven’t always given a
thorough explanation of how they arise.

The arguments in examples are sometimes deliberately concise. Most
results depend on one key calculation, and it is easier to see this in a
half-page argument than in a three-page argument. In rigorous treatments
it is often necessary to spend much effort in showing that certain effects
are ultimately negligible; we simply omit this effort, relying on intuition
to see what the dominant effect is. No doubt one or two of our heuristic
conclusions are wrong: if heuristic arguments always gave the right answer,
then there wouldn’t be any point in ever doing rigorous arguments, would
there? Various problems which seem interesting and unsolved are noted as
“thesis projects”, though actually some are too easy, and others too hard,
for an average Ph.D. thesis.

The most-studied field of application of the heuristic is to extremes of 1-
parameter stationary processes. The standard reference work on this field,
Leadbetter et al. (1983), gives theoretical results covering perhaps 10 of our
examples. One could write ten similar books, each covering 10 examples
from another field. But I don’t have the energy or inclination to do so,
which is one reason why this book gives only heuristics. Another reason is
that connections between examples in different fields are much clearer in
the heuristic treatment than in a complete technical treatment, and I hope
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this book will make these connections more visible.
At the risk of boring some readers and annoying others, here is a para-

graph on the philosophy of approximations, heuristic and limit theorems.
The proper business of probabilists is calculating probabilities. Often exact
calculations are tedious or impossible, so we resort to approximations. A
limit theorem is an assertion of the form: “the error in a certain approxi-
mation tends to 0 as (say) N → ∞”. Call such limit theorem naive if there
is no explicit error bound in terms of N and the parameters of the under-
lying process. Such theorems are so prevalent in theoretical and applied
probability that people seldom stop to ask their purpose. Given a serious
applied problem involving specific parameters, the natural first steps are
to seek rough analytic approximations and to run computer simulations;
the next step is to do careful numerical analysis. It is hard to give any
argument for the relevance of a proof of a naive limit theorem, except as a
vague reassurance that your approximation is sensible, and a good heuris-
tic argument seems equally reassuring. For the theoretician, the defense of
naive limit theorems is “I want to prove something, and that’s all I can
prove”. There are fields which are sufficiently hard that this is a reasonable
attitude (some of the areas in Chapters G, I, J for example), but in most
of the fields in this book the theoretical tools for proving naive limit the-
orems have been sufficiently developed that such theorems are no longer
of serious theoretical research interest (although a few books consolidating
the techniques would be useful).

Most of our approximations in particular examples correspond to known
naive limit theorems, mentioned in the Commentaries. I deliberately de-
emphasize this aspect, since as argued above I regard the naive limit theory
as irrelevant for applications and mostly trite as theory. On the other hand,
explicit error bounds are plainly relevant for applications and interesting
as theory (because they are difficult, for a start!). In most of our examples,
explicit error bounds are not know: I regard this as an important area
for future research. Stein’s method is a powerful modern tool for getting
explicit bounds in “combinatorial” type examples, whose potential is not
widely realized. Hopefully other tools will become available in the future.
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A The Heuristic

This chapter amplifies the one paragraph description of the heuristic given
in the introduction. We develop a language, slightly abstract and more than
slightly vague, in which the examples in subsequent chapters are discussed.
The “Commentary” at the end of the chapter gives some perspective, re-
lating the heuristic to more standard topics and techniques in probability
theory. We illustrate the heuristic method with one simple example, the
M/M/1 queue. To avoid interrupting the flow later, let us first develop
notation for this process.

A1 The M/M/1 queue. This is the continuous-time Markov chain Xt

on states {0, 1, 2, . . . } with transition rates

i→ i+ 1 (arrivals) rate α
i→ i− 1, (i ≥ 1) (departures) rate β > α.

The stationary distribution π has

π(i) =

(
1 − α

β

)(
α

β

)i

π[i,∞) =

(
α

β

)i

.

For b large (relative to the stationary distribution — that is, for π[b,∞)
small) consider the first hitting time

Tb ≡ min{ t : Xt = b }

(assume X0 < b). Let

λb = β−1 (β − α)
2

(
α

β

)b

.

There is a rigorous limit theorem for Tb as b→ ∞:

sup
t

|P (Tb > t | X0 = i) − exp(−λbt)| → 0 as b→ ∞, i fixed.

(A1a)
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The event {Tb > t} is the event {sup0<s≤tXs < b}, and so we can re-write
(A1a), after exploiting some monotonicity, as

sup
b

∣∣∣∣P
(

max
0≤s≤t

Xs < b | X0 = i
)
− exp(−tλb)

∣∣∣∣→ 0 as t→ ∞; i fixed.

(A1b)
We express conclusions of heuristic analyses in a form like

Tb
D≈ exponential(λb). (A1c)

We use ≈ to mean “is approximately equal to” in a vague sense; to any
heuristic conclusion like (A1c) there corresponds a formal limit assertion
like (A1a,A1b).

One component of the heuristic is the local approximation of a process.
Let Zt be a continuous-time simple random walk on {. . . ,−1, 0, 1, . . . } with
transition rates α upwards and β downwards. Obviously, for b large we have:

given X0 ≈ b, the process Xt − b evolves locally like Zt.

Here “locally” means “for a short time”, and “short” is relative to the
hitting time of Tb we are studying. In most examples the approximating
process Z will depend on the level b about which we are approximating: in
this special example, it doesn’t.

A2 Mosaic processes on R2. A mosaic process or Boolean model for-
malizes the idea of “throwing sets down at random”. The recent book of
Hall (1988) studies mosaic processes in their own right: we use them as
approximations.

Let C be a random subset of R2. The simplest random subset is that
obtained by picking from a list B1, . . . , Bk of subsets with probabilities
p1, . . . , pk. The reader should have no difficulty in imagining random sets
with continuous distribution. Think of the possible values B of C as small-
ish sets located near the origin 0. The values B need not be connected,
or geometrically nice, sets. We ignore the measure-theoretic proprieties in-
volved in a rigorous definition of “random set”, except to comment that
requiring the B’s to be closed sets is more than enough to make rigorous
definitions possible. Write C = area(C). So C is a random variable; C(ω)
is the area of the set C(ω). Assume

P (C > 0) = 1; EC <∞.

Given a set B and x ∈ R2, write x+B for the translated set {x+y : y ∈ B }.
Now let λ > 0 be constant. Define the mosaic process S as follows.

1. Set down points y according to a Poisson point process of rate λ per
unit area.
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2. for each y pick a random set Cy distributed as C, independent for
different y.

3. Set S =
⋃

(y + Cy)

Call the y’s centers and the y+Cy clumps. In words, S is the union of i.i.d.-
shaped random clumps with Poisson random centers. Call λ the clump rate.

FIGURE A2a.
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We need a few simple properties of mosaics.

Lemma A2.1 For x ∈ R2 let Nx be the number of clumps of S which
contain x. Then Nx has Poisson distribution with mean λEC.

Indeed, conditioning on possible centers y gives

ENx =

∫
P (x ∈ y + Cy)λ dy = λ

∫
P (x− y ∈ C) dy

= λ

∫
P (z ∈ C) dz = λEC,

and the Poisson distribution is a standard consequence of the Poisson struc-
ture of centers.

We are interested in mosaics which are sparse, in the sense of covering
only a small proportion of R2; equivalently, that

p ≡ P (x ∈ S), x fixed

is small. In this case, (A2.1) implies p = P (Nx ≥ 1) = 1− exp(−λEC) and
so

p ≈ λEC, with error O(p2). (A2a)

Although the clumps in a mosaic may overlap, in a sparse mosaic the
proportion of overlap is P (Nx ≥ 2 | Nx ≥ 1) = O(p). So for a sparse
mosaic we may ignore overlap, to first order approximation.

For our purpose only two properties of sparse mosaics are important.
One is the approximation (A2a) above; the other is as follows. Let A be a
large square or disc in R2, or more generally a fixed set with the property
that most of the interior of A is not near its boundary. Let S be a sparse
mosaic. Consider S ∩ A. We can approximate S ∩ A as the union of those
clumps of S whose centers lie in A, and this approximation gives

P (S ∩A empty) ≈ exp (−λ area(A)) (A2b)

area(S ∩A)
D≈

M∑

i=1

Ci; (A2c)

where Ci are i.i.d. copies of C, and M has Poisson distribution with mean
λ area(A). The error in these approximations arises from boundary effects
— clumps which are partly inside and partly outside A — and, in the case
of (A2c), from ignoring overlap.

The approximation in (A2c) involves a compound Poisson distribution;
see Section A19 for sophisticated notation for such distributions.

So far we have discussed stationary mosaics. Everything extends to the
non-stationary setting, where we have a rate function λ(x) controlling the
Poisson distribution of centers, and a random set distribution Cy with area
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Cy from which clumps with centers y are picked. In this setting, (A2a) and
(A2b) become

p(x) ≡ P (x ∈ S) ≈ λ(x)ECx (A2d)

P (S ∩A empty) ≈ exp(−
∫

A

λ(x) dx). (A2e)

There is an implicit smoothness condition required for these approxima-
tions: λ(x) and Cx should not vary much as x varies over a typical clump
B.

A3 Mosaic processes on other spaces. We discussed mosaics on R2

for definiteness, and to draw pictures. The concepts extend to Rd, d ≥ 1,
without essential change: just replace “area” by “length”, “volume”, etc.
We can also define mosaics on the integer lattices Zd. Here the Poisson
process of centers y becomes a Bernoulli process — each y is chosen with
chance λ — and “area” becomes “cardinality”.

Abstractly, to define a stationary mosaic on a space I all we need is a
group of transformations acting transitively on I; to define a non-stationary
mosaic requires no structure at all.

Many of our examples involve the simplest settings of R1 or Z1. But the
d-dimensional examples tend to be more interesting, in that exact calcula-
tions are harder so that heuristic approximations are more worthwhile.

A4 The heuristic. Distributional questions concerning extrema or rare
events associated with random processes may be reformulated as questions
about sparse random sets; the heuristic consists of approximating these
random sets by mosaics.

As a concrete class of examples, let (Xt : t ∈ R2) be stationary real-
valued, and suppose that we are interested in the distribution of MT =
supt∈[0,T ]2 Xt for large T . Then we can define the random set Sb = { t :
Xt ≥ b }, and we have

P (MT < b) = P (Sb ∩ [0, T ]2 empty). (A4a)

For b large, Sb is a sparse stationary random set. Suppose Sb can be ap-
proximated by a sparse mosaic with some clump rate λb and some clump
distribution Cb. Then by (A2b)

P (Sb ∩ [0, T ]
2

empty) ≈ exp(−λbT
2). (A4b)

Assume we know the marginal distribution of Xt, and hence know

pb ≡ P (Xt ≥ b) ≡ P (x ∈ Sb).

Then the approximation (A2a)

pb ≈ λbECb
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combines with (A4a) and (A4b) to give

P (MT < b) ≈ exp

(−pbT
2

ECb

)
. (A4c)

This approximation involves one “unknown”, ECb, which is the mean
clump area for Sb considered as a mosaic process. Techniques for estimat-
ing ECb are discussed later — these ultimately must involve the particular
structure of (Xt).

There is a lot going on here! A theoretician would like a definition of
what it means to say that a sequence Sb of random sets is asymptotically
like a sequence Ŝb of mosaics (such a definition is given at Section A11, but
not used otherwise). Second, one would like general theorems to say that
the random sets occurring in our examples do indeed have this asymptotic
behavior. This is analogous to wanting general central limit theorems for
dependent processes: the best one can expect is a variety of theorems for
different contexts (the analogy is explored further in Section A12). It turns
out that our “sparse mosaic limit” behavior for rare events is as ubiquitous
as the Normal limit for sums; essentially, it requires only some condition of
“no long-range dependence”.

To use the heuristic to obtain an approximation (and not worry about
trying to justify it as a limit theorem), the only issue, as (A4c) indicates,
is to estimate the mean clump size. Techniques for doing so are discussed
below. Understanding that we are deriving approximations, it does no harm
to treat (A2a) as an identity

p ≡ P (x ∈ S) = λEC (A4d)

which we call the fundamental identity. To reiterate the heuristic: approx-
imating a given S as a sparse mosaic gives, by (A2b),

P (S ∩A empty) ≈ exp(−λ area(A)) (A4e)

where λ is calculated from p and EC using (A4d). In practice, it is help-
ful that we need only the mean of C and not its entire distribution. If
we can estimate the entire distribution of C, then (A2c) gives the extra
approximation

area(S ∩A)
D≈

M∑

i=1

Ci;
(Ci) i.i.d. copies of C

M
D
= Poisson(λ area(A))

. (A4f)

In the non-stationary case, we use (A2d, A2e) instead:

P (S ∩A empty) ≈ exp

(
−
∫

A

λx dx

)
; λx =

p(x)

ECx
. (A4g)
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A5 Estimating clump sizes. The next four sections give four gen-
eral methods of estimating mean clump size. To qualify as a ”general”
method, there must be three completely different examples for which the
given method is the best (other methods failing this test are mentioned at
Section A20). Of course, any methods of calculating the same thing must
be “equivalent” in some abstract sense, but the reader should be convinced
that the methods are conceptually different. The first two methods apply in
the general d-dimensional setting, whereas the last two are only applicable
in 1 dimension (and are usually preferable there).

FIGURE A5a.

We illustrate with the M/M/1 queue described at Section A1. There are
two random sets we can consider:

Sb = { t : Xt ≥ b }
S0

b = { t : Xt = b }.

For b large, we can approximate each of these as a sparse mosaic process
on R1. We shall argue that the clump sizes are

EC0 ≈ 1

β − α
(A5a)

C ≈ β(β − α)−2. (A5b)

Then in each case we can use the fundamental identity

λbEC
0 = π(b) =

(
1 − α

β

)(
α

β

)b

λbEC = π[b,∞) =

(
α

β

)b
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to calculate the clump rate

λb = β−1(β − α)2
(
α

β

)b

.

The heuristic (A4e) says

P (S0 ∩ [0, t] empty) ≈ P (S ∩ [0, t] empty) ≈ exp(−λbt).

In terms of first hitting times Tb or maxima, this is

P (Tb > t) ≈ exp(−λbt).

P ( max
0≤s≤t

Xs < b) ≈ exp(−λbt).

As mentioned in Section A1, these heuristic approximations correspond to
rigorous limit theorems. Deriving these approximations from the heuristic
involves only knowledge of the stationary distribution and one of the esti-
mates (A5a),(A5b) of mean clump size. In some of the implementations of
the heuristic the estimation of clump size is explicit, while in others it is
implicit.

A6 The harmonic mean formula. Let S be a sparse mosaic process
on R2. Let S̃ denote S conditioned on 0 ∈ S. S̃ is still a union of clumps,
and by definition 0 ∈ S̃, so let C̃ be the clump containing 0. It is important
to understand that C̃ is different from C, in two ways. First, suppose C
is a non-random set, say the unit disc centered at 0. Then S consists of
randomly-positioned unit discs, one of which may cover 0, and so C̃ will be
a unit disc covering 0 but randomly-centered. More importantly, consider
the case where C takes two values, a large or a small disc centered at 0, with
equal probability. Then S consists of randomly-positioned large and small
discs; there are equal numbers of discs, so the large discs cover more area,
so 0 is more likely to be covered by a large disc, so C̃ will be a randomly-
centered large or small disc, but more likely large than small.

As an aside, the definition of C̃ above is imprecise because 0 may be
covered by more than one clump. A slick trick yields a precise definition.
Imagine the clumps of a mosaic process labeled by i.i.d. variables Ly. Con-

dition on 0 ∈ S and 0 being in a clump of label l; define C̃ to be the clump
labeled l. With this definition, results (A6a,A6b) below are precise.

Let C̃ = area(C̃). Write f , f̃ for the densities of C, C̃. Then

f̃(a) =
af(a)

EC
, a > 0. (A6a)

To see why, note that the proportion of the plane covered by clumps of
area ∈ (a, a+ da) is λaf(a) da, while the proportion of the plane covered
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by S is λEC. The ratio of these proportions is the probability that a covered
point is covered by a clump of area ∈ (a, a+da), this probability is f(a) da.

Two important observations.

1. The relationship (A6a) is precisely the renewal theory relationship
between “lifetime of a component” and “lifetime of the component
in use at time t”, in the stationary regime (and holds for the same
reason).

2. The result (A6a) does not depend on the dimensionality ; we have
been using R2 in our exposition but (A6a) does not change for Rn

or Zn.

Using (A6a), ∫ ∞

0

a−1f̃(a) da =

∫ ∞

0

f(a)

EC
da =

1

EC
.

This gives the harmonic mean formula

EC =
1

E(1/C̃)
= harmonic mean(C̃), (A6b)

which is the main point of this discussion.
To see the heuristic use of this formula, consider S0

b = { t : Xt = b }
for the stationary M/M/1 queue. For large b, approximate S0

b as a mosaic
process on R1. Approximating Xt − b by the random walk Zt gives

C̃ = { t : Zt = 0,−∞ < t <∞}

where (Zt, t ≥ 0) and (Z−t, t ≥ 0) are independent random walks with
Z0 = 0. In such a random walk the sojourn time of Z at 0 has exponential
(rate β − α) distribution. So

C̃ = Γ1 + Γ2; Γi independent exponential(β − α)

and we can compute

harmonic mean(C̃) =
1

(β − α)
.

Thus the harmonic mean formula gives the mean clump size (EC) estimate
(A5a). There is a similar argument for (A5b): with S = { t : Xt ≥ b } we

get C̃ = { t : Zt ≥ 0 } where

P (Z0 = i) =
π(b+ i)

π[b,∞)
=

(
1 − α

β

)(
α

β

)i

, i ≥ 0; (A6c)

given Z0 = i, the processes (Zt; t ≥ 0 ) and (Z−t; t ≥ 0 )
are independent random walks

(A6d)
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We omit the messy calculation of harmonic mean (C̃), but it does work out
as (A5b).

Some examples where we use this technique are “partitioning random
graphs” (Example G14), “holes in random scatter” (Example H1), “isotropic
Gaussian fields” (Section J18), “integral test for small increments of Brow-
nian motion” (Example K6). It is most useful in hard examples, since it
is always applicable; its disadvantage is that exact calculation of the har-
monic mean requires knowledge of the whole distribution of C, which is
often hard to find explicitly. But we can get bounds: “harmonic mean ≤
arithmetic mean” implies

EC ≤ EC̃ (A6e)

and EC̃ is often easy to calculate. This gives heuristic one-sided bounds
which in some settings can be made rigorous — see Section A15.

In the discrete setting we have C ≥ 1, and so

if EC̃ ≈ 1 then EC ≈ 1. (A6f)

This is the case where the mosaic process looks like the Bernoulli pro-
cess, and the compound Poisson approximation becomes a simple Poisson
approximation. This setting is rather uninteresting from our viewpoint,
though it is quite prevalent in discrete extremal asymptotics.

A7 Conditioning on semi-local maxima. This second technique is
easiest to describe concretely for the M/M/1 queue Xt. Fix b0 large, and
then consider b much larger than b0. Given Xt0 ≥ b, there is a last time
V1 < t0 and a first time V2 > t0 such that XVi

≤ b0; let x∗ = supV1<t<V2
Xt

and pick t∗ from { t ∈ (V1, V2) : Xt = x∗ } according to some rule. Call
(t∗, x∗) a semi-local maximum of X. This construction yields a process of
semi-local maxima (t∗, x∗): their precise definition depends of b0 but the
asymptotic (x∗ → ∞) behavior is the same for any b0 → ∞ sufficiently
slowly. The same idea works for d-parameter processes.

Let L(x) be the rate at which semi-local maxima of height x occur (here
and below x, y, u, b are integers since X is integer-valued). Then the clump
rate λb for { t : Xt ≥ b } satisfies

λb =
∑

x≥b

L(x) (A7a)

since each clump contains a semi-local maximum with some height x ≥ b.
Now define a conditioned process Y x

t ,−∞ < t <∞, such that for |t| small

Y x
t ≈ Xt − x conditional on (0, x) being a semi-local maximum,

(A7b)
and such that Y x

t → −∞ as |t| → ∞. In the particular case of the M/M/1
queue, Y x will be the random walk conditioned not to go above height 0,
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and in particular Y x will not depend on x, but in more general examples
Y x will depend on x. Define

m(x, u) = E(sojourn time of Y x at −u); u ≥ 0. (A7c)

Then
π(y) =

∑

u≥0

L(y + u)m(y + u, u) (A7d)

by an ergodic argument. Indeed, L(y+u)m(y+u, u) is the sojourn rate at
y arising from clumps with semi-local maximum at height y + u, so both
sides represent the total sojourn rate at y.

Assuming that the marginal distribution π is known, if we can estimate
m(x, u) then we can “solve” (A7d) to estimate L(x) and thence to estimate
λb via (A7a): this is our “conditioning on semi-local maxima” technique.

The actual calculation of m(x, u) in the case of the M/M/l queue, and
indeed the exact conditioning in the definition of Y as a conditioned random
walk, is slightly intricate; let us just record the answer

m(x, y) = (β − α)−1

(
2 −

(
α

β

)u

−
(
α

β

)u+1
)

; u ≥ 0. (A7e)

Since π(y) = (1 − α/β) (α/β)y, we can solve (A7d) to get

L(x) = β−2(β − α)3
(
α

β

)x

and then (A7a) gives λb = β−1(β − α)2(α/β)b.
Despite its awkwardness in this setting, the technique does have a va-

riety of uses: see smooth Gaussian fields (Example J7), longest common
subsequences (Example G11), a storage/queuing model (Example D23). A
closely related technique of marked clumps is mentioned at Section A20
and used in Chapter K.

A8 The renewal-sojourn method. Let S be a sparse mosaic process
on R1. The clumps C consist of nearby intervals; the length C of a clump
C is the sum of the lengths of the component intervals. The important
difference between 1 and many dimensions is that in R1 each clump has a
starting point (left endpoint) and an ending point (right endpoint); write
span(C) for the distance between them.

If S is exactly a sparse mosaic, then trivially EC is the mean length
of S from the start of a clump to the end of the clump. How do we say
this idea for a random set S which is approximately a mosaic? Take τ large
compared to the typical span of a clump, but small compared to the typical
inter-clump distance 1/λ;

E span(C) � τ � 1

λ
. (A8a)
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Then for stationary S,

C ≈ (length(S ∩ [0, τ ] | 0 ∈ S,S ∩ (−τ, 0) empty). (A8b)

In other words, we take the starting points of clumps to be the points x
in S such that (x − τ, x) is not touched by S, and take the clump to be
S∩[x, x+τ). This is our renewal-sojourn estimate (roughly, we are thinking
of clump starts as points of a renewal process).

In the M/M/1 queue example, consider S0 = { t : Xt = b }. Then

EC0 ≈ E(sojourn time of Xt, 0 ≤ t ≤ τ at b

| X0 = b,Xs 6= b for all − τ ≤ s < 0)

≈ E(sojourn time of Xt, 0 ≤ t ≤ τ at b | X0 = b)

by Markov property

≈ E(sojourn time of Zt, 0 ≤ t <∞ at 0 | Z0 = 0)

=
1

β − α.

If instead we considered S = { t : Xt ≥ b } then we would get

EC ≈ E(sojourn time of Zt, 0 ≤ t <∞ in [0,∞) | Z0 = 0)

= β(β − α)2.

This is the most natural technique for handling hitting times for Markov
processes, and is used extensively in the examples in Chapters B,D,I.

In the discrete case, mosaics on Z1, (A8b) works with “length” becoming
“cardinality”. Note in this case we have C ≥ 1, since we condition to have
0 ∈ S.

A9 The ergodic-exit method. Again consider a sparse mosaic S on
R1. Since each clump has one start-point and one end-point, we can identify
the clump-rate λ with the rate of start-points or the rate of end-points. Thus

λ = lim
δ↓0

δ−1P (some clump end-point lies in (0, δ)).

For a stationary sparse random set which we are approximating as a mosaic
process, we can write

λ = lim
δ↓0

δ−1P (the clump containing 0 ends in (0, δ), 0 ∈ S)(A9a)

= p lim
δ↓0

δ−1P (clump containing 0 ends in (0, δ) | 0 ∈ S). (A9b)

This is the ergodic-exit method. There are equivalent formulations. Let C+

be the future length of a clump containing 0, given 0 is in S;

C+ = (length(S ∩ [0, τ ] | 0 ∈ S)
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for τ as in Section A8. Note the conditioning is different from in Section A8;
0 is not the start of the clump. Note also the difference from the harmonic
mean formula (Section A6), where we used the two-sided clump length.
Writing f+ for the density of C+, (A9b) becomes

λ = pf+(0). (A9c)

In the sparse mosaic case, ignoring overlap, it is easy to see the relationship
between the density f of clump length C and the density f+ of C+:

f+(a) =
P (C > a)

EC
. (A9d)

This is just the renewal theory relationship between “time between re-
newals” and “waiting time from a fixed time until next renewal”. In par-
ticular, f+(0) = 1/EC and so (A9c) is just a variant of the fundamental
identity (A4d).

For the M/M/1 queue, consider S0 = { t : Xt = b }.

P (clump ends in (0, δ) | X0 = b)

≈ P (Zt < 0 for all t > δ | Z0 = 0)

≈ δβP (Zt ≤ −1 for all t ≥ δ | Zδ = −1)

≈ δβ

(
1 − α

β

)

≈ δ(β − α). (A9e)

So (A9b) gives clump rate

λb = π(b)(β − α)

agreeing with Section A5. If instead we consider S = { t : Xt ≥ b } then,
since a clump can end only by a transition downwards from b,

P (clump ends in (0, δ) | X0 ≥ b)

≈ P (clump ends in (0, δ) | X0 = b)P (X0 = b | X0 ≥ b)

≈ δ(β − α)

(
1 − α

β

)
using (A9e).

So (A9b) gives the clump rate

λb = π[b,∞)(β − α)

(
1 − α

β

)

agreeing with Section A5.
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Another way to look at this method is to let ψ be the rate of component
intervals of clumps:

ψ = lim
δ↓0

δ−1P (0 ∈ S, δ 6∈ S) = lim δ−1P (0 6∈ S, δ ∈ S).

Clumps have some random numberN ≥ 1 of component intervals, so clearly

λ =
ψ

EN
. (A9f)

In practice, it is hard to use (A9f) because EN is hard to estimate. But
there is a rather trite special case, where the clumps C are very likely to
consist of a single interval rather than several intervals. In this case N ≈ 1
and the clump rate λ can be identified approximately as the rate ψ of
start-points or end-points of these component intervals:

λ = lim
δ↓0

δ−1P (0 ∈ S, δ 6∈ S) = lim
δ↓0

δ−1P (0 6∈ S, δ ∈ S). (A9g)

Examples where we use this special case are smooth continuous-path pro-
cesses (Rice’s formula) (C12h), 1-dimensional coverage processes (Exam-
ple H12). The general case is used in additive Markov chains (like the
G/G/1 queue) (Section C11), tandem queues (Example B20).

In the discrete case, mosaics on Z1, all this is simpler: replace “δ” by
“1”.

λ = P (0 ∈ S, clump ends at 0)

= pP (clump ends at 0 | 0 ∈ S) (A9h)

= pf+(0),

where f+ is the probability function of

C+ = cardinality(S ∩ [1, τ ] | 0 ∈ S). (A9i)

A10 Limit assertions. Given random variables MK and an approxi-
mation

P (MK ≤ x) ≈ G(K,x) (A10a)

for an explicit function G, the corresponding limit assertion is

sup
x

|P (MK ≤ x) −G(K,x)| → 0 as K → ∞, (A10b)

where the sup is taken over integers x if MK is integer-valued. In examples,
we state the conclusions of our heuristic analysis in form (A10a): the status
of the corresponding limit assertion (as a known theorem or a conjecture)
is noted in the commentary at the end of the chapter.
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In many cases, assertions (A10b) are equivalent to assertions of the form

Mk − aK

bK

D→M as K → ∞ (A10c)

for constants aK , bK and non-degenerate limit distribution M . Textbooks
often treat (A10c) as a definition of “limit theorem” (for distributional
limits, that is), but this is a conceptual error: it is more natural to regard
limit theorems as assertions that the error in an approximation tends to
zero, as in (A10b).

Sometimes we use the heuristic in settings where only a single random
variable M is of interest, for instance M = sup0<t<1Xt for a process de-
fined only on [0, 1]. In this context distributional limits do not make sense.
Instead, we state heuristic conclusions in the form

P (M > b) ≈ G(b) for b large (A10d)

and the corresponding limit assertion is

P (M > b)

G(b)
→ 1 as b→ ∞ (A10e)

To indicate this we call such approximations tail approximations. They
frequently occur in the non-stationary setting. If λb(t0) is the clump rate
at t0 for clumps of { t : Xt ≥ b } then the approximation (A4g)

P (M ≥ b) ≈ exp

(
−
∫
λb(t) dt

)
; b large

becomes

P (M > b) ≈
∫
λb(t) dt; b large. (A10f)

COMMENTARY

A11 Sparse mosaic limit property. Our heuristic is based on the no-
tion of random sets being asymptotically like sparse mosaics. Here we state a
formalization of this notion. This formalization is not used in this book, but is
explored in Aldous (1988b).

Fix dimension d. Write Leb for Lebesgue measure on Rd. For x ∈ Rd, F ⊂
Rd write F − x = { y− x : y ∈ F }. Write σa : Rd → Rd for the scaling map
x → ax. Then σa acts naturally on sets, random sets, point processes, etc.
Let F be the set of closed subsets F of Rd. A topology on F can be obtained
by identifying F with the measure µF with density 1F and using the topology
of vague convergence of measures.
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Let λn, an be constants such that

λn, an > 0;λnan → 0 as n→ ∞ (A11a)

Let C be a random closed set, let C = Leb(C) and suppose

C > 0 a.s.; EC <∞. (A11b)

Let Sn be random closed sets. The notion that the Sn are asymptotically like
the mosaics with clump rates λd

n and clump distributions anC is formalized as
follows.

Definition A11.1 Sn has the sparse mosaic (λn, an, C) limit property if
(A11a), (A11b) above and (A11c), (A11d) below hold.

To state the essential conditions, consider Sn. For each x ∈ Rd let Fx =
σ1/an (Sn − x). Informally, Fx is “the view of Sn from x”, after rescaling.
Now let ξn be a point process defined jointly with Sn. Then we can define a
marked point process { (λnx, Fx) : x ∈ ξn }. That is, the points x of ξn are
rescaled by λn and “marked” with the set Fx. There is a natural notion of
weak convergence for marked point processes, using which we can state the
main condition:

There exists ξn such that the marked point process
(λnx, Fx), x ∈ ξn, converges weakly to the Poisson point
process of rate 1 marked with i.i.d. copies of C.

(A11c)

To state the final condition, for x ∈ Rd let ∆n(x) be the distance from x
to the nearest point of ξn. The condition is

λn sup
{
∆n(x) : x ∈ Sn, x ∈ λ−1

n K
}
→ 0 as n→ ∞; each bounded K.

(A11d)
Condition (A11c) is the main condition, saying that the part of Sn near the
points ξn is like a mosaic process; condition (A11d) ensures that all of Sn is
accounted for in this way.

A12 Analogies with central limit theorems.

A12.1 From independence to dependence. The first limit theorems one en-
counters as a student are the Poisson and Normal limits of the Binomial. For
independent random variables there is a complete story: the Lindeberg-Feller
CLT and the Poisson limit theorem. For dependent random variables one still
expects similar results under regularity conditions: what changes in the con-
clusions? For the CLT, what changes is the variance; for partial sums Sn of

stationary mean-zero (Xi), one expects Sn/
√
n

D→ Normal(0, σ2), where σ2

is not var(Xi) but is instead
∑∞

i=−∞EXiX0. For rare events, what changes
is that Poisson limits become compound Poisson, since when one event Ai

occurs it may become likely that nearby events Aj also occur.
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A12.2 Weak convergence. An extension of CLTs is to weak convergence
results, asserting that normalized partial sums S∗

n(t) converges to Brownian
motion B(t). This has two purposes. First, such results are more informative,
giving limits for functionals of the partial sum process. Second, they permit
different methods of proof of the underlying CLT; for instance, one may show
tightness in function space and then argue that B(t) is the only possible limit.

I claim that the “sparse mosaic limit property” of Section A11 is the correct
analogue for rare events. One could be more simplistic and just use the com-
pound Poisson counting process limit of counting processes, but this ignores the
spatial structure of the clumps. As with weak convergence forms of the CLT,
it is natural to expect that the more abstract viewpoint of sparse mosaic limits
will enable different proof techniques to be employed. The compound Poisson
formulation has been studied by Berman (1982a) and subsequent papers.

A12.3 Domain of application. Extensions of the CLT occupy a much larger
portion of the probability theory literature than do extensions of the Poisson
limit theorem. But one can argue that the latter arise in more settings. When-
ever one has a CLT for a family of random variables, one expects a compound
Poisson limit theorem for their extrema. But there are many settings involving
rare events where there is no natural CLT. For instance, given any sample path
property that Brownian motion does not possess, one can ask how nearly the
property is achieved at some point in a long interval.

Of course, not all CLTs can be fitted into the weak convergence formalism:
there are “combinatorial” CLTs which, roughly speaking, involve limits as the
“dimension”→ ∞. The same happens for rare events: Chapter G treats such
combinatorial examples.

A13 Large deviations. The modern theory of large deviations (see
Varadhan (1984)) can crudely be described as a theory of limits of the form

lim
k
k−1 log P (Ak)

for “exponentially rare” events Ak. The domain of usefulness of the heuristic
is adjacent to the domain of usefulness of large deviation ideas: the heuristic
seeks to get asymptotics of P (Ak) which are exact (P (Ak) ∼ pk) or exact
up to a multiplicative constant, whereas large deviation estimates may be off
by a polynomially large factor. To do this, the heuristic needs more specific
structure: large deviation theory applies in various more general settings.

A14 Markov hitting times. Our discussion of the heuristic so far has
been “general” in the sense of not assuming any particular dependence struc-
ture in the process underlying the random set S. Many examples involve first
hitting times of Markov processes on a rare subset of state space, so let us say
a few words about this particular setting.
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1. We usually use the renewal-sojourn form of the heuristic; this is related
to an exact result concerning recurrent potential [B61].

2. Mean hitting times for a Markov process satisfy a set of difference or
differential equations; a quite different type of heuristic is to try to solve
these equations approximately. A set of “singular perturbation” tech-
niques for doing so is described in Schuss (1980). There is some overlap
of examples amenable to that technique and to our heuristic, though
the author feels that the heuristic (where usable) gives simpler and more
direct solutions.

3. Tails of hitting time distributions are typically exponential, and the ex-
ponent has an eigenvalue interpretation: see Chapter M. In our heuristic
applications the entire distribution is approximately exponential, so this
eigenvalue describes the entire distribution. Techniques for determining
such eigenvalues are related to the techniques of (2) and of large devia-
tion theory.

A15 The second moment method. This is based upon

Lemma A15.1 Let Z ≥ 0, EZ2 <∞. Then

P (Z > 0) ≥ (EZ)2/E(Z2).

This follows from the Cauchy-Schwartz inequality applied to Z1(Z>0). Apply-
ing this to Z = #{ i : Ai occurs } gives the left inequality below; the right
inequality is Boole’s.

Lemma A15.2 Let (Ai; i ∈ I) be a finite family of events. Then µ2/σ2 ≤
P (
⋃
Ai) ≤ µ; where µ =

∑
i P (Ai) and σ2 =

∑
i

∑
j P (Ai ∩Aj).

This gives bounds for maxima maxiXi of finite families of random variables,
using Ai = {Xi ≥ b}, ⋃Ai = {maxXi ≥ b}. For continuous-parameter
maxima, Boole’s inequality gives no information, but these “second-moment”
lower bounds do.

Lemma A15.3 Let M = supt∈T Xt, and let θ be a probability measure on
T . Then

P (M > b) ≥ µ2
b

σ2
b

; where
µb =

∫
P (Xt > b)θ(dt)

σ2
b =

∫∫
P (Xs > b,Xt > b)θ(ds)θ(dt).

(A15a)

This follows by applying (A15.1) to Z = θ{ t : Xt > b }.
These rigorous inequalities can be related to the heuristic as follows. In the

setting of (A15.3), suppose

P (M > b) ∼ q(b) as b→ ∞
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and let Cb be the clump size:

Cb = θ{ t : Xt > b } given M > b.

Then the lower bound in (A15.3) is

µ2
b

σ2
b

=
(q(b)ECb)

2

q(b)EC2
b

=
q(b)(ECb)

2

EC2
b

.

Thus the lower bound of (A15.3) underestimates the true value by the fac-
tor (ECb)

2/(EC2
b ). Now consider the harmonic mean formula version of the

heuristic (Section A6). If there we use the “harmonic mean ≤ arithmetic mean”
inequality, we get

EC = harmonic mean(C̃) ≤ EC̃ =
EC2

EC
, (A15b)

the last equality by (A6a). Thus if we replace the clump rate p/EC by the

underestimate p/EC̃, the underestimation factor is (EC)2/(EC2); this is the
same as with the second moment method.

In the context of the heuristic for stationary random sets S in Rd, we
estimate

EC̃ ≈
∫

x near 0

P (x ∈ S | 0 ∈ S) dx. (A15c)

This is usually easy to calculate, unlike EC itself.

A16 Continuous 1-parameter bounds. The following simple rigorous
result can be regarded as Boole’s inequality applied to right endpoints of com-
ponent intervals.

Lemma A16.1 Let S be a stationary random closed subset of R1 which
consists a.s. of disjoint non-trivial intervals. Then

ψ = lim
δ↓0

δ−1P (0 ∈ S, δ 6∈ S) ≤ ∞

exists, and
P (S ∩ [0, t] non-empty) ≤ P (0 ∈ S) + tψ.

Applied to S = { t : Xt ≥ b } for stationary (Xt) with smooth paths, the
lemma gives upper bounds for P (maxs≤tXs > b). This is essentially Rice’s
formula [C12].

Compare with the ergodic-exit version (Section A9) of the heuristic. If the
clump rate is λ and there are a random number N ≥ 1 of component intervals
in a clump, then

ψ = λEN.

In using the heuristic, we can always replace λ by its upper bound ψ to get an
upper bound on the clump rate, since EN ≥ 1; this procedure corresponds to
the rigorous result (A16.1).
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A17 The harmonic mean formula. Here are two version of an exact
result which is plainly related to the harmonic mean version of the heuristic
(Section A6).

Lemma A17.1 Let (Ai : i ∈ I) be a finite family of events. Let C =∑
i 1Ai

. Then P (
⋃
Ai) =

∑
i P (Ai)E(C−1 | Ai).

This is obtained by writing 1⋃Ai
=
∑

i C
−11Ai

. Here is the continuous-

parameter version, which requires some technical hypothesis we shall not spec-
ify. Let S be a random subset of S, let θ be a probability measure on S, let
p(x) = P (x ∈ S) and let C = θ(S). Then

P (θ(S) > 0) =

∫
E(C−1 | x ∈ S)p(x)θ(dx). (A17a)

A18 Stein’s method. A powerful general method of obtaining explicit
bounds for the error in Poisson approximations has been developed, and is
widely applicable in “combinatorial” type examples. See Stein (1986) for the
theoretical treatment, Arratia et al. (1987) and Barbour and Holst (1987) for
concise applications to examples like ours, and Barbour and Eagleson (1983)
for more applications. The most interesting potential applications (from our
viewpoint) require extensions of the known general results to the compound
Poisson setting: developing such extensions is an important research topic.

A19 Compound Poisson distribution. There is some slick notation
for compound Poisson distributions. Let ν be a positive measure on (0,∞)
satisfying

∫∞

0
min(1, x)ν(dx) <∞. Say Y has POIS(ν) distribution if

E exp(−θY ) = exp

(
−
∫ ∞

0

(
1 − e−θx

)
ν(dx)

)
; θ > 0.

To understand this, consider some examples.

1. The familiar Poisson(mean a) distribution is POIS(ν) for ν = aδ1. (δx
is the probability measure degenerate at x).

2. If Zi are independent Poisson(ai), then the random variable
∑
xiZi has

POIS(
∑
aiδxi

) distribution.

3. If X1, X2, . . . are the times of events of a non-homogeneous Poisson
process of rate g(x), and if

∫∞

0
g(x) dx < ∞, then

∑
Xi has POIS(ν)

distribution, where dν/dx = g(x).

4. If (Xi) are i.i.d. with distribution θ, if N is independent of (Xi) with

Poisson (a) distribution then
∑N

i=1Xi has POIS(aθ) distribution.

In particular, approximation (A4f) can be written as



A. The Heuristic 21

5 area(S ∩A)
D≈ POIS(λ area(A)νC); where νC is the distribution of C.

In most uses of the heuristic, it is difficult enough to get a reasonable estimate
of the mean of C, let alone the full distribution, so we shall say little about these
compound Poisson results. Note that the first two moments of area(S ∩ A)
can be obtained directly from (A4f)

E area(S ∩A) ≈ λ area(A)EC

var area(S ∩A) ≈ λ area(A)EC2.

Similarly, in terms of the Laplace transform of C

ψ(θ) ≡ E exp(−θC)

we get the Laplace transform of our heuristic compound Poisson approximation
for area(S ∩A)

E exp(−θ(S ∩A)) ≈ exp(−λ area(A)(1 − ψ(θ))).

A20 Other forms of the heuristic. Here are several other forms of
the heuristic which we do not use often enough to classify as useful general
methods.

1. In the 1-dimensional setting of Section A9, where the clumps consist of
a random number of component intervals, one may pretend the random
set regenerates at the start of each component interval. This leads to
the quasi-Markov estimate (Section D42).

2. In the context of maxima of stationary processes (Xt; t ∈ Rd), the clump
rate λb for { t : Xt ≥ b } has

λb ≈ (2T )−dP ( sup
[−T,T ]d

Xt ≥ b)

≈ (2T )−d

∫
P ( sup

[−T,T ]d
Xt ≥ b | X0 = x)fX0

(x) dx.

If a rescaling of Xt around high levels b approximates a limit process Zt,
then we get a result relating λb to

lim
T→∞

(2T )−d

∫ 0

−∞

P ( sup
[−T,T ]d

Zt ≥ 0 | Z0 = z)g(z) dz

where g is a rescaled limit of fX0
. This has some theoretical appeal for

proving limits exist in special cases (Section J37) but is not useful in
practice, since it merely replaces one “asymptotic maximum” problem
by another.
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3. Let S be approximately a mosaic process in Rd and let f : Rd → [0,∞)
be deterministic continuous. Write

q(v) = P (t ∈ S, f(t) ≤ v).

Each clump C of S can be “marked” by UC = inft∈C f(t). Then the
clump rate λ of S is

λ =

∫ ∞

0

λ(u) du; λ(u) du the rate of clumps with U ∈ (u, u+ du).

Consider Cu,v = area{ t ∈ C : f(t) ≤ v } for a clump with UC = u.
Clearly

q(v) =

∫ v

0

λ(u)ECu,v du.

Thus if we can find q(v) and ECu,v then we can solve for λ(u) and
thence obtain the clump rate λ.

Call this the marked clump technique. It is similar to the “conditioning on
semi-local maxima” techniques: there the mark was the local extreme of
the underlying random process, whereas here the mark is obtained from
the geometry of the clump (one can imagine still other ways to define
marks, of course). This technique is used in Chapter K to study Brownian
path properties.

A21 Exponential/geometric clump sizes. In the continuous 1-
dimensional setting, a simple possible distribution for clump size C is the
exponential(θ) distribution:

fC(c) = θe−θc, c > 0; EC =
1

θ
. (A21a)

This occurred in the M/M/1 example, and occurs in other simple examples. It

is equivalent to the conditioned distribution C̃ of Section A6 having the form

f
C̃

(c) = θ2ce−θc, c > 0; C̃
D
= C1 + C2 (A21b)

for independent exponential(θ) Ci. It is also equivalent to the distribution C+

of Section A9 being
C+ is exponential(θ). (A21c)

In the discrete 1-dimensional setting, there are analogous results for geometric
clump sizes. Equivalent are

P (C = n) = θ(1 − θ)n−1, n ≥ 1 (A21d)

C̃ = C1 + C2 − 1; Ci independent with
distribution (A21d)

(A21e)

P (C+ = n) = θ(1 − θ)n, n ≥ 0, for C+ as at (A9i). (A21f)



B
Markov Chain
Hitting Times

B1 Introduction. In the context of Markov chains, the fundamental
use of the heuristic is to estimate the distribution of the first hitting time
to a rarely-visited state or set of states. Such problems arise in several areas
of applied probability, e.g., queueing theory and reliability, as well as pure
theory. The heuristic is useful in the case where the stationary distribution
is known explicitly but transient calculations are difficult.

By “chain” I mean that the state space J is discrete. There is no es-
sential difference between the discrete-time setting, where (Xn;n ≥ 0) is
described by a transition matrix P (i, j), and the continuous-time setting,
where (Xt; t ≥ 0) is described by a transition rate matrix Q(i, j), j 6= i.
We shall only consider irreducible positive-recurrent chains, for which there
exists a unique stationary distributions π determined by the balance equa-
tions

π(j) =
∑

i

π(i)P (i, j) [discrete]

q(j)π(j) =
∑

i6=j

π(i)Q(i, j) [continuous], where q(j) =
∑

k 6=j

Q(j, k).

(B1a)
For a subset of states A ⊂ J , the first hitting time TA is

TA = min{ t ≥ 0 : Xt ∈ A }.

Positive-recurrence implies EiTA < ∞; here Ei( ), Pi( ) denote expec-
tation, probability given X0 = i. The mean hitting times are determined
by elementary equations. For fixed A, the means h(i) = EiTA satisfy

h(i) = 1 +
∑

j

P (i, j)h(j) [discrete] for i 6∈ A

q(i)h(i) = 1 +
∑

j 6=i

Q(i, j)h(j) [continuous] for i 6∈ A

h(i) = 0 for i ∈ A.

(B1b)

At first sight, one might think that equations (B1a) and (B1b) were about
equally hard to solve. But in practical examples there is often special
structure which enables us to find the stationary distribution π without
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solving equations (e.g., reversibility; double-stochasticity; certain queueing
networks), whereas there are no such useful tricks for hitting times. The
purpose of this chapter is to show how knowledge of the stationary distri-
bution can be used in many cases to get simple approximations for hitting
times, when π(A) is small.

The natural form of the heuristic is the renewal-sojourn method (Sec-
tion A8). Fix A and consider the random set S of times t such that Xt ∈ A,
for the stationary process X. If S does look like a Poisson clump process
then the clump size C is the sojourn time in A during a clump of nearby
visits to A. Since p = P (t ∈ S) = π(A), the fundamental identity p = λEC
implies that the clump rate λ is

λ =
π(A)

EC
.

So the waiting time for the first clump, i.e. the first hit on A, has approxi-
mately exponential distribution with mean 1/λ. To summarize:

B2 The heuristic for Markov hitting times. If π(A) is small then

(i) TA has approximately exponential distribution;

(ii) ETA ≈ EC/π(A);

(iii) these hold for any initial distribution not close to A.

Typically, in examples we see that the “local” behavior of X around the
set A can be approximated by the local behavior of some transient process
X∗ around A. If so, we can approximate the sojourn time C by the total
sojourn time (0 ≤ t <∞) of X∗ in A. If A is a singleton {k} then we take
X∗

0 = k; for general A there is a technical issue of what distribution on A to
give to X∗

0 , which we defer until Section B16. The point of this procedure
is:

when π is known, the heuristic converts the “global” prob-
lem of solving (B1b) into a “local” problem of estimating
EC.

Of course Assertion B2 is not a theorem; there are certainly examples
where π(A) is small but TA is not approximately exponential (e.g., for sim-
ple symmetric random walk (Section B11)). But I don’t know any natural
example where the transient approximation heuristic is applicable but gives
an erroneous conclusion. In other words, in cases where TA is not approxi-
mately exponential there is no natural transient approximation with which
to implement the heuristic. The fundamental transient process, which will
frequently be used for approximations, is the simple asymmetric random
walk on the integers. Here are some elementary facts about this process.
Let 0 < a < b. Consider the continuous time chain Xt with Q(i, i+ 1) = a,
Q(i, i − 1) = b, i ∈ Z. For A ⊂ Z let S(A) be the total amount of time
spent in A.
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(i) P0(hit 1 sometime) = a/b

(ii) P0(never return to 0) = (b− a)/(b+ a)

(iii) E0S(0) = (b− a)−1

(iv) E0S[0,∞) = b(b− a)−2.

Exactly the same results hold for the discrete time walk with P (i, i+1) = a,
P (i, i− 1) = b, P (i, i) = 1 − a− b.

Let us now start the examples by repeating the argument at Section A8
for the M/M/1 queue, where we can compare the result obtained via the
heuristic with the exact result.

B3 Example: Basic single server queue. Here the states are
{0, 1, 2, . . . }, Q(i, i + 1) = a, Q(i, i − 1) = b for i ≥ 1; the parameters a
and b represent the arrival and service rates; and a < b for stability. The
stationary distribution is geometric: π(i) = (1 − a/b)(a/b)i. We want to
estimate TK , the time until the queue length first reaches K, where K is
sufficiently large that π[K,∞) = (a/b)K is small; that is, the queue length
rarely exceeds K. We apply the heuristic with A = {K}. Around K, the
queue process behaves exactly like the asymmetric random walk. So EC
is approximately EKS(K) for the random walk, which by (B2iii) equals
(b− a)−1. So the heuristic B2 says

TK has approximately exponential distribution, mean
b

(b− a)2

(
b

a

)K

.

In this case the exact mean, obtained by solving (B1b), is

EiTK =
b

(b− a)2

((
b

a

)K

−
(
b

a

)i)
− K − i

b− a

In using the heuristic we assumed (a/b)K is small, and then we see that
the heuristic solution has indeed picked up the dominant term of the exact
solution.

B4 Example: Birth-and-death processes. We can use the same idea
for more general birth-and-death processes, that is processes with transition
rates of the form Q(i, i + 1) = ai, Q(i, i − 1) = bi, i ≥ 1, Q(i, j) = 0
otherwise. Suppose we want to study TK , where K is sufficiently large
that π[K,∞) is small. Provided the rates ai, bi vary smoothly with i, we
can approximate the behavior of the process around K by the “linearized”
random walk which has Q(i, i+1) = aK and Q(i, i−1) = bK . This random
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walk has EKS(K) = (bK −aK)−1. Using this as a (rough!) estimate of EC,
the heuristic B2 gives

ETK ≈ ((bK − aK)π(K))
−1
. (B4a)

For concreteness, consider the infinite server queue (M/M/∞). HereQ(i, i+
1) = a and Q(i, i− 1) = ib, for arbitrary a, b > 0. The stationary distribu-
tion π is Poisson(a/b). Estimate (B4a) gives

ETk ≈ (bK − a)−1(b/a)KK!ea/b, (B4b)

provided π[K,∞) is small (which implies K > a/b).
There is a general expression for EiTK in an arbitrary birth and death

process (see Karlin and Taylor (1975) p. 149) which gives a complicated
exact result; as before, the dominant term for large K is just the heuristic
approximation.

B5 Example: Patterns in coin-tossing. Tossing a fair coin generates
a sequence of heads H and tails T. Given a pattern (i), for example

TTTT (1) TTTH (2) THTH(3),

let Xi be the number of tosses needed until pattern i first occurs. This is
a first hitting-time problem for the 16-state discrete Markov chain of over-
lapping 4-tuples; generating function arguments give exact distributions
(Section B26.3), but let us see the heuristic approximations.

Let Si be the random set of n such that tosses (n − 3, n − 2, n − 1, n)
form pattern i. Clearly

pi ≡ P (n ∈ Si) =
1

16
.

To determine clump size Ci, condition on pattern i occurring initially, and
let Ci be the number of times pattern i appears in a position overlapping
this initial pattern, including the initial pattern itself. Then

P (C1 = n) =
1

2n
(n = 1, 2, 3),P (C1 = 4) =

1

8
; EC1 =

15

8
P (C2 = 1) = 1; EC2 = 1

P (C3 = 1) =
3

4
P (C3 = 2) =

1

4
; EC3 =

5

4
.

So the clump rates λi can be calculated from the fundamental identity
λi = pi/ECi:

λ1 =
1

30
λ2 =

1

16
λ3 =

1

20
.

Bearing in mind the constraint Xi ≥ 4, the heuristic gives

P (Xi ≥ 4 +m) ≈ (1 − λi)
m ≈ exp(−λim); m ≥ 0. (B5a)
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The examples above are unimpressive because exact mean hitting times
are calculable. We now consider some doubly-stochastic chains, for which
the stationary distribution is necessarily uniform. Here the heuristic can
give effortless approximations which are harder to obtain analytically.

B6 Example: Card-shuffling. Repeated shuffling of an N -card deck
can be modeled by a Markov chain whose states are the N ! possible config-
urations of the deck and whose transition matrix depends on the method
for doing a shuffle. Particular methods include

(a) “top to random”: the top card is removed and replaced in a uniform
random position.

(b) “random transposition”: two cards are picked at random and inter-
changed.

(c) “riffle”: the usual practical method, in which the deck is cut into two
parts which are then interleaved. A definite model can be obtained
by supposing all 2N possible such riffles are equally likely.

Regardless of the method, we get a doubly-stochastic chain (in fact, a ran-
dom walk on the permutation group), so π(i) = 1/N ! for each configuration
i. Consider the number of shuffles T needed until a particular configuration
i is reached. The heuristic B2 says that T has approximately exponential
distribution with mean

ET ≈ N !EC

Here C = 1 plus the mean number of returns to an initial configuration
in the short term. But for any reasonable shuffling method, the chance of
such returns will be small, so

ET ≈ N !

More sharply, in case (a) we see

ET ≈ N ! (1 + 1/N)

taking into account the chance 1/N that the first shuffle puts the top card
back on top. In case (b)

ET ≈ N ! (1 + 2/N2)

taking into account the chance that the same two cards are picked on the
first two shuffles.

For our next example, another well-known transient process is simple
symmetric random walk on Zd, d ≥ 3. For this walk started at 0, let

Rd = mean total number of visits to 0 in time 0 ≤ n <∞. (B6a)

These are certain constants: R3 ≈ 1.5, for instance.
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B7 Example: Random walk on Zd mod N . For fixed d ≥ 3 and large
N , consider simple symmetric walk on the set of d-dimensional integers
modulo N ; that is, on the integer cube of side N with periodic boundary
conditions. Here the state space J has |J | = N d; again the chain is doubly-
stochastic, so π(i) = N−d for each i. Consider the time T taken to hit a
specified state i from a uniform random start. The heuristic B2 says T has
approximately exponential distribution with mean ET ≈ N dEC. Around i,
the chain behaves like the unrestricted random walk on Zd, so we estimate
EC as Rd in (B6a), to obtain

ET ≈ RdN
d.

B8 Example: Random trapping on Zd. Consider the complete lat-
tice Zd, d ≥ 3, and let R be a stationary random subset of Zd with
q = P (i ∈ R) small. Let T be the time taken for simple random walk
Xn started at 0 to first hit R. In the special case where R is a random
translate of the set {(j1N, . . . , jdN), jk ∈ Z}, a moment’s thought reveals
this is equivalent to the previous example, so

ET ≈ Rdq
−1. (B8a)

In fact we can apply the heuristic to more general R by considering the
random set S of times n such that Xn ∈ R. The reader should think
through the argument: the conclusion is that (B8a) remains true provided
the “trap” points of R are typically not close together (if they are close,
the argument at Example B15 can be used).

We now turn to consideration of hitting times of a chain Xt on a set A.
Before treating this systematically, here is an obvious trick. Suppose we
can define a new process Yt = f(Xt) such that, for some singleton k,

Xt ∈ A iff Yt = k (B8b)

Around k, the process Yt can be approximated by a known
transient Markov chain Ŷt.

(B8c)

Then C, the local sojourn time of X in A, equals the local sojourn time
of Y at k, and can be approximated by the total sojourn time of Ŷ at k.
Note that Y need not be exactly Markov. Here are two illustrations of this
idea.

B9 Example: Two M/M/1 queues in series. Suppose each server
has service rate b, and let the arrival rate be a < b. Write (X1

t , X
2
t ) for

the queue lengths process. It is well known that the stationary distribution
(X1, X2) has independent geometric components:

π(i, j) = (1 − a/b)2(a/b)i+j ; i, j ≥ 0.
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Suppose we are interested in the time Tk until the combined length X1
t +X2

t

first reaches k; where k is sufficiently large that the stationary probability
π{ (i, j) : i + j ≥ k } is small. We want to apply our basic heuristic B2 to
A = { (i, j) : i+ j = k }. Since π(A) = (k + 1)(1 − a/b)2(a/b)k, we get

ETk ≈ (k + 1)−1(1 − a/b)−2(b/a)kEC.

Consider the combined length process Yt = X1
t +X2

t . I claim that around
k, Y behaves like the asymmetric simple random walk with up-rate a and
down-rate b, so that by (B2) EC = (b− a)−1 and so

ETk ≈ (k + 1)−1b−1(1 − a/b)−3(b/a)k. (B9a)

To justify the claim, note that when X2
t > 0 the process Yt is behaving

precisely as the specified asymmetric walk. Fix t0 and condition on Yt0 = k.
Then (X1

t0 , X
2
t0) is uniform on { (i, j) : i + j = k }, so X2 is unlikely to be

near 0. Moreover in the short term after t0, X
2 behaves as the simple

symmetric walk (up-rate = down-rate = b) and so has no tendency to
decrease to 0. So in the short term it is not very likely that X2 reaches 0,
thus justifying our approximation of Y .

B10 Example: Large density of heads in coin-tossing. Fix K, L
with L large and K/L = c > 1/2, and K − L/2 large compared to L1/2.
So in L tosses of a fair coin we are unlikely to get as many as K heads.
Now consider tossing a fair coin repeatedly; what is the number T of tosses
required until we first see a block of L successive tosses containing K heads?

Let Xn record the results of tosses (n− L+ 1, . . . , n) and let Yn be the
number of heads in this block. Then T is the hitting time of Y on K. I
claim that, around K, Yn behaves like the asymmetric random walk with
P (up) = (1 − c)/2, P (down) = c/2. Then by (B2) the mean local sojourn
time at K is

EC =

(
1

2
c− 1

2
(1 − c)

)−1

= (c− 1

2
)−1.

Since P (Yn = K) =
(

L
K

)
/(2L), the heuristic gives

ET ≈ EC

P (Yn = K)

≈
(
c− 1

2

)−1

2L

/(
L

K

)
. (B10a)

To justify the claim, fix n0 and condition on Yn0
= K. Then there are

exactly K heads in tosses (n−L+1, . . . , n) whose positions are distributed
uniformly. In the short term, sampling without replacement is like sampling
with replacement, so the results of tosses n−L+ 1, n−L+ 2, . . . , are like
tosses of a coin with P (heads) = K/L = c. Since tosses n+1, n+2, . . . are of
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a fair coin, our approximation for Y is now clear: Yn0+i−Yn0+i−1 = Ui−Vi,
where

P (Ui = 1) =
1

2
, P (U1 = 0) =

1

2
,

P (Vi = 1) ≈ c, P (Vi = 0) ≈ 1 − c,

the (Ui) are i.i.d. and the (Vi) are approximately i.i.d.

B11 Counter-example. It is time to give an example where the heuris-
tic does not work. Consider simple symmetric random walk on the 1-
dimensional integers modN (i.e. on the discrete N -point circle). Here the
limiting distribution of E0T[ 1

2
N ], say, as N → ∞ is not exponential (think

of the Brownian approximation), so the heuristic B2 gives the wrong con-
clusion. Of course, any attempt to use the heuristic will fail, in that the
natural approximating process is simple symmetric random walk on the
whole line, for which EC = ∞. In a sense, one can regard the heuristic as
saying

E0T[ 1
2
N ]

N
→ ∞ as N → ∞

which is correct, though not very precise.

B12 Hitting small subsets. We now study hitting times TA for a set
A of small cardinality (as well as small π(A)). For i, j ∈ A let EiCj be the
mean local sojourn time in state j for the chain started at i. Let (λi; i ∈ A)
be the solutions of the equations

∑

i∈A

λiEiCj = π(j); j ∈ A. (B12a)

Let λ =
∑

i∈A λi. In this setting, the heuristic B2 becomes

TA has approximately exponential distribution, rate λ; (B12b)

the hitting place distribution XTA
satisfies P (XTA

= i) ≈ λi

λ
. (B12c)

To see this, define λi as the rate of clumps which begin with a hit on i.
Then λiEiCj is the long-run rate of visits to j in clumps starting at i; so
the left side of (B12a) is the total long-run rate of visits to j. This identifies
(λi) as the solution of (B12a). So λ is the rate of clumps of visits to A.
Then (B12b) follows from the heuristic B2, and (B12c) follows by regard-
ing clumps started at different states i ∈ A as occurring independently.
Incidently, equation (B12a) has a matrix solution (Section B30), though it
is not particularly useful in examples.
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B13 Example: Patterns in coin-tossing, continued. In the setting
of Example B5 we can consider a set A of patterns. Toss a fair coin un-
til some pattern in A first occurs. One can ask about the number TA of
tosses required, and the probabilities of each pattern being the one first
seen. For instance, consider pattern 2 (TTTH) and pattern 3 (THTH) of
Example B5. Apply (B12b,B12c) to the Markov chain Xn which records
the results of tosses (n − 3, . . . , n). Counting “clumps” to consist only of
patterns overlapping the initial pattern, we see

E2C2 = 1 E2C3 = 1
4 E3C2 = 0 E3C3 = 5

4 .

Solving (B12a) gives λ2 = 5/80, λ3 = 3/80, λ = 8/80. So we conclude

1. P (pattern 3 occurs before pattern 2) ≈ 3/8

2. TA − 4 has approximately exponential distribution, mean 10.

More sophisticated applications of technique B12 appear in chapter F.
For the moment, let us just point out two simple special cases, and illustrate
them with simple examples. First, suppose A is such that EiCj ≈ 0 for
i 6= j (i, j ∈ A). Then the solution of (B12a) is just λi = π(i)/EiCi. In
other words, in this setting clumps of visits to A involve just one element
of A, and we take these clumps to be independent for different elements.

B14 Example: Runs in biased die-throwing. Let (Yn;n ≥ 1) be
i.i.d. with some discrete distribution, and let qu = P (Yn = u). Fix k and
let Tk = min{n : Yn = Yn−1 = . . . = Yn−k+1 }. To apply the heuristic,
let Xn = (Yn−k+1, . . . , Yn) and let A be the set of iu = (u, u, . . . , u). Then
π(iu) = qk

u, EiuCiu = (1 − qiu)−1 and EiuCiu ≈ 0 for u 6= u′. So as above,
λiu ≈ π(iu)/EiuCiu = (1 − qu)qk

u, and technique B12 gives

ETk ≈
(∑

u

(1 − qu)qk
u

)−1

. (B14a)

As a second case of technique B12, consider the special case where∑
j∈AEiCj does not depend on i ∈ A; call it EC. In this case, one can

show from technique B12 that λ = π(A)/EC. Of course, this is just the
special case in which the mean local sojourn time in A does not depend
on the initial state i ∈ A, and the conclusion ETA ≈ EC/π(A) is just the
basic heuristic B2. However, (B12c) yields some more information: we find
that λi is proportional to π(i), and so the hitting distribution XTA

is just
the relative stationary distribution

P (XTA
= i) ≈ π(i)

π(A)
.
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B15 Example: Random walk on Zd mod N , continued. In the set-
ting of Example B7, let A be an adjacent pair {i0, i1} of lattice points. For
the transient random walk, the mean sojourn time EiC in A is the same
for i = i0 or i1. And

Ei0C ≈ (1 + q)Rd,

for Rd at (B6a) and q = Pi0(the transient walk ever hits i1). But by
conditioning on the first step, Pi0(the transient walk ever returns to i0) = q
also. So Rd = (1 − q)−1, and we find

Ei0C = 2Rd − 1.

Since π(A) = 2N−d, the heuristic gives

ETA ≈ EC

π(A)
≈
(
Rd − 1

2

)
Nd. (B15a)

Note that we can use the same idea in Example B8, to handle sparse random
trapping sets R whose points are not well-separated.

B16 Hitting sizable subsets. When the set A has large cardinality
(π(A) still small), the method of estimating ETA via technique B12 be-
comes less appealing; for if one cares to solve large matrix equations, one
may as well solve the exact equations (B1b). To apply the heuristic (Sec-
tion B2) directly, we need to be able to calculate EρC, where C is the
local sojourn time in A, and where ρ is the hitting place distribution XTA

(from X0 stationary, say). Since ρ may be difficult to determine, we are
presented with two different problems. But there is an alternative method
which presents us with only one problem. Define the stationary exit distri-
bution µA from A ⊂ J to be

µA(j) =
∑

i∈A

π(i)
Q(i, j)

Q(A,AC)
; j ∈ AC

where Q(A,AC) =
∑

i∈A

∑
j∈AC π(i)Q(i, j). (This is in continuous time:

in discrete time, replace Q by P and the results are the same.)
Define fA as the probability that, starting with a distribution µA, the

chain does not re-enter A in the short term. Then we get:

B17 The ergodic-exit form of the heuristic for Markov hitting
times.

ETA ≈ (fAQ(A,AC))−1.

This is an instance of the ergodic-exit form of the heuristic in 1-dimensional
time. In the notation of Section A9, C+ is the future local sojourn time in
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A, given X0 ∈ A. So for small δ,

P (C+ ≤ δ) ≈ P

(
chain exits A before time δ and
does not re-enter in short term

∣∣∣∣ X0 ∈ A

)

≈ fAP (Xδ ∈ AC | X0 ∈ A)

≈ fAQ(A,AC)δ

π(A)

and so f+(0) = fAQ(A,AC)/π(A). Then (A9c) gives clump rate λA =
fAQ(A,AC) and hence (B17).

When π is known explicitly we can calculate Q(A,AC), and so to apply
(B17) we have only the one problem of estimating fA.

B18 Example: A simple reliability model. Consider a system with
K components. Suppose components fail and are repaired, independently
for different components. Suppose component i fails at exponential rate
ai and is repaired at exponential rate bi, where (max ai)/(min bi) is small.
Then the process evolves as a Markov chain whose states are subsets B ⊂
{1, 2, . . . , k} representing the set of failed components. There is some set
F of subsets B which imply system failures, and we want to estimate the
time TF until system failure. Consider the hypothetical process which does
not fail in F ; this has stationary distribution

π(B) = D−1

( ∏

i∈BC

bi

)(∏

i∈B

ai

)
; D =

∏

i

(ai + bi)

using independence of components. And so

Q(F ,FC) =
∑

B∈F

∑

i∈B
B\{i}6∈F

π(B)bi.

The assumption that ai/bi is small implies that, in any state, repairs are
likely to be finished before further failures occur. So fF ≈ 1 and (B17) says

ET ≈ (Q(F ,FC))−1.

B19 Example: Timesharing computer. Users arrive at a free termi-
nal, and alternate between working at the terminal (not using the com-
puter’s CPU) and sending jobs to the CPU (and waiting idly until the
job is completed); eventually the user departs. The CPU divides its effort
equally amongst the jobs in progress.

Let Yt be the number of jobs in progress, and Xt the number of users
working at terminals, so that Xt +Yt is the total number of users. A crude
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model is to take (Xt, Yt) to be a Markov chain with transition rates

(i, j) → (i+ 1, j) rate a
(i, j) → (i− 1, j) rate bi
(i, j) → (i− 1, j + 1) rate ci (i ≥ 1)
(i, j) → (i+ 1, j − 1) rate d (j ≥ 1)

What does this mean? New users arrive at rate a. Jobs take mean CPU
time 1/d, though of course each user will have to wait more real time for
their job to be finished, since the CPU is sharing its effort. After a job
is returned, a user spends mean time 1/(b + c) at the terminal, and then
either submits another job (chance c/(b+ c)) or leaves (chance b/(b+ c)).

The stationary distribution (obtained from the detailed balance equa-
tions — see Section B28) is, provided ac < bd,

π(i, j) =
(
1 − ac

bd

)(ac
bd

)j

e−a/b (a/b)i

i!
.

That is, at stationarity (X,Y ) are independent, X is Poisson and Y is
geometric. Think of a/b as moderately large — roughly, a/b would be the
mean number of users if the computer worked instantaneously. Think of
c/d as small — roughly, c/d is the average demand for CPU time per unit
time per user. Thus ac/bd is roughly the average total demand for CPU
time per unit time, and the stability condition ac/bd < 1 becomes more
natural.

Suppose there are a total of K terminals, where K is somewhat larger
than d/c. We shall estimate the time TK until the total number of users
Xt + Yt first reaches K. Let A = { (i, j) : i+ j ≥ K }. Then

Q(A,AC) =
K∑

i=1

biπ(i,K − i)

≈ a
(
1 − ac

bd

)(ac
bd

)K−1

exp

(
d

c
− a

b

)
(B19a)

after some algebra; and the exit distribution µA for (X,Y ) has X
D≈

Poisson(d/c), Y = K−1−X. (The approximations here arise from putting
P (Poisson(d/c) < K) ≈ 1). Now consider the process started with distribu-
tion µA. X0 has mean i0 ≈ d/c, and the motion parallel to the line i+j = K
tends to push Xt towards i0. So Xt + Yt, the motion of the process non-
parallel to that line, can be approximated by the random walk with rate a
upward and rate bi0 downward; comparing with (B2i), we estimate

fA ≈ 1 − a

bi0
≈ 1 − ac

bd
. (B19b)

Inserting (B19a, B19b) into (B17) gives an estimate of ETK :

ETK ≈ a−1

(
(1 − ρ)−2ρ1−K exp

(
(ρ− 1)

d

c

))
, ρ =

ac

bd
< 1. (B19c)
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FIGURE B19a.

For our next example we need an expanded version of (B17). For j ∈ AC

let fA(j) be the probability, starting at j, of not entering A in the short
term. And let Q(A, j) =

∑
i∈A π(i)Q(i, j). Then fA =

∑
j∈AC µA(j)fA(j),

and a little algebra shows (B17) is equivalent to

ETA ≈ λ−1; λ =
∑

j∈AC

Q(A, j)fA(j). (B19d)

B20 Example: Two M/M/1 queues in series. Here we consider a
different question than in Example B9. Let a be the arrival rate, and let
b1, b2 be the service rates (b1, b2 < a). Fix K1, K2 such that (a/bu)Ku is
small (u = 1, 2) and consider

T = min{ t : X1(t) = K1 or X2(t) = K2 }.

That is, imagine that queue u has capacity Ku − 1; then T is the first time
a capacity is exceeded. Now T = min{T1, T2}, where Tu = min{ t : Xu(t) =
Ku } has, by Example B3, approximately exponential (λu) distribution with

λu =

(
1 − a

bu

)2

bu

(
a

bu

)Ku

; u = 1, 2. (B20a)

The heuristic implies T has approximately exponential(λ) distribution for
some λ, which must satisfy

max(λ1, λ2) < λ < λ1 + λ2, (B20b)

the right-hand inequality indicating the positive correlation between T1 and
T2. We need consider only the case where λ1 and λ2 are of similar orders of
magnitude (else (B20b) says λ ≈ max(λ1, λ2)). We shall give an argument
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for the case b1 < b2 and b1/b2 not close to 1. In this case, the conclusion is

λ = λ1 + λ2 − λ12;

λ12 =

(
1 − a

b1

)(
1 − a

b2

)
b2

(
a

b1

)K1
(
b1
b2

)K2 . (B20c)

We argue as follows. We want TA for A = { (i, j) : i ≥ K1 or j ≥ K2 }. The
exit distribution µA is concentrated on B1 ∪B2, for

B1 = { (K1 − 1, j) : 1 ≤ j < K2 };
B2 = { (i,K2 − 1) : 0 ≤ i < K1 }.

We use (B19d) to estimate λ. Consider first the contribution to λ from
states in B2. On B2 the exit distribution is (X1,K2 − 1) where X1 has its
stationary distribution. The chance of re-entering A across B1 is therefore
small and will be neglected. But then, considering only the possibility of
re-entering A across B2 is tantamount to considering queue 2 in isolation,
and so the contribution to λ must be λ2 to be consistent with the result
for a single queue.

In considering exits onto B1 we have to work. Write j
˜

for the state

(K1 − 1, j), j ≥ 1. Then

Q(A, j
˜
) =

(
1 − a

b1

)(
a

b1

)K1
(

1 − a

b2

)(
a

b2

)j−1

b1

fA(j
˜
) = P (Ω1 ∩ Ω2 | X1(0) = K1 − 1, X2(0) = j),

where Ωu is the event that the chain does
not enter A across Bu in the short term,

= Pj
˜
(Ω1 ∩ Ω2), say.

To calculate Pj
˜
(Ω1) we need only consider queue 1; approximating by

simple asymmetric random walk and using (B2i),

Pj
˜
(Ω1) ≈ 1 − a

b1
.

To estimate Pj
˜
(Ω2), watch queue 2. Given X1(0) = K1 − 1 for large K1,

queue 2 starts out with arrival rate b1. We want the chance, starting at j
that queue 2 reaches K2 in the short term. Approximating by the simple
random walk with up-rate b1 and down-rate b2 gives

Pj
˜
(Ω2) ≈ 1 −

(
b1
b2

)K2−j

.

The dependence between Ω1 and Ω2 is unclear. Noting that more arrivals
make both events less likely, while faster service by server 1 makes Ω1
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more likely but Ω2 less likely, it seems not grossly inaccurate to take them
independent and put

fA(j
˜
) ≈ Pj

˜
(Ω1)Pj

˜
(Ω2).

We can now evaluate
∑

j∈B1
Q(A, j)fA(j), which after a little algebra be-

comes approximately λ1 − λ12. Thus (B19d) yields the estimate (B20c).

Remarks

1. If b1/b2 ≈ 1 our estimate of Pj
˜
(Ω2) breaks down. For b1 = b2 and

K1 = K2 we have λ1 = λ2 and our estimate (B20c) is λ ≈ λ1.
Though this is probably asymptotically correct, since from properties
of symmetric random walk one expects λ = λ1(1+O(K−1/2)), it will
be inaccurate for the practical range of K.

2. λ12 is the rate of “clumps” of visits to A which contain both visits
to {X1 ≥ K1} and visits to {X2 ≥ K2}. It is natural to try to
estimate this directly; for λ12/λ1 = Pρ(X2(t) = K2 for some t in the
short term), where ρ is the hitting distribution of (X1, X2) on A. The
difficulty is estimating ρ.

B21 Another queueing example. We have treated queueing exam-
ples where there is a simple expression for the stationary distribution. Even
where the stationary distribution is complicated, the heuristic can be used
to relate hitting times to the stationary distribution, and thus reduce two
problems to one. Here is a simple example.

Consider two queues, each with Poisson ( 1
2a) arrivals, and one server

with exponential (b) service rate; suppose the server works at one queue
until it is empty and then switches to the other queue. Describe this pro-
cess as (X1(t), X2(t), Y (t)), where Xi = length of queue i and Y ∈ {1, 2}
indicates the queue being served. Here the stationary distribution π is
complicated, but we can easily use the heuristic to estimate, say, T ≡
min{ t : max(X1(t), X2(t))) = K } in terms of π. Indeed, T = TA for
A = {max(X1, X2) ≥ K}. When the process exits A, with server serving
queue 1 say, we must have X1 = K−1 and so we can use the usual random
walk approximation (B2i) to get

fA ≡ PK−1(X1 does not hit K in short term) ≈ 1 − a

2b
.

So by (B17)

ETA
≈ (fAQ(A,AC))−1

≈
(
π(A)

(
b− a

2

))−1

.
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B22 Example: Random regular graphs. Here is another example in
the spirit of (Examples B6–B8). Another well-behaved transient chain X̂n

is simple symmetric random walk on the r-tree, that is on the infinite tree
with r edges at each vertex, and where we take r ≥ 3. It is easy to show
that the mean number of visits to the initial vertex is

Rr =
r − 1

r − 2
. (B22a)

Now consider the set of all graphs which are r-regular (i.e. have r edges at
each vertex) and have N vertices (N large). Pick a graph at random from
this set (see Bollobas (1985) for discussion of such random regular graphs),
and let (Xn) be simple symmetric random walk on this graph. For distinct
vertices i, j, the mean hitting time EiTj has (I assert)

EiTj ≈ N
r − 1

r − 2
, for most pairs (i, j). (B22b)

For the stationary distribution is uniform: π(j) = 1/N . And a property
of random regular graphs is that, with probability → 1 as N → ∞, they
look “locally” like the r-tree. So the chain Xn around j behaves like the
transient walk (X̂n), and our heuristic says EiTj ≈ Rr/π(j), giving (B22b).

COMMENTARY

B23 General references. From the viewpoint of Markov chain theory as
a whole, our topic of hitting times on rare sets is a very narrow topic. Thus,
while there are several good introductory text on Markov chains, e.g., Isaac-
son and Madsen (1976), Hunter (1983), none of them really treat our topic.
At a more advanced level, Keilson (1979) treats Markov chain models with
applications to reliability in a way which partly overlaps with our treatment.
Kelly (1979) describes many models in which the stationary distribution can
be found explicitly using time-reversibility, and which are therefore amenable
to study via our heuristic; this would be a good thesis topic.

B24 Limit theorems for hitting times on rare sets. It is remarkable
that there are at least 4 different ways to study exponential limit theorems.

B24.1 The regeneration method. Successive excursions from a fixed state
i0 in a Markov chain are i.i.d. So the time TA to hit a set A can be regarded as
the sum of the lengths of a geometric number of excursions which do not hit A,
plus a final part of an excursion which does not hit A. As π(A) becomes small,
the contribution from the geometric number of excursions becomes dominant,
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giving an exponential limit. This is formalized in the result below. Let T+
i

denote first return time.

Proposition B24.1 Let (Xn) be an irreducible positive-recurrent Markov
chain with countable infinite state space J and stationary distribution π.
Let (AK) be decreasing subsets of J with

⋂
K AK empty. Fix i0 and let

tK = {π(i0)Pi0(TAK
< T+

i0
)}−1. Then for any fixed initial distribution,

ETAK

tK
→ 1 as K → ∞;

TAK

tK

D→ exponential(1) as K → ∞.

This regeneration technique can be extended to prove similar results for
Harris-recurrent Markov processes on general state spaces; the key fact is that
such processes have a distribution which “regenerates”. See Korolyuk and
Sil’vestrov (1984); Cogburn (1985) for the exponential limit result; and As-
mussen (1987) for the general regeneration idea.

B24.2 The small parameter method. For the second type of limit theorem,
we fix the target set A and vary the process. Here is the simplest result of this
type.

Proposition B24.2 Let Pε, ε > 0 be transition matrices on a finite set
J . Suppose Pε is irreducible for ε > 0; P0 has an absorbing state i0 and
a transient class J \ {i0}; and suppose Pε → P0 as ε ↓ 0. Fix A ∈ J ,
i0 6∈ A. Let Tε be the first hitting time on A, starting at i0 under Pε. Let
tε = (Pi0(Tε < T+

i0
))−1. Then as ε ↓ 0,

ETε

tε
→ 1;

Tε

tε

D→ exponential(1).

Such results have been studied in reliability theory, where one seeks limits as the
ratio failure rate/repair rate tends to 0. Gertsbakh (1984) surveys such results.
Extensions to the continuous time and space setting are more sophisticated
and lead into large deviation theory.

B24.3 The mixing technique. Convergence to stationarity implies a “mix-
ing” property, that events greatly separated in time should be roughly inde-
pendent. One of several possible formalizations of the notion of “the time τ
taken to approach stationarity” is given below. The result says that, for a set
A which is sufficiently rare that its mean hitting time is large compared to τ ,
the hitting time distribution is approximately exponential.

Proposition B24.3 For an irreducible continuous-time Markov chain
with stationary distribution π define

τ = min{ t :
∑

j

|Pi(Xt = j) − π(j)| ≤ e−1 for all i}.
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Then for any A,

sup
t≥0

|Pπ(TA > t) − exp(−t/EπTA)| ≤ ψ

(
τ

ETA

)

where ψ(x) → 0 as x → 0 is an absolute function, not depending on the
chain.

See Aldous (1982; 1983b).

B24.4 The eigenvalue method. The transition matrix of a discrete-time
chain killed on A has a largest eigenvalue 1 − λ for some λ > 0; in con-
tinuous time we get −λ instead. A heuristic used in applications to the natural
sciences is that, for rare sets A, the hitting distribution should be approximately
exponential with rate λ. Chapter M gives more details.

B25 Remarks on formalizing the heuristic. The conclusions of our
heuristic analyses of the examples could be formulated as limit assertions:

as K → ∞, ETK ∼ some specified tK and TK/tK
D→ exponential(1). In

most cases, one can appeal to general theorems like those above to prove
that TK/ETK does indeed converge to exponential. In fact, the regenera-
tive method (section B24.1) yields this in the queueing examples (examples
B3,B4,B9,B19,B20,B21); the small parameter method (section B24.2) in the
reliability example (example B18); and the mixing technique (Section B24.3)
in the doubly-stochastic and i.i.d. examples (Examples B5,B6,B7,B13,B22).
Only for the random trapping example (Example B8) with general R is there
any serious issue in proving asymptotic exponential distributions.

But in working the examples, our main concern was to derive a heuristic
estimate tK of ETK . Proving ETK/tK → 1 as K → ∞ is harder. In fact,
while numerous analytic methods for estimating mean hitting times have been
developed in different contexts (see Kemperman (1961) for a classical treat-
ment), these do not amount to a general theory of asymptotic mean hitting
times. Proving ETK/tK → 1 in our examples requires ad hoc techniques.

This raises the question of whether our heuristic method itself can be formal-
ized. In the context of the mixing technique (Section B24.3) one could make a
precise definition of “local sojourn time” C by cutting off at time τ ; and then
seek bounds on |π(A)EπTA/EC − 1| analogous to that in (B24.3). The au-
thor has unpublished results of this type. But as yet they are not very useful in
real examples since it is hard to pass from our heuristic idea of approximating
by a transient process to the more formal “cut off at τ” definition.

B26 Notes on the examples.
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B26.1 Card-shuffling. For specific methods of shuffling cards, it is of inter-
est to estimate the size of parameters τ representing the number of shuffles
needed to make the deck well-shuffled; see Aldous and Diaconis (1986; 1987)
for surveys, in the more general context of random walks on finite groups.
The specific problems of hitting times were treated probabilistically in Aldous
(1983b) and analytically in Flatto et al. (1985).

B26.2 Random trapping. There is a large physics literature on this subject;
Huber (1983) and den Hollander (1984) are places to start.

B26.3 Coin-tossing, etc.. There is a large literature on the first occurrence
of patterns in coin-tossing and more generally in finite Markov chains; some
recent papers are Li (1980), Gerber and Li (1981), Guibas and Odlyzka (1980),
Blom and Thornburn (1982), Benveneto (1984), Gordon et al. (1986), Biggins
and Cannings (1987). The “long runs” example (Example B14) is treated more
abstractly in Anisimov and Chernyak (1982)

B26.4 Queuing examples. Anantharam (private communication) has done
simulations with Example B20 and found our heuristic estimate to be quite
accurate. It would be an interesting project to extend the ideas in Examples
B9,B20 to more general Jackson networks, and to compare with other esti-
mates. I do not know any survey article on rare events for queuing networks.

The heuristic can be used to approximate optimal buffer allocation: see
Anantharam (1988) for related rigorous arguments.

Morrison (1986) gives a detailed treatment of a model related to our Exam-
ple B19 (timesharing computer).

B27 The “recurrent potential” estimate of mean hitting times.
For an irreducible aperiodic finite-state chain (Xn) with stationary distribution
π, the limits

Zi,j = lim
n→∞

n∑

m=0

(Pi(Xm = j) − π(j)) (B27a)

exist: see e.g. Kemeny and Snell (1959), Hunter (1983). In terms of this “re-
current potential” Z there are some exact formulas for mean hitting times, for
example

EπTj =
Zj,j

π(j)
. (B27b)

The exact expressions are calculable only in very special cases, but can be used
as a starting point for justifying approximations. In the “mixing” setting of
Section B24.3 one can argue that the sum in (B27a) up to n = O(τ) is close
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to its limit; so if τπ(j) is small,

Zj,j ≈
O(τ)∑

m=0

Pj(Xm = j)

and the right side is essentially our mean clump size EjCj .

B28 Time-reversibility. A continuous-time Markov chain is reversible if
the stationary distribution π satisfies the detailed balance equations

π(i)Q(i, j) = π(j)Q(j, i); all i 6= j.

This concept has both practical and theoretical consequences. The practical
use is that for a reversible chain it is usually easy to find π explicitly; indeed,
for complicated chains it is unusual to be able to get π explicitly without the
presence of reversibility or some related special property. Kelly (1979) has many
examples. Although reversibility is at first sight an “equilibrium” property, it has
consequences for short-term behavior too. The special structure of reversible
chains is discussed extensively in Keilson (1979).

B29 Jitter. At (B17) we gave one formulation of the ergodic-exit form of
the heuristic for mean hitting times:

ETA ≈ 1

fAQ(A,AC)
.

A small variation of this method, using (A9f), gives

ETA ≈ EN

Q(A,AC)
(B29a)

for Q(A,AC) as in (B17), and where N is the number of entries into A during
a clump of visits to A. Keilson (1979) calls the EN > 1 phenomenon “jitter”,
and uses (B29a) to estimate mean hitting times in some queueing and reliability
examples similar to ours. Clearly (B29a) is related to (B17) — crudely, because
if after each exit from A there were chance fA of not re-entering locally, then
N would be geometric with mean 1/fA, although the exact connection is more
subtle. But (B17) seems more widely useful than (B29a).

B30 First hitting place distribution. Equations (B12a), used for find-
ing the hitting time on place for small A, can be “solved” as follows. Suppose
we approximate X around A by a transient chain X̂ and estimate EiCj as

Zi,j = Êi(total number of visits to j). In vector-matrix notation, (B12a)

is λZ = π. But Z = (I − R)−1, where Ri,j = P̂i(XS = j, S < ∞) for

S = min{n ≥ 1 : X̂n ∈ A }. And so λ = π(I − R). Of course, such “solu-
tions” are not very useful in practice, since it is not easy to calculate R.
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B31 General initial distribution. Our basic heuristic is designed for
stationary processes, so in estimating mean hitting times we are really estimat-
ing EπTA. We asserted at (B2iii) that EµTA ≈ EπTA for any initial distribution
µ not close to A. To say this more sharply, from initial distribution µ there is
some chance qµ that the chain hits A in time o(EπTA); given this does not
happen, the distribution of TA is approximately that obtained by starting with
π. In other words,

Pµ(TA > t) ≈ (1 − qµ) exp(−t/EπTA) for t 6= o(EπTA); (B31a)

EµTA ≈ (1 − qµ)EπTA. (B31b)

This can be formalized via limit theorems in the settings described in Sec-
tion B24.

We can use the approximation above to refine our heuristic estimates. Con-
sider the basic single server queue (Example B3), and consider EjTK for
j < K. Approximating by the random walk, qj ≡ Pj(hit K in short term) ≈
(a/b)K−j . Then (B31b) and the previous estimate of EπTK give

EjTK ≈ b(b− a)−2

((
b

a

)K

−
(
b

a

)j )
. (B31c)

and our heuristic has picked up the second term of the exact expression.

B32 Compound Poisson approximation for sojourn times in 1-
dimensional processes. For simple random walk Z in continuous time with
up-rate a and down-rate b > a, the total sojourn time at 0 has an exponential
distribution. So for 1-dimensional processes X whose behavior around high
levels can be heuristically approximated by simple random walk, (A4f) says the
sojourn time Leb{ t : 0 ≤ t ≤ T,X(t) = x } at a high level x is approximately
compound Poisson where the compounded distribution is exponential. In the
birth-and-death contest this is easy to formalize; see Berman (1986a). It is per-
haps more natural to consider sojourn time { t : 0 ≤ t ≤ T,X(t) ≥ x } spent
at or above a high level x. Here the natural compound Poisson approximation
involves the sojourn time in [0,∞) for simple random walk:

C = Leb{ t ≥ 0 : Z(t) ≥ 0 }.

This C is closely related to the busy period B in the M/M/1 queue: precisely,
C is the sum of a geometric number of B’s. From standard results about B
(e.g., Asmussen (1987) III.9) one can obtain formulas for the transform and
distribution of C; these are surely well-known, though I do not know an explicit
reference.



C
Extremes of
Stationary Processes

Consider a stationary real-valued process (Xn;n ≥ 1) or (Xt; t ≥ 0). Time
may be discrete or continuous; the marginal distribution may be discrete
or continuous; the process may or may not be Markov. Let

Mn = max
1≤j≤n

Xj ; Mt = sup
0≤s≤t

Xs.

We shall study approximations to the distribution of M for large n, t. Note
this is precisely equivalent to studying hitting times

Tb = min{ t : Xt ≥ b }.
For P (Mt < b) = P (Tb > t), at least under minor path-regularity assump-
tions in the continuous case. It turns out that the same ideas allow us to
study boundary crossing problems, i.e.

T = min{ t : Xt ≥ b(t) } for prescribed b(t).

It also turns out that many non-stationary processes can be made approxi-
mately or exactly stationary by deterministic space and time changes (e.g.,
Brownian motion can be transformed into the Ornstein-Uhlenbeck process),
and hence we can study boundary-crossings for such processes also.

This is a large area. We divide it by deferring until Chapter D problems
involving “locally Brownian” processes; i.e. diffusions, Gaussian processes
similar to the Ornstein-Uhlenbeck process, and other processes where to
do calculations we resort to approximating the process locally by Brownian
motion with drift.

C1 Classical i.i.d. extreme value theory. Suppose (Xi; i ≥ 1) are
i.i.d. Write

F (x) = P (X1 ≤ x); F (x) = P (X > x).

Of course we can write down the exact distribution of Mn:

P (Mn ≤ x) = Fn(x). (C1a)

Seeking limit theorems for Mn is prima facie quite silly, since the purpose
of limit theorems is to justify approximations, and we don’t need approxi-
mations when we can write down a simple exact result. However, it turns
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out that the limit behavior of Mn for dependent sequences (where the exact
distribution can’t be written down easily) is often closely related to that for
i.i.d. sequences. Thus we should say a little about the classical i.i.d. theory,
even though (as will become clear) I regard it as a misleading approach to
the real issues.

Classical theory seeks limit theorems of the form

Mn − cn
sn

D→ ξ (non-degenerate) (C1b)

where cn are centering constants and sn are scaling constants. In freshman
language, Mn will be around cn, give or take an error of order sn. Again,
seeking limits of form (C1b) is prima facie rather silly: for sums, means
and variances add, so linear renormalization is natural; for maxima there
is no intrinsic linear structure and therefore no natural reason to consider
linear rescalings, while the non-linear rescaling provided by the inverse
distribution function reduces the general case to the trivial U(0, 1) case.
It is merely fortuitous that many common distributions do admit limits of
form (C1b). It turns out that only 3 essentially different limit distributions
can occur: the extreme value distributions

ξ
(α)
1 : support (−∞, 0), P (ξ1 ≤ x) = exp(−(−x)α), x < 0.

ξ
(α)
2 : support [0,∞), P (ξ2 ≤ x) = exp(−x−α), x > 0.

ξ3 : support (−∞,∞), P (ξ3 ≤ x) = exp(−e−x).

(C1c)

where 0 < α <∞.
The complete theory of which distributions F are “attracted” to which

limit law is given in Galombos (1978); unlike central limit theory for sums,
this involves only elementary but tedious real analysis. We shall merely
record some examples to illustrate the qualitatively different types of be-
havior. Note that, since F (x) = 1 − nF (x)/n, (C1a) implies

P (Mn ≤ x) ≈ exp(−nF (x)), (C1d)

and then to prove (C1b) the only issue is to show

nF (cn + sny) → − log P (ξ ≤ y) as n→ ∞; y fixed. (C1e)

In concrete examples, such as the following, this is just easy calculus.

C2 Examples of maxima of i.i.d. sequences.

1. Take X1 uniform on [−1, 0]. Then

nMn
D→ ξ

(1)
1 ;

so the centering is cn = 0 and the scaling is sn = n−1.
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2. If X is discrete and has some maximum possible value x0, then

P (Mn = x0) → 1.

3. If X1 (discrete or continuous) has F (x) ∼ Ax−α as x→ ∞, then

Mn

sn

D→ ξ
(α)
2 ; sn = (An)1/α.

Note here the scaling constants sn → ∞.

4. Take X1 such that P (X1 > x) ∼ exp(−x1/2). Then

Mn − cn
sn

D→ ξ3; cn = log2(n), sn = 2 log n.

Here the centering and scaling both → ∞.

5. Take X1 continuous and such that P (X1 > x) ∼ A exp(−bx). Then

Mn − cn
sn

D→ ξ3; cn = b−1 log(An), sn = b−1.

Note here the scaling is constant.

6. Take X1 integer-valued and such that P (X1 > u) ∼ Aρu. Then the
limit theorem for Mn is

max
u

|P (Mn ≤ u) − exp(−nAρu)| → 0 as n→ ∞.

This limit theorem cannot be put into form (C1b). Let cn be the
integer closest to log(An)/ log(1/ρ); then Mn − cn is tight as n→ ∞,
but discreteness forces “oscillatory” rather than convergent behavior.

7. Take X1 continuous and such that P (X1 > x) ∼ A exp(−q(x)) for
some polynomial q of degree ≥ 2. Then

Mn − cn
sn

D→ ξ for some cn → ∞, sn → 0.

In the particular case where X1 has standard Normal distribution,

cn = (2 logn)
1
2 − 1

2
(2 logn)−

1
2 (log(4π) + log log n)

sn = (2 logn)−
1
2

will serve. Note here that sn → 0; contrary to what is familiar from
the central limit theorem, the distribution of Mn becomes less spread
out as n increases.
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8. Take X1 to have Poisson(θ) distribution: P (X1 = u) = e−θθu/u! =
p(u) say. Then Mn satisfies the limit theorem

max
u

∣∣P (Mn ≤ u) − exp(nF (u))
∣∣→ 0 as n→ ∞,

but this cannot be put into form (C1b). Let cn be the integer u > θ
for which | log(np(u))| is smallest; then P (Mn = cn or cn + 1) → 1.

C3 The point process formulation. The analytic story above has a
probabilistic counterpart which is more informative and which extends to
dependent processes. Given a function φ(x) ≥ 0, we can define an associated
“time-space” non-homogeneous Poisson process on R2 with intensity φ(x);
that is, the chance of a point falling in [t, t+ dt] × [x, x+ dx] is φ(x) dt dx.
Let N1, N2, N3, be the Poisson processes associated with the following
functions.

N1 : φ1(x) = α(−x)α−1, x < 0 (0 < α <∞)
= 0, x > 0

N2 : φ2(x) = αx−α−1, x > 0 (0 < α <∞)
= 0, x < 0

N3 : φ3(c) = e−x.

Define the maximal processes

ξu(t) = max{x : (s, x) ∈ Nu for some s ≤ t }. (C3a)

Then

P (ξu(t) ≤ x) = P (Nu ∩ [0, t] × (x,∞) empty)

= exp(−t
∫ ∞

x

φ(y) dy)

=





exp(−t(−x)α) in case u = 1
exp(−tx−α) in case u = 2
exp(−te−x) in case u = 3

.

In particular, the ξu(1) have the extreme value distribution (C1c). Next,
let Lc,s: R → R be the linear map

Lc,s(x) = c+ sx (C3b)

and let L−1
c,sbe the inverse map x → (x − c)/s. These maps act on point

processes in a natural way: Lc,s(N ) has a point at (t, c+ sx) whenever N
has a point at (t, x). Similarly, let τn : [0,∞) → [0,∞) map t→ nt; let τ−1

n

map t→ t/n, and let these maps act on point processes too.
Finally, note that any sequence (Xi; i ≥ 1) of random variables can be

regarded as a point process NX with points (i,Xi). We can now state the
probabilistic version of (C1b).
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Lemma C3.1 Let (Xi) be i.i.d. Then

(Mn − cn)/sn
D→ ξu iff τ−1

n L−1
cn,sn

(NX)
D→ Nu.

(There is a natural notion of convergence in distribution for point processes)

Informally, (C1b) says that Mn
D≈ cn + snξu; whereas (C3.1) says that

NX
D≈ τnLcn,sn(Nu). This is much more informative than (C1b), since for

instance one can write down the distribution of positions and heights of the
K highest points x of Nu in [0, t]×R, and then (C3.1) gives the asymptotic
distribution of the K largest values in (X1, . . . , Xn) and their positions.

C4 The heuristic for dependent extrema. Consider now a station-
ary discrete or continuous time process (Xt). Assume an (informally stated)
property of “no long-range dependence”. That is, the value Xt may depend
strongly on Xs for s near t, but for some large τ the value Xt does not de-
pend much on (Xs : |s− t| > τ). This notion can be formalized in terms of
mixing conditions. The theoretical literature tends to be dominated by the
technical issues of formulating mixing conditions and verifying them in par-
ticular settings, thus disguising the fact that the conclusions are intuitively
rather easy; establishing this last fact is our goal.

To say the heuristic, fix b such that F (b−) ≡ P (Xt ≥ b) is small and
consider the random set Sb ≡ { t : xt ≥ b }. Pretend Sb is a mosaic process
with some clump rate λb and clump size Cb, related by the fundamental
identity λbECb = P (t ∈ Sb) = F (b−). The three events “Mt < b”, “Tb > t”
and “Sb∩ [0, t] empty” are essentially the same, and the last has probability
≈ exp(−tλb) by the Poisson property. Thus our heuristic approximation is

P (Mt < b) = P (Tb > t) ≈ exp(−tλb), where λb =
F (b−)

ECb
=

P (Xt ≥ b)

ECb
.

(C4a)
In working examples, we will merely estimate λb, leaving the reader to
insert it into (C4a) and obtain the approximation to the distribution of
Mt or Tb. It is possible to go from (C4a) to a limit assertion of the form

(Mt − ct)/st
D→ ξu but from a practical viewpoint this is rather pointless,

since our aim is to get an approximation for the distribution of Mt and
(C4a) does this directly.

C5 Autoregressive and moving average sequences. Let (Yi) be
i.i.d. and let (ci) be constants. If

∑∞
i=0 ciYi converges (in particular, if

EY1 = 0, var(Y1) <∞ and
∑
c2i <∞), then the moving average process

Xn =

∞∑

i=0

ciYn−i (C5a)
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is a stationary process. In general (Xn) is not Markov, but the particular
case

Xn =

∞∑

i=0

θiYn−i (|θ| < 1) (C5b)

is Markov; this is the autoregressive process

Xn = θXn−1 + Yn. (C5c)

It is not entirely trivial to determine the explicit distribution of X1 from
that of Y1; we shall assume the distribution of X1 is known. To use (C4a)
to approximate the distribution of Mn = max(X1, . . . , Xn), the issue is to
estimate ECb. We treat several examples below.

C6 Example: Exponential tails. Suppose P (X1 > x) ∼ A1e
−ax as

x → ∞; under mild conditions on (ci), this happens when P (Y1 > y) ∼
A2e

−ay. We shall argue that for large b, ECb ≈ 1, implying that the max-
imum Mn behaves asymptotically as if the X’s were i.i.d.; explicitly

λb ≈ A1e
−ab; P (Mn < b) ≈ exp(−nAe−ab). (C6a)

To show ECb ≈ 1, it will suffice to show

given X0 > b, it is unlikely that any of (X1, X2, . . . ) are
≥ b in the short term.

(C6b)

Note that, writing X̂0 for the distribution of X0 − b given X0 > b, the
exponential tail property implies that for large b,

X̂0
D≈ exponential(a). (C6c)

Consider first the autoregressive case (C5c). Write (X̂u;u ≥ 0) for the

conditional distribution of (Xu− b) given X0 > b. Then (X̂u) is distributed
exactly like (θnb − b + X ′

u), where (X ′
u) is a copy of the autoregressive

process (C5c) with X ′
u = X̂0. Since (X ′

0) does not depend on b, while for
u ≥ 1 we have θnb − b → −∞ as b → ∞, it follows that for large b the
process (X̂u;u ≥ 1) will stay negative in the short term, establishing (C6b).

Consider now a more general finite moving average process (C5a) with
c1 > c2 > c3 > · · · > ck > 0. Writing θk = max ci+1/ci we have

Xn ≤ θkXn−1 + Yn,

and the argument above goes through to prove (C6b).
For more general moving averages these simple probabilistic arguments

break down; instead, one resorts to analytic verification of (C7a) below.
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C7 Approximate independence of tail values. The example above
exhibits what turns out to be fairly common in discrete-time stationary se-
quences; the events {Xn > b}, n ≥ 0, become approximately independent
for large b and hence the maximum Mn is asymptotically like the maxi-
mum of i.i.d. variables with the same marginal distribution. The essential
condition for this is

P (Xu > b | X0 > b) → 0 as b→ ∞; u fixed (C7a)

(more carefully, we need a “local sum” over small u of these conditional
probabilities to tend to 0). Heuristically, this implies ECb ≈ 1 (because

EC̃b ≈ 1, in the notation of Section A6) and hence via (C4a)

P (Mn < b) ≈ exp(−nP (X1 ≥ b)). (C7b)

There is no difficulty in formalizing this result under mixing hypotheses
(Section C31). From our viewpoint, however, this is the “uninteresting”
case where no clumping occurs; our subsequent examples focus on “in-
teresting” cases where clumping is present. Note that this “approximate
independence” property is strictly a discrete-time phenomenon, and has no
parallel in continuous time (because the discrete lower bound C ≥ 1 has
no parallel in continuous time).

Returning to the discussion of autoregressive and moving average pro-
cesses, in the setting of Section C5, let us mention two other cases.

C8 Example: Superexponential tails. If P (Y1 > y) → 0 faster than
exponentially (in particular, in the Gaussian case), then (C7a) holds and
again the asymptotic maxima behave as if (Xn) were i.i.d. In fact, in the

autoregressive case one can argue as in Example C6; here X̂0
D→ 0 as b→ ∞.

C9 Example: Polynomial tails. Suppose P (Y1 > y), P (Y1 < −y) ∼
Ay−α as y → ∞. The moving average (C5a) exists if

∑
cαi < ∞, and it

can be shown that

P (X1 > x) ∼ A
(∑

cαi

)
x−α. (C9a)

The extremal behavior of (Xn) turns out to be very simple, but for a
different reason than in the cases above. For (C9a) says

P
(∑

ciYn−i > x
)
≈
∑

i

P (ciYn−i > x), (C9b)

which leads to the important qualitative property: the sum Xn =
∑
ciYn−i

is large iff the maximal summand is large, and then Xn ≈ max(ciYn−i).
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Now write c = max ci, and fix b large. Then this qualitative property implies
that each clump of times n such that Xn > b is caused by a single value
Yn > b/c. Thus the clump rate λb for X is just

λb = P (Yn > b/c) ≈ A(b/c)−α, (C9c)

and so

P (max
i≤n

Xi > b) ≈ P (max
i≤n

Yi > b/c) ≈ exp(−nλb) ≈ exp(−nAcαb−α).

(C9d)
This argument does not use our clumping heuristic, but it is interesting to
compare with a slightly longer argument which does. Suppose c = c0 for
simplicity. Condition on a clump of visits of X to [b,∞) starting at time n0.
The qualitative property and the polynomial tails imply that, conditionally,

Xn0
≈ cYn0

; cYn0

D≈ bV where P (V > v) = v−α, v ≥ 1. (C9e)

The following terms Xn0+u are dominated by the contribution from Yn0
:

Xn0+u ≈ cuYn0

D≈
(
bcu
c

)
V.

So the clump size Cb is approximately the number of u ≥ 0 for which
(bcu/c)V ≥ b, that is for which V ≥ c/cu. So

ECb =
∑

u≥0

P (V ≥ c/cu) = c−α
∑

i

cαi . (C9f)

Our heuristic (C4a) is

λb =
P (X1 ≥ b)

ECb

≈ Acαb−α by (C9a) and (C9f),

and this recovers the same rate as the previous argument for (C9c).

C10 The heuristic for dependent extrema (continued). Return-
ing to the discussion of Section C4, our concern is to obtain estimates of
the rate λb of clumps of times n that Xn ≥ b in a discrete-time stationary
process without long-range dependence. In cases where clumping does in-
deed occur (as opposed to (C7a) which implies it doesn’t), the most useful
form of the heuristic is the ergodic-exit method (Section A9), which gives

λb = fbP (X ≥ b) (C10a)

where fb is the probability, given X0 ≥ b, that in the short term X1, X2, . . .
are all < b. In the context of limit theorems we typically have fb → f
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as b → ∞. In this case, f is the extremal index of the process: see e.g.
Leadbetter and Rootzen (1988). Its interpretation is that the maximum
of the first n values of the process behaves like the maximum of fn i.i.d.
variables.

The following setting provides a nice application.

C11 Additive Markov processes on [0,∞). Let (Yn) be i.i.d. con-
tinuous random variables with EY < 0. Let (Xn) be a Markov process on
state space [0,∞) such that

P (Xn+1 = x+ Yn+1 | Xn = x) → 1 as x→ ∞.

More precisely, let (Xn) have transition kernel P ∗(x,A) such that

sup
A⊂[0,∞)

|P ∗(x,A) − P (x+ Y ∈ A)| → 0 as x→ ∞.

Call such processes additive Markov. In particular, this happens if

Xn+1 = Xn + Yn+1 whenever Xn + Yn+1 ≥ 0.

Informally, Xn evolves as sums of i.i.d. variables when it is away from 0, but
has some different “boundary behavior” around 0. Under weak conditions
on the boundary behavior, a stationary distribution for X exists.

Here are some examples.

C11.1 Waiting times in a G/G/1 queue. Consider a G/G/1 queue with
Un = time between arrivals of (n−1)’st customer and n’th customer; Vn =
service time of n’th customer. Let Xn = waiting time of n’th customer.
Then

Xn+1 = (Xn + Vn − Un+1)
+.

This is an additive process with Y = V − U .

C11.2 Sojourn times in a G/G/1 queue. In the setting above, let X̂n be
the total (waiting + service) time customer n spends in the system. Then

X̂n+1 = (X̂n − Un+1)
+ + Vn+1.

Again this is an additive process with Y = V − U ; but the boundary
behavior is different from the previous example.

C11.3 Storage/dam models. A simple model for a reservoir of capacity b
assumes the inflow Un and demand Vn in the n’th period are such that (Un)
and (Vn) are i.i.d., EU > EV . Let Xn be the unused capacity at the end
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of the n’th period (Xn = 0 indicates the reservoir is full, Xn = b indicates
it is empty). Then

Xn+1 = Xn − Un+1 + Vn+1

except for boundary conditions at 0 and b. If we are only interested in the
time Tb until the reservoir becomes empty, then the boundary conditions
at b are irrelevant and can be removed, giving an additive process.

C11.4 A special construction. Suppose Y is such that there exists some
θ > 0 with

E exp(θY ) = 1. (C11a)

Then there exists a prescription of boundary behavior which makes the sta-
tionary distribution ofX exactly exponential(θ). For if Z has exponential(θ)
distribution, then Z+Y has density g(x) such that g(x) ≤ θe−θx on x ≥ 0.
Normalize h(x) = θe−θx − g(x), x ≥ 0, to make it the density of some
distribution µ. Then

P ∗(x,A) = P (x+ Y ∈ A) + µ(A) · P (x+ Y < 0)

is the transition kernel of an additive process with exponential(θ) stationary
distribution.

C11.5 Stationary distributions. For a general additive process the exact
stationary distribution is complicated. But it turns out (see Section C33)
that under condition (C11a) the tail of the stationary distribution X0 is of
the form

P (X0 > x) ∼ D exp(−θx). (C11b)

The constant D depends on the boundary behavior, but θ depends only on
the distribution of Y .

C11.6 The heuristic analysis. We can now use the heuristic for extrema
of the stationary process (Xn). Define

M = max
n≥0

( n∑

i=1

Yi

)
≥ 0, interpreting the “n = 0” sum as 0. (C11c)

Fix b large and condition on X0 ≥ b. Then Z = X0 − b has approximately
exponential(θ) distribution, by (C11b). And (Xn;n ≥ 0) behaves locally
like (b+ Z +

∑n
i=1 Yi;n ≥ 0). Thus in (C10a) we estimate

fb = f = P (Z +
n∑

i=1

Yi < 0 for all n ≥ 1)

= P (Z + Y +M < 0) by separating the Y1 term;(C11d)
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In (C11d) we take (Z, Y,M) independent with Z
D
= exponential(θ), Y the

additive distribution and M as at (C11c). Then (C10a) gives

λb = fD exp(−θb), (C11e)

and as usual we can substitute into (C4a) to get approximations
for max(X1, . . . , Xn) or Tb.
Note that f , like θ, depends only on Y and not on the boundary behavior.

Although (C11e) is less explicit than one would like, it seems the best one
can do in general. One can estimate f numerically; for some boundary
conditions there are analytic expressions for D, while one could always
estimate D by simulation.

C12 Continuous time processes: the smooth case. We now start
to study extremes of continuous-time stationary processes (Xt; t ≥ 0). Here
the notion of “Xt i.i.d. as t varies” is not sensible. Instead, the simplest
setting is where the process has smooth sample paths. So suppose

the velocity Vt = dXt/dt exists and is continuous; (C12a)

(Xt, Vt) has a joint density f(x, v). (C12b)

Fix a level x. Every time the process hits x it has some velocity V ; by
(C12b) we can neglect the possibility V = 0, and assume that every hit on
x is part of an upcrossing (V > 0) or a downcrossing (V < 0). Define

ρx = rate of upcrossings of level x (C12c)

gx(v) = density of V at upcrossings of level x. (C12d)

More precisely, let V1, V2, . . . be the velocities at successive upcrossings of x;
then gx(v) is the density of the limiting empirical distribution of (Vi). This
is not the same as the distribution of (Xt, Vt) given Xt = x and Vt > 0. In
fact the relation is given by

Lemma C12.1 Under conditions (C12a-C12d) above,

f(x, v) = ρxv
−1gx(v). (C12e)

In particular, (C12e) implies

ρx =

∫ ∞

0

vf(x, v) dv = E(V +
t | Xt = x)fX(x) (C12f)

gx(v) = ρ−1
x vf(x, v). (C12g)
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These are exact, not approximations; (C12f) is the classical Rice’s formula.
The nicest proof uses the ergodic argument. An upcrossing with velocity
v spends time v−1 dx in [x, x + dx]. So associated with each upcrossing
is a mean time (gx(v) dv)(v−1 dx) for which X ∈ [x, x + dx] and V ∈
[v, v + dv]. So the long-run proportion of time for which X ∈ [x, x + dx]
and V ∈ [v, v+ dv] is ρx(gx(v) dv)(v−1 dx). But this long-run proportion is
f(x, v) dx dv by ergodicity.

There is an alternative, purely “local”, argument — see Section C34.

C12.1 The heuristic for smooth processes. For a process (Xt) as above,
the heuristic takes the form: for b large,

P (Mt ≤ b) = P (Tb ≥ t) ≈ exp(−tρb). (C12h)

To see this, note that each clump of time t that Xt ≥ b consists of a number
Nb of nearby intervals, and then (A9f) says the clump rate λb is related to
the upcrossing rate ρb by

λb =
ρb

ENb
.

For smooth processes one invariably finds ENb ≈ 1 for b large, so λb ≈ ρb,
and then the usual assumption of no long-range dependence leads to the
exponential form of (C12h).

This heuristic use (C12h) of Rice’s formula is standard in engineering
applications. The simplest setting is for Gaussian processes (Section C23)
and for “response” models like the following.

C13 Example: System response to external shocks. Consider a
response function h(t) ≥ 0, where h(0) = 0, h(t) → 0 rapidly as t → ∞,
and h is smooth. Suppose that a “shock” at time t0 causes a response
h(t− t0) at t ≥ t0, so that shocks at random times τi cause total response
Xt =

∑
τi≤t h(t− τi), and suppose we are interested in the maximum Mt.

If the shocks occur as a Poisson process then Xt is stationary and

(X0, V0)
D
=

(∑

τi>0

h(τi),
∑

τi>0

h′(τi)

)
.

In principle we can calculate ρb from (C12f) and apply (C12h).

Curiously, Rice’s formula seems comparatively unknown to theoreticians,
although it is often useful for obtaining bounds needed for technical pur-
poses. For it gives a rigorous bound for a smooth continuous-time stationary
process:

P (max
s≤t

Xs ≥ b) ≤ P (X0 ≥ b) + tρb. (C13a)
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Because

P (max
s≤t

Xs ≥ b) − P (X0 ≥ b) = P (U ≥ 1),

where U is the number of upcrossings over b during [0, t];

≤ EU

= t ρb.

Indeed, the result extends to the non-stationary case, defining ρb(t) as at
(C12f) using the density ft of (Xt, Vt):

P (max
s≤t

Xs ≥ b) ≤ P (X0 ≥ b) +

∫ t

0

ρb(s) ds. (C13b)

C14 Example: Uniform distribution of the Poisson process. A
standard type of application of probability theory to pure mathematics
is to prove the existence of objects with specified properties, in settings
where it is hard to explicitly exhibit any such object. A classical example
is Borel’s normal number theorem. Here is a related example. For real
x, t > 0 let x mod t be the y such that x = jt + y for some integer j and
0 ≤ y < t. Call a sequence xn → ∞ uniformly distributed mod t if as
n → ∞ the empirical distribution of {x1 mod t, . . . , xn mod t} converges
to the uniform distribution on [0, t). Call (xn) uniformly distributed if it is
uniformly distributed mod t for all t > 0. It is not clear how to write down
explicitly some uniformly distributed sequence. But consider the times (τi)
of a Poisson process of rate 1; we shall sketch a (rigorous) proof that (τi)
is, with probability 1, uniformly distributed.

Let H be the set of smooth, period 1 functions h: R → R such that∫ 1

0
h(u) du = 0. Let ht(u) = h(u/t). The issue is to show that, for fixed

h ∈ H,

sup
1≤t≤2

n−1
n∑

i=1

ht(τi) → 0 a.s. as n→ ∞. (C14a)

For then the same argument, with [1, 2] replaced by [δ, 1/δ], shows

P

(
n−1

n∑

i=1

ht(τi) → 0 for all t

)
= 1;

extending to a countable dense subset of H establishes the result. To prove
(C14a), first fix t. The process τi mod t is a discrete-time Markov process
on [0, t). Large deviation theory for such processes implies

P

(
n−1

n∑

i=1

ht(τi) > ε

)
≤ A exp(−Bn); all n ≥ 1 (C14b)
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where the constants A <∞, B > 0, depend on h, ε and t; but on 1 ≤ t ≤ 2
we can take the constants uniform in t. Now fix n and consider

Xn(t) = n−1
n∑

i=1

ht(τi); 1 ≤ t ≤ 2

as a random continuous-time process. We want to apply (C13b). Since
τn/n→ 1 a.s., we can assume τn ≤ 2n. Then

V n(t) =
d

dt
Xn(t) ≤ 2Cn; C = sup h′(u) <∞.

Applying (C12f) and (C13b) gives ρb ≤ 2CnfXt(b) and

P ( max
1≤t≤2

Xn(t) ≥ b) ≤ P (Xn(1) ≥ b) + 2Cn

∫ 2

1

fXn
t
(b) dt.

Integrating b over [ε, 2ε) gives

εP ( max
1≤t≤2

Xn(t) ≥ 2ε) ≤ P (Xn(1) ≥ ε) + 2Cn

∫ 2

1

P (Xn(t) ≥ ε) dt.

Now (C14b) implies (C14a).

C15 Drift-jump processes. Above, we studied continuous-time pro-
cesses with smooth paths. In Chapter B we saw some continuous-time
integer-valued Markov chains, which moved only by jumping. In this sec-
tion we consider another class of continuous-time processes, which move
both continuously and with jumps.

Let (ξt) be a compound Poisson counting process. So ξt =
∑

n≤Nt
Yn,

where (Yn) are i.i.d. with some distribution Y , and Nt is a Poisson process
of some rate ρ. Let r(x) be a continuous function. We can define a Markov
process Xt by

dXt = −r(Xt) dt+ dξt. (C15a)

In other words, given Xt = x we have Xt+dt = x − r(x) dt + Yη, where
P (η = 1) = ρ dt and P (η = 0) = 1 − ρ dt. Under mild conditions, a
stationary distribution exists. The special case r(x) = ax is the continuous-
time analog of the autoregressive sequence (C5c); the special case r(x) = a
is the analog of the additive sequences (Section C11), at least when Xt is
constrained to be non-negative.

The special cases, and to a lesser extent the general case, admit explicit
but complicated expressions for the stationary distribution and mean hit-
ting times (Section C35). Our heuristic makes clear the asymptotic relation
between these quantities: here are some examples. Let

f(x) be the density of the stationary distribution X0; (C15b)

Ma = sup
t≥0

(ξt − at) (C15c)

g(a, ξ) = P (Ma = 0). (C15d)
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C16 Example: Positive, additive processes. Here we consider
(C15a) with r(x) = a and Y > 0. Consider clumps C of time spent in
[b,∞), for large b. Clumps end with a continuous downcrossing of b which
is not followed by any jump upcrossing of b in the short term. The rate
of downcrossings is af(b); the chance a downcrossing is not followed by an
upcrossing is approximatedly g(a, ξ); hence the primitive form (Section A9)
of the ergodic-exit estimate of clump rate is

λb = af(b)g(a, ξ). (C16a)

C17 Example: Signed additive processes. If in the example above
we allow Y to be negative, the argument above is inapplicable because
clumps may end with a jump downcrossing of b. But let us consider the
setting analogous to Section C11; suppose there exists θ > 0 such that

E exp(θ(ρY − a)) = 1. (C17a)

Then as in Section C11 we expect

P (X0 > b) ∼ D exp(−θb) as b→ ∞. (C17b)

The rate of jump downcrossing of b is ρP (X0 ≥ b,X0 + Y < b). A down-
crossing to X0 + Y causes a clump end if X0 + Y +Ma < b. Thus the rate
λJ

b of clump ends caused by jump downcrossing is

λJ
b = ρP (X0 ≥ b,X0 + Y +Ma < b).

Writing Z for an exponential(θ) variable, and using (C17b) and its impli-

cation that (X0 − b | X0 ≥ b)
D≈ Z, gives

λJ
b = ρD exp(−θb)P (Z + Y +Ma < 0).

Adding the expression (C16a) for the rate λc
b of clump ends caused by

continuous downcrossings, we find

λb = De−θb (aθg(a, ξ) + ρP (Z + Y +Ma < 0)) . (C17c)

C18 Positive, general drift processes. Consider now the case of Sec-
tion C15 where Y > 0 and r(x) > 0. Around b, the process Xt can be
approximated by the process with constant drift −a = r(b), and then the
argument for (C16a) gives

λb = r(b)f(b)g(r(b), ξ). (C18a)

Now consider the case where r(x) → ∞ as x → ∞. For large a, there is a
natural approximation for g(a, ξ) which considers only the first jump of ξ;

g(a, ξ) ≈ P (Yi ≤ aτ), where τ
D
= exponential(ρ)
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= E exp(−ρY/a)

≈ 1 − ρEY

a
.

Thus in the case where r(x) → ∞ as x→ ∞, (C18a) becomes: for large b,

λb ≈ f(b)(r(b) − ρEY ) (C18b)

≈ f(b)r(b), to first order. (C18c)

For a simple explicit example, consider the autoregressive case r(x) = ax
and take Y to have exponential(β) distribution. Then the stationary density
works out as

f(x) =
βρ/ae−βxxρ/a−1

(ρ/a− 1)!
.

By rescaling space and time, we can take ρ = β = 1. Then our estimate of
the mean first hitting time Tb is

ETb ≈ λ−1
b

≈ (f(b)(ab− 1))−1 using (C18b)

≈ (a−1)!

(
1 +

1

ab

)
b−1/aeb. (C18d)

It turns out (Section C35) that this approximation picks up the first two
terms of the exact asymptotic expansion of ETb as b→ ∞.

C19 Autoregressive symmetric stable process. In Section C15 we
can replace the compound Poisson process (ξt) by a more general “pure
jump” process with stationary independent increments. A natural example
is the symmetric stable process (ξt) of exponent 1 < α < 2:

E exp(iθξt) = exp(−t|θ|α).

This has the properties

ξt
D
= t1/αξ1;

P (ξ1 > x) ∼ Kαx
−α as x→ ∞; (C19a)

Kα = (α− 1)!π−1 sin(απ/2)

Consider the autoregressive case r(x) = ax of Section C15; that is

Xt =

∫ ∞

0

e−as dξt−s.

Then the stationary distribution X0 is also symmetric stable:

X0 = (αa)−1/αξ1. (C19b)
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The stationary autoregressive process (Xt) here is the continuous-time ana-
log of Example C9; the arguments at (C9), modified appropriately, give

λb ≈ P (ξ1 ≥ b) ≈ Kαb
−α. (C19c)

Here is an amusing, less standard example.

C20 Example: The I5 problem. In driving a long way on the freeway,
what is the longest stretch of open road you will see in front of you? To
make a model, suppose vehicles pass a starting point at the times of a
Poisson(α) process, and have i.i.d. speeds V with density fV (v). You drive
at speed v0. Let Xt be the distance between you and the nearest vehicle in
front at time t; we want an approximation for Mt = maxs≤tXs.

The first observation is that, at a fixed time, the positions of vehicles
form a Poisson process of rate β, where

β = αE(1/V ). (C20a)

The rate calculation goes as follows. Let NL be the number of vehicles in
the spatial interval [0, L]. A vehicle with speed v is in that interval iff it
passed the start within the previous time L/v. The entry rate of vehicles
with speeds [v, v + dv] is αf(v) dv, so

ENL =

∫ ∞

0

L

v
αf(v) dv.

This gives formula (C20a), for the rate β. The Poisson property now implies

P (Xt > x) = exp(−βx). (C20b)

Next, consider the diagram below which shows the trajectories of the
other vehicles relative to you. Consider the “pass times”, that is the times
that a faster vehicle (shown by an upward sloping line) passes you, or a
slower vehicle (downward sloping line) is passed by you. The pass times
form a Poisson process of rate

α̂ = αE
∣∣∣1 − v0

V

∣∣∣ . (C20c)

To argue this, suppose you start at time 0. Consider a vehicle with speed
v > v0. It will pass you during time [0, t] iff it starts during time [0, t −
tv0/v]. The entry rate of vehicles with speeds [v, v + dv] is αf(v) dv, so
the mean number of vehicles which pass you during time [0, t] is

∫∞

v0
t(1 −

v0/v)αf(v) dv. A similar argument works for slower vehicles, giving (C20c).
Fix b ≥ 0. Let Cb have the distribution of the length of time intervals

during which X > b (the thick lines, in the diagram). As at Section A9
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FIGURE C20a.

let C+
b be the distribution of the future time interval that X > b, given

X0 > b; that is,

C+
b = min{ t > 0 : Xt ≤ b } given X0 > b.

The key fact is

the distribution C+
b does not depend on b. (C20d)

For an interval { t : Xt > b } ends when either a line upcrosses 0 or a line
downcrosses b; and these occur as independent Poisson processes whose
rate does not depend on b, by spatial homogeneity.

From (C20c) we know that C0 and C+
0 have exponential(α̂) distributions,

so (C20d) implies C+
b and hence Cb have exponential(α̂) distribution, and

ECb =
1

α̂
. (C20e)

So far we have exact results. To apply the heuristic, it is clear that for
b large the clumps of time that Xt > b tend to be single intervals, so
we can identify the clump size with Cb. So applying directly our heuristic
fundamental identity gives the clump rate λb as

λb =
P (X0 > b)

ECb
= α̂ exp(−βb) (C20f)

and then P (Mt ≤ b) ≈ exp(−tλb) as usual.
In the original story, it is more natural to think of driving a prescribed

distance d, and to want the maximum length of open road M(d) during
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the time t = d/v0 required to drive this distance. Putting together our
estimates gives the approximation

P (M(d) ≤ b) ≈ exp

(
−dαE

∣∣∣∣
1

V
− 1

v0

∣∣∣∣ exp(−αbE(1/V ))

)
. (C20g)

It is interesting to note that, as a function of v0, M(d) is smallest when
v0 = median(V ).

C21 Approximations for the normal distribution. Our final topic
is the application of Rice’s formula to smooth Gaussian processes. It is con-
venient to record first some standard approximations involving the Normal
distribution. Write φ(x) = (2π)−1/2 exp(−x2/2) for the standard Normal
density; implicit in this is the integral formula

∫ ∞

−∞

exp(−ax2) dx =
(π
a

) 1
2

. (C21a)

Write Z for a r.v. with Normal(0,1) distribution and Φ(x) = P (Z ≥ x).
Then

Φ(b) ≈ φ(b)

b
for b large (C21b)

and there is an approximation for the “overshoot distribution”:

distribution(Z − b | Z ≥ b) ≈ exponential(b). (C21c)

Both (C21b) and (C21c) are obtained from the identity

φ(b+ u) = φ(b)e−bue−
1
2
u2

by dropping the last term to get the approximation

φ(b+ u) ≈ φ(b)e−bu; b large, u small. (C21d)

This is the most useful approximation result, and worth memorizing. Next,
let f(t) have a unique minimum at t0, with f(t0) > 0 and φ(f(t0)) small,
and let f(t) and g(t) be smooth functions with g > 0; then

∫ ∞

−∞

g(t)φ(f(t)) dt ≈ g(t0) (f(t0)f
′′(t0))

− 1
2 exp(−f2(t0)/2). (C21e)

This is obtained by writing

f(t0 + u) ≈ f(t0) +
1

2
f ′′(t0)u

2; u small

φ(f(t0 + u)) ≈ φ(f(t0)) exp(−f(t0)
1

2
f ′′(t0)u

2) using (C21d),
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and then approximating g(t) as g(t0) and evaluating the integral by (C21a).
Here we are using Laplace’s method: approximating an integral by expand-
ing the integrand about the point where its maximum is attained. We use
this method at many places throughout the book.

Finally,

E|Z| = 2Emax(0, Z) =

(
2

π

) 1
2

. (C21f)

C22 Gaussian processes. A process Xt is Gaussian if its finite-
dimensional distributions are multivariate Normal. Here we record some
standard facts about such processes. If X is Gaussian then its entire dis-
tribution is determined by the mean function

m(t) = EXt

and the covariance function

R(s, t) = cov(Xs, Xt).

Unless otherwise specified, we will take m(t) ≡ 0. We can then specify
conditional distributions simply:

given Xs = x, the distribution of Xt is Normal with mean
xR(s, t)/R(s, s) and variance R(t, t) −R2(s, t)/R(s, s).

(C22a)

For a stationary Gaussian process we have R(s, t) = R(0, t − s), and so
we need only specify R(0, t) = R(t), say. Also, for a stationary process we
can normalize so that R(t) = varXt ≡ 1 without loss of generality. Such a
normalized process will be called smooth if

R(t) ∼ 1 − 1

2
θt2 as t→ 0; some θ > 0. (C22b)

(Of course this is shorthand for 1−R(t) ∼ 1
2θt

2). Smoothness corresponds
to the sample paths being differentiable functions; writing Vt = dXt/dt ≡
lim δ−1(Xt+δ −Xt) it is easy to calculate

EVt = 0; EVtXt = 0; EV 2
t = θ

and hence (for each fixed t)

Vt has Normal(0, θ) distribution and is independent of Xt. (C22c)

Here we will consider only smooth Gaussian processes: others are treated
in the next chapter.
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C23 The heuristic for smooth Gaussian processes. Let Xt be as
above, a mean-zero Gaussian stationary process with

R(t) ≡ EX0Xt ∼ 1 − 1

2
θt2 as t→ 0. (C23a)

For b > 0 Rice’s formula (C12f) gives an exact expression for the upcrossing
rate ρb over b:

ρb = E(V +
t | Xt = b)fXt(b)

= θ
1
2 (2π)−

1
2φ(b) using (C22c). (C23b)

As at (C12h), the heuristic idea is that for large b the clumps of S = { t :
Xt ≥ b } will consist of single intervals (see Section C25) and so we can
identify the clump rate λb with the upcrossing rate (for large b):

λb = θ
1
2 (2π)−

1
2φ(b). (C23c)

As usual, the heuristic then gives

P ( max
0≤s≤t

Xs ≤ b) ≈ exp(−λbt); t large. (C23d)

To justify the corresponding limit assertion, we need a condition that
R(t) → 0 not too slowly as t→ ∞, to prevent long-range dependence.

The heuristic also gives an approximation for sojourn times. Let C have
standard Rayleigh distribution:

fC(x) = xe−
1
2
x2

, x ≥ 0. (C23e)

We shall show in Section C25 that the clump lengths Cb of { t : Xt ≥ b }
satisfy

Cb
D≈ 2θ−

1
2 b−1C. (C23f)

Let S(t, b) be the sojourn time of (Xs : 0 ≤ s ≤ t) in [b,∞) Then as at
Section A19 the heuristic gives a compound Poisson approximation:

1

2
θ

1
2 bS(t, b)

D≈ POIS(tλbdistribution(C)). (C23g)

C24 Monotonicity convention. Here is a trivial technical point,
worth saying once. Our heuristic for maxima Mt = max0≤s≤tXs typically
takes the form

P (Mt ≤ b) ≈ exp(−λbt), t large (C24a)

where there is some explicit expression for λb. The corresponding limit
assertion, which in most cases is an established theorem in the literature,
is

sup
b

|P (Mt ≤ b) − exp(−λbt))| → 0 as t→ ∞. (C24b)
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There is a slight problem here, exemplified by the previous example; the
formula (C23c) for λb has λb → 0 as b → −∞, and the approximation
(C24a) is wrong for large negative b. This has no real significance, since
in using the heuristic we specify that b be large positive, but it does make
(C24b) formally incorrect. We can make (C24b) correct by adopting the
monotonicity convention: whenever we derive a formula for clump rates
λb (in the context of maxima), let b0 be the smallest real such that λb is
decreasing for b > b0, and re-define λb = λb0 for b < b0. This makes λb

monotone and assertion (C24b) takes on a legitimate form.

C25 High-level behavior of smooth Gaussian processes. Return-
ing to the setting of Section C23, we can calculate

E(Vt − V0 | X0 = b) ∼ −θbt as t→ 0
var(Vt − V0 | X0 = b) = O(t2) as t→ 0.

So given X0 and V0 with X0 = b, large, we have

Vt = V0 − (θb+O(1))t as t→ 0

and so, integrating,

Xt = b+ V0t− ( 1
2θb+O(1))t2 as t→ 0

In other words, givenX0 = b large, the local motion ofXt follows a parabola

Xt ≈ b+ V0t−
1

2
θbt2; t small. (C25a)

This implies the qualitative property that clumps of { t : Xt ≥ b } are single
intervals for large b; it also enables us to estimate the lengths Cb of these
intervals as follows. Given X0 = b and V0 = v > 0, (C25a) implies that
Cb ≈ the solution t > 0 of vt− 1

2θbt
2 = 0, that is Cb ≈ 2v/(θb). Thus

Cb
D≈ 2V
θb

; where V is the velocity at an upcrossing of b. (C25b)

Using Rice’s formula (C12g), V has density

g(v) = vfV0
(v)

φ(b)

ρb

= vfV0
(v)θ−

1
2 (2π)

1
2 by (C23b)

= vθ−1 exp

(−v2/2

θ

)
using (C22c).

Thus

V
D
= θ

1
2C; where C has Rayleigh distribution (C23e) (C25c)

and then (C25b) and (C25c) give Cb
D≈ 2θ−1/2b−1C, as stated at (C23f).



66 C25. High-level behavior of smooth Gaussian processes.

C26 Conditioning on semi-local maxima. At Section A7 we dis-
cussed this technique for the M/M/1 queue: here is the set-up for a sta-
tionary continuous space and time processXt. There are semi-local maxima
(t∗, x∗), where x∗ = Xt∗ , whose rate is described by an intensity function
L(x) as follows:

P

(
some semi-local maximum
(t∗, x∗) in [t, t+dt]×[x, x+dx]

)
= L(x) dx dt. (C26a)

The heuristic idea is that at high levels the point process of semi-local
maxima can be approximated by the Poisson point process of rate L(x)
(recall Section C3 for space-time Poisson point processes). Each clump of
{ t : Xt ≥ b } corresponds to one semi-local maximum of height > b, and so
the clump rate λb relates to L(x) via

λb =

∫ ∞

b

L(x) ds; L(x) =
−dλx

dx
. (C26b)

Now suppose the process around a high-level semi-local maximum of height
x can be approximated by a process Zx:

given (t∗, x∗) is a semi-local maximum, Xt∗+t ≈ x∗ − Zx∗

t

for t small.
(C26c)

Supposing Zx∗

t → ∞ as |t| → ∞, writem(x, y) for its mean sojourn density:

m(x, y) dy = E sojourn time of (Zx
t ;−∞ < t <∞) in (y, y+dy). (C26d)

Writing f for the marginal density of Xt, the obvious ergodic argument as
at Section A7 gives

f(y) =

∫ ∞

y

L(x)m(x, x− y) dx. (C26e)

Thus if we are able to calculate m(x, y) then we can use (C26e) to solve
for L(x) and hence λx; this is our heuristic technique “conditioning on
semi-local maxima”.

Let us see how this applies in the smooth Gaussian case (Section C23).
By (C25a) the approximating process Zx is

Zx
t =

1

2
θt2. (C26f)

It follows that m(x, y) = ( 1
2θxy)

−1/2. So (C26e) becomes

φ(y) =

∫ ∞

y

L(x)

(
1

2
θx(x− y)

)− 1
2

dx. (C26g)
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We anticipate a solution of the form L(x) ∼ a(x)φ(x) for polynomial a(x),
and seek the leading term of a(x). Writing x = y + u, putting φ(y + u) ≈
φ(y)e−yu and recalling that polynomial functions of y vary slowly relative
to φ(y), (C26g) reduces to

1 ≈ a(y)

(
θy

2

)− 1
2
∫ ∞

0

u−
1
2 e−yu du

which gives a(y) ≈ θ1/2(2π)−1/2y. So by (C26b),

λx = θ
1
2 (2π)−

1
2

∫ ∞

x

yφ(y) dy

= θ
1
2 (2π)−

1
2φ(x).

This recovers the clump rate obtained earlier(C23c) using Rice’s formula.
We don’t get any new information here; however, in the multiparameter
setting, this “conditioning on semi-local maxima” argument goes over un-
changed (Example J7), and is much easier than attempting to handle mul-
tiparameter analogues of upcrossings.

C27 Variations on a theme. Restating our basic approximation for
stationary mean-zero Gaussian processes with EX0Xt ∼ 1 − 1

2θt
2:

P ( max
0≤s≤t

Xs ≤ b) ≈ exp(−λbt); λb = θ
1
2 (2π)−

1
2φ(b). (C27a)

There are many variations on this basic result: three are treated concisely
below. These type of variations are of more interest in the context of “locally
Brownian” processes, and in that context are treated at greater length in
the next chapter.

First, suppose we make the process non-stationary but keep the variance
at 1, so that

EXtXt+u ∼ 1 − 1

2
θtu

2 as u→ 0.

Then we have a non-stationary clump rate λb(t), and (C27a) becomes

P ( max
0≤s≤t

Xs ≤ b) ≈ exp

(
−(2π)−

1
2φ(b)

∫ t

0

θ
1
2
s ds

)
. (C27b)

Second, suppose we are back in the stationary case, but are interested in
a slowly sloping barrier b(t) with b(t) large. Then Rice’s formula gives the
rate at t for upcrossings of X(t) over b(t):

ρb(t) =

∫
(v − b′(t))+f(b, v) dv

= E(Vt − b′(t))+φ(b(t))

≈
(

(2π)−
1
2 θ

1
2 − 1

2
b′(t)

)
φ(b(t)) if b′(t) small.
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Then

P (Xs does not cross b(s) during [0, t]) ≈ exp(−
∫ t

0

ρb(s) ds). (C27c)

Thirdly, consider a mean-zero smooth Gaussian process Xt on t1 ≤ t ≤ t2
such that varXt = σ2(t) is maximized at some t0 ∈ (t1, t2). Let θ(t) = EV 2

t .
We can use the heuristic to estimate the tail of M ≡ maxt1≤t≤t2 Xt. Indeed,
writing ρb(t) for the upcrossing rate over a high level b, and identifying ρ
with the clump rate and using (A10f),

P (M > b) ≈
∫ t2

t1

ρb(t) dt. (C27d)

Rice’s formula (C12f) gives

ρb(t) = E(V +
t | Xt = b)fXt(b)

≈
(
θ(t0)

2π

) 1
2

σ−1(t0)φ

(
b

σ(t)

)
for t ≈ t0,

after some simple calculations. Evaluating the integral via (C21e) gives

P (M > b) ≈
(
θ(t0)σ(t0)

−2πσ′′(t0)

) 1
2

b−1 exp

(−b2/2
σ2(t0)

)
; b large. (C27e)

C28 Example: Smooth X 2 processes. For 1 ≤ i ≤ n let Xi(t) be
independent stationary mean-zero Gaussian processes as in Section C23,
that is with

Ri(t) ∼ 1 − 1

2
θt2 as t→ 0.

Let Y 2(t) =
∑n

i=1X
2
i (t). Then Y 2 is a stationary process with smooth

paths and with X 2 marginal distribution: this is sometimes calls a X 2 pro-
cess. Studying extremes of Y 2 is of course equivalent to studying extremes
of Y , and the latter is more convenient for our method. Y has marginal
distribution

fY (y) =

(
1

2

)a

yn−1 e
− 1

2
y2

a!
; a =

1

2
(n− 2).

Regard X(t) as a n-dimensional Gaussian process. As in the 1-dimensional
case (C22c), the velocity V (t) = (V1(t), . . . , Vn(t)) is Gaussian and inde-
pendent of X(t) at fixed t. Now Y (t) is the radial distance of X(t); let
V (t) be the velocity of Y (t). By rotational symmetry, the distribution of V
given Y = b is asymptotically (b → ∞) the same as the distribution of V1

given X1 = b. Thus we can use Rice’s formula for upcrossings of Y over b:

λb ≈ ρb = fY (b)E(V + | Y = b) ≈ fY (b)E(V +
1 | X1 = b)

≈ θ
1
2 (2π)−

1
2 fY (b) using (C22c).
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Then as usual
P (sup

s≤t
Y (s) ≤ b) ≈ exp(−λbt).

We can also use the heuristic to study the minimum of Y (t), but we leave
this as an exercise for the reader.

COMMENTARY

C29 General references. The natural theoretical reference is the mono-
graph by Leadbetter et al. (1983) supplemented by the survey article of Lead-
better and Rootzen (1988). A different theoretical perspective is given by the
survey paper Berman (1982b) and subsequent papers of Berman (see refer-
ences). Resnick (1987) emphasizes the point process approach. On the applied
side, the survey by Abrahams (1984b) has an extensive bibliography; the mono-
graph by Vanmarcke (1982) uses the heuristic. The conference proceedings ed.
de Oliveira (1984) and Gani (1988) give an overview of current interests in
theory and applications.

C30 Proving limit theorems. As for Markov chains (Section B24), to
formalize the “asymptotic Poisson” property (Section C3) of extrema is easier
than justifying explicit estimates of the normalizing constants (clump rates λb).
This “asymptotic Poisson” property can be proved

(i) under mixing hypotheses: Leadbetter et al (1983), Berman (1982b);

(ii) by representing the process as a function of a general-space Markov
chain, and exploiting the regenerative property: O’Brien (1987), Rootzen
(1988);

(iii) by exploiting special structure (e.g. Gaussian).

The known general methods of computing normalizing constants are essen-
tially just formalizations of various forms of the heuristic.

Under regularity conditions, the classical extremal distributions (C1c) are the
only possible limits (under linear rescaling) for maxima of dependent stationary
sequences: see Leadbetter (1983).

C31 Approximate independence of tails. The idea that (C7a) im-
plies EC ≈ 1 and thus that maxima behave as if the X’s were i.i.d. is easy to
formalize: this is essentially condition D′ of Leadbetter et al. (1983).
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C32 Moving average and autoregressive processes. Extremes for
these processes have been studied in some detail in the theoretical literature.
See Rootzen (1978) and Davis and Resnick (1985) for the polynomial-tail case;
and Rootzen (1986) for the case P (Y > y) ∼ exp(−ya), a > 0.

C33 Additive processes. The G/G/1 queue has been studied analyt-
ically in much detail; a central fact being that its stationary distribution is
related to M at (C11c). Prabhu (1980) and Asmussen (1987) are good intro-
ductions. Iglehart (1972) treats its extremal behavior.

The point of the heuristic approach is to make clear that the relation (C11e)
between the stationary distribution and the extremal behavior is true for the
more general class of additive processes, and has nothing to do with the special
structure of the G/G/1 queue. There seems no literature on this, not even a
proof of the tail behavior (C11b). Informally, (C11b) holds because

1. the stationary probability P (X0 > b) is proportional to the mean sojourn
time above b in an “excursion” from the boundary;

2. this mean sojourn time is proportional to the probability that an excursion
hits [b,∞);

3. this probability is proportional to e−θb because (C11a) implies Mn =
eθXn is a martingale when X is away from the boundary.

Martingale arguments are readily used to establish rigorous bounds on mean
hitting times to high levels; see e.g. Hajek (1982), Yamada (1985).

C34 Rice’s formula. Leadbetter et al. (1983), Theorem 7.2.4, give a
precise formulation. Vanmarcke (1982) gives applications.

The “local” argument for Rice’s formulation goes as follows. For t small,

P (X0 < b,Xt > b) =

∫

x<b

∫

v>0

P (Xt > b | X0 = x, V0 = v)f(x, v) dx dv

≈
∫

x<b

∫

v>0

1(x+vt>b)f(x, v) dx dv

=

∫

v>0

vtf(b, v) dv.

So the upcrossing rate is ρb = d
dtP (X0 < b,Xt > b) =

∫
v>0

vf(b, v) dv.
Our “uniform distribution” example (Example C14) is surely well known, but

I do not know a reference. The large deviation results used can be deduced
from more general results in Varadhan (1984).
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C35 Drift-jump processes. Asmussen (1987) Chapter 13 contains an
account of these processes. The special case at (C18d) is treated by Tsurui
and Osaki (1976).

C36 Single-server queues. There are innumerable variations on single-
server queueing models. Even for complicated models, our heuristic can relate
hitting times to the stationary distribution; the difficulty is to approximate the
stationary distribution. Some analytic techniques are developed in Knessl et al
(1985; 1986b; 1986a).

C37 The ergodic-exit form of the heuristic. The method (C10a)
of estimating clump rate as P (X0 ≥ b)fb has been formalized, in the con-
text of functions of general-space Markov chains, by O’Brien (1987). In the
continuous-time setting, see Section D38.

C38 Smooth Gaussian processes. Most of the material in Sections
C22–C26 is treated rigorously in Leadbetter et al. (1983).

Processes with a point of maximum variance (C27e) are treated by Berman
(1987).

Smooth X 2 processes have been studied in some detail: see Aronowich and
Adler (1986) for recent work.

C39 Normalizing constants. In the context of Gaussian processes, our
heuristic conclusions correspond to limit assertions of the form

sup
x

∣∣P (Mt ≤ x) − exp(−taxbφ(x))
∣∣→ 0 as t→ ∞, (C39a)

with the usual monotonicity convention (Section C24). Putting this in the
classic form gives

Mt − ct
st

D→ ξ3 as t→ ∞, (C39b)

where ξ3 has double-exponential extreme value distribution,

st = (2 log t)−
1
2

ct = (2 log t)
1
2 + (2 log t)−

1
2

(
log(a/

√
2π) +

1

2
b log(2 log t)

)
.

C40 Multivariate extremes. There is some theoretical literature on d-
dimensional extreme value distributions, generalizing (C1c), and the corre-
sponding classical limit theorems: see e.g. Leadbetter and Rootzen (1988).
But I don’t know any interesting concrete examples. Chapter I treats multidi-
mensional processes, but with a different emphasis.



D
Extremes of Locally
Brownian Processes

This chapter looks at extrema and boundary crossings for stationary and
near-stationary 1-dimensional processes which are “locally Brownian”. The
prototype example is the Ornstein-Uhlenbeck process, which is both Gaus-
sian and Markov. One can then generalize to non-Gaussian Markov pro-
cesses (diffusions) and to non-Markov Gaussian processes; and then to more
complicated processes for which these serve as approximations. In a differ-
ent direction, the Ornstein-Uhlenbeck process is a time and space-change
of Brownian motion, so that boundary-crossing problems for the latter can
be transformed to problems for the former: this is the best way to study
issues related to the law of the iterated logarithm.

D1 Brownian motion. We assume the reader has some feeling for stan-
dard Brownian motion Bt and for Brownian motion Xt with constant drift
µ and variance σ2:

Xt = µt+ σBt. (D1a)

In fact, most of our calculations rest upon one simple fact, as follows. For
A ⊂ R, let Γ(A) be the total length of time that (Xt; t ≥ 0) spends in A.
Then

lim
δ↓0

δ−1E0Γ(0, δ) =
1

|µ| ; µ 6= 0. (D1b)

In words: the sojourn density of X at its starting point equals 1/drift.
Occasionally we use facts about sojourn times in the half-line. Let µ < 0.

Given X0 = 0, Γ(0,∞)
D
= σ2/µ2 · Γ, where Γ is a standardized random

variable satisfying

mean: EΓ =
1

2
(D1c)

second moment: EΓ2 = 1 (D1d)

transform: E exp(−θΓ) = 2((1 + 2θ)
1
2 + 1)−1 (D1e)

density: fΓ(x) = 2x−
1
2φ(x

1
2 ) − 2Φ(x

1
2 ) (D1f)

where φ and Φ are the standard Normal density and tail probability. See
Section D40 for derivations.
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D2 The heuristic for locally Brownian processes. Let (Xt) be a
stationary, continuous-path process with marginal density fX . Take b such
that P (Xt > b) is small. Suppose X has the property

Given Xt = x, where x ≈ b, the incremental process
(Xt+u−x;u ≥ 0) evolves for small u like Brownian motion
with drift −µ(b) and some variance.

(D2a)

This is our “locally Brownian” property. Now apply the heuristic to the
random set S = { t : Xt ∈ (b, b+ δ) }. By (D2a) the clumps behave like the
corresponding clumps for Brownian motion with drift −µ(b), so by (D1b)
the mean clump length is EC = δ/µ(b). Since

p ≡ P (t ∈ S) = δfX(b),

the fundamental identity λb = p/EC gives the clump rate

λb = fX(b)µ(b). (D2b)

So if we define

Mt = sup
0≤s≤t

Xs; Tb = inf{ t : Xt = b }

then the heuristic approximation (Section A4) is

P (Mt ≤ b) = P (Tb > t) ≈ exp(−λbt). (D2c)

This simple result, and its analogues for non-stationary processes and
curved boundaries b(t), covers most of the examples in this chapter.

We can also get the compound Poisson approximation for sojourn times
above a fixed level. Let σ2(b) be the local variance in (D2a). Let S(t, b)
be the total sojourn time of (Xu : 0 ≤ u ≤ t) above level b. Then as at
Section A19

S(t, b)
D≈ POIS(ν) for ν = tλbdistribution(Cb). (D2d)

Here Cb has the distribution, described in Section D1, of Γ(0,∞) for Brow-
nian motion with drift −µ(b) and variance σ2(b): that is,

Cb
D
=
σ2(b)

µ2(b)
· Γ, for Γ as in Section D1.

Using the transform formula for compound Poisson (Section A19) and the
transform formula for Γ (D1e), we can write

E exp(−θS(t, b)) ≈ exp(−tfX(b)µ(b)ψ(b, θ)), (D2e)

where
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ψ(b, θ) = 1 − 2((1 + 2θµ2(b)/σ2(b))
1
2 + 1)−1.

In the examples we will usually state only the simpler results corresponding
to (D2c).

Two final comments on the heuristic assumption (D2a). First, if we in-
terpret “locally Brownian” in the asymptotic (u → 0) sense, we need to
specify that the local drift µ(Xs) should not change much during a typical
excursion above level b. Second, we do not need to explicitly assume the
Markov property: “given Xt = x . . .” really does mean “given Xt = x . . .”
and not “given Xt = x and the past Xs, s ≤ t . . .”. The point is that we
could use the ergodic-exit form (Section A9) of the heuristic in place of the
renewal-sojourn form (Section A8), and this requires no explicit Markov
property.

D3 One-dimensional diffusions. One-dimensional diffusions are
a tractable class of processes for which explicit calculations are feasible.
For this reason, heuristic arguments are somewhat redundant. However, to
illustrate the heuristic it seems sensible to start out with the simplest cases;
and we need some diffusion results later. So below we give a concise listing of
some basic results about diffusions, and in (D4) give the heuristic estimate
of hitting time distributions. Karlin and Taylor (1982) Chapter 15 is an
excellent introduction to diffusions, and this book [KT] may be consulted
for the results stated below.

By a diffusion Xt, t ≥ 0, I mean a continuous path Markov process such
that, writing ∆Xt = Xt+∆t −Xt,

E(∆Xt | Xt = x) ≈ µ(x)∆t
var(∆Xt | Xt = x) ≈ σ2(x)∆t

as ∆t→ 0 (D3a)

where µ(x) and σ2(x) are nice functions (continuous will do), and σ2(x) >
0. The role of these functions is the same as the role of the transition
matrix in a discrete chain — they, together with the initial distribution,
determine the distribution of the whole process. By a version of the central
limit theorem (applied to infinitesimal increments), (D3a) is equivalent to
the stronger property

distribution(∆Xt | Xt = x) ∼ Normal(µ(x)∆t, σ2(x)∆t) as ∆t→ 0.
(D3b)

Call µ the drift function, σ2 the variance function. Regard these as given; we
are interested in computing probabilities associated with the corresponding
diffusion Xt.

Notation: Px( ), Ex( ) mean “given X0 = x”,
Ta is the first hitting time on a;
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Ta,b is the first hitting time on {a, b}. Define, for −∞ < x <∞,

s(x) = exp(−
∫ x

0

2µ(y)

σ2(y)
dy)

S(x) =

∫ x

0

s(y) dy

m(x) = (σ2(x)s(x))−1

M(a, b) =

∫ b

a

m(x) dx.

(D3c)

S(·) is the scale function, m(·) the speed density, M(dx) the speed measure.
In the integrations defining s and S, we could replace “0” by any x0 without
affecting the propositions below.

Proposition D3.1 (KT p.195) Let a < x < b.

Px(Tb < Ta) =
S(x) − S(a)

S(b) − S(a)
.

Next, consider the diffusion Xt started at x ∈ (a, b) and run until time Ta,b.
The mean total time spent in (a, y) in this period is

Γa,b(x, y) = Ex

∫ Ta,b

0

1(Xt<y) dt.

The derivative

Ga,b(x, y) =
d

dy
Γa,b(x, y); a < y < b (D3d)

is the mean occupation density at y; informally, Ga,b(x, y)∆y is the mean
time spent in (y, y + ∆y) by the process Xt started at x and run until it
exits (a, b). One reason this quantity is useful is

ExTa,b =

∫ b

a

Ga,b(x, y) dy (D3e)

Proposition D3.2 (KT p.198) Ga,b(x, y) is given by the formulas

2(S(x) − S(a))(S(b)− S(y))

S(b) − S(a)
m(y) a < x ≤ y < b

2(S(b) − S(x))(S(y)− S(a))

S(b) − S(a)
m(y) a < y ≤ x < b.

Call a diffusion positive-recurrent if ExTy <∞ for all x, y. As with discrete-
space chains, this is equivalent to the existence of a stationary distribution
π.
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Proposition D3.3 (KT p.221) A diffusion is positive-recurrent if and
only if M(−∞,∞) < ∞. The stationary distribution has density π(dx) =
m(x) dx/M(−∞,∞).

Finally, we specialize some of these results to the Brownian case.

Proposition D3.4 Let Xt be Brownian motion with drift −µ and variance
σ2.

Px(Tb < Ta) =
exp(2µx/σ2) − exp(2µa/σ2)

exp(2µb/σ2) − exp(2µa/σ2)
, a < x < b (D3f)

Px(sup
t≥0

Xt > x+ z) = exp(−2µz/σ2), z ≥ 0 (D3g)

ExTa =
x− a

µ
, a < x (D3h)

G−∞,∞(x, y) =
1

µ
, y ≤ x

=
exp(−2µ(y − x)/σ2)

µ
, x ≤ y

(D3i)

Ex(total sojourn time of Xt, t ≥ 0, in [x,∞)) =
σ2

2µ2
. (D3j)

D4 First hitting times for positive-recurrent diffusions. There
are explicit conditions for positive-recurrence (D3.3) and an explicit form
for the stationary density π. For such a diffusion, fix b such that the station-
ary probability of (b,∞) is small. Then our heuristic (Section D2) should
apply, and says that the first hitting time Tb satisfies

Tb
D≈ exponential(λb); λb = −µ(b)π(b). (D4a)

Equivalently, we have an approximation for maxima:

P (max
s≤t

Xs ≤ b) ≈ exp(−λbt), b large, (D4b)

and (D2d) gives the compound Poisson approximation for sojourn time
above b. These approximations should apply to the stationary process, or
to the process started with any distribution not near b. How good are these
approximations? The exponential limit law

Tb

ETb

D→ exponential(1) as b→ ∞ (D4c)

is easy to prove (Section D37) under no assumptions beyond positive-
recurrence. So the issue is the mean ETb. Now for a diffusion we can
improve the heuristic (D2b) as follows. The factor “µ(b)” in (D2b) arises
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as (occupation density at b)−1, where we used the occupation density for
an approximating Brownian motion with drift. But for a diffusion we can
use the true occupation density (D3.2) for the diffusion (killed on reach-
ing some point x0 in the middle of the stationary distribution, say). Then
(D2b) becomes

λb =
π(b)

Gx0,∞(b, b)
. (D4d)

Using ETb = λ−1
b , these two approximations (D4a),(D4d) become

ETb ≈ M(∞,∞)σ2(b)
s(b)

|µ(b)| (D4e)

ETb ≈ 2M(∞,∞)(S(b)− S(x0)). (D4f)

Let us compare these heuristic estimates with the exact formula given by
(D3e,D3.2), which is

ExTb = 2(S(b) − S(x))M(−∞, x) + 2

∫ b

x

(S(b) − S(y))m(y) dy. (D4g)

Taking limits in this exact formula,

ExTb ∼ 2M(−∞,∞)S(b) as b→ ∞ (D4h)

which certainly agrees asymptotically with the heuristic (D4f). To relate
(D4h) to (D4e), if σ(·) and µ(·) are not changing rapidly around b then the
definition of s(x) gives

s(b− u)

s(b)
≈ exp

(
u · 2µ(b)

σ2(b)

)
for small u ≥ 0.

Then if µ(b) < 0 the definition of S(·) gives

S(b)

s(b)
≈ 1

2

σ2(b)

−µ(b)

which reconciles (D4e) and (D4h). From a practical viewpoint, it is more
convenient to use (D4e), since it avoids the integral defining S(b); from
the theoretical viewpoint, (D4f) is always asymptotically correct, whereas
(D4e) depends on smoothness assumptions.

D5 Example: Gamma diffusion. The diffusion on range (0,∞) with
drift and variance

µ(x) = a− bx, σ2(x) = σ2x

occurs in several contexts, e.g. as a limit of “birth, death and immigration”
population processes. From (D3.3) the stationary distribution works out to
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be a gamma distribution

π(x) = cx−1+2a/σ2

exp

(−2bx

σ2

)
.

So for x in the upper tail of this distribution, (D4a) says

Tx has approximately exponential distribution, rate (bx− a)π(x). (D5a)

As discussed above, this is an example where it is helpful to be able to
avoid calculating the integral defining S(x).

D6 Example: Reflecting Brownian motion. This is the diffusion on
range [0,∞) with drift −µ and variance σ2 and with a reflecting boundary
(see Karlin and Taylor [KT] p.251) at 0. This diffusion arises e.g. as the
heavy traffic limit for the M/M/1 queue. The stationary distribution is
exponential:

π(x) = 2µσ−2 exp

(−2µx

σ2

)
. (D6a)

So for x in the upper tail of this distribution, (D4a) says

Tx has approximately exponential distribution, rate
2µ2σ−2 exp(−2µx/σ2).

(D6b)

D7 Example: Diffusions under a potential. Given a smooth func-
tion H(x), we can consider the diffusion with

µ(x) = −H ′(x); σ2(x) = σ2.

Call H the potential function. Such diffusions arise as approximations in
physics or chemical models: the process Xt might represent the energy of
a molecule, or the position of a particle moving under the influence of a
potential and random perturbations (in the latter case it is more realistic to
model the potential acting on velocity; see Section I13). Provided H(x) →
∞ not too slowly, as |x| → ∞, (D3.3) gives the stationary density

π(x) = c exp

(−2H(x)

σ2

)
; c the normalizing constant. (D7a)

Now suppose H has a unique minimum at x0. Then for b in the upper tail
of the stationary distribution, (D4a) gives

Tb
D≈ exponential, rate H ′(b)π(b). (D7b)
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If H is sufficiently smooth, we can get a more explicit approximation by
estimating c using the quadratic approximation to H around x0:

c−1 =

∫
exp

(−2H(x)

σ2

)
dx

= exp

(−2H(x0)

σ2

)∫
exp

(−2(H(x0 + u) −H(x))

σ2

)
du

≈ exp

(−2H(x0)

σ2

)∫
exp

(−u2H ′′(x0)

σ2

)
du

= σ

(
π

H ′′(x0)

) 1
2

exp

(−2H(x0)

σ2

)
.

So (D7a) becomes

π(x) ≈ σ−1

(
H ′′(x0)

π

) 1
2

exp

(−2(H(x) −H(x0))

σ2

)
. (D7c)

This makes explicit the approximation (D7b) for Tb.

D8 Example: State-dependent M/M/1 queue. Take service rate
= 1 and arrival rate = a(i) when i customers are present, where a(x) is a
smooth decreasing function. This models e.g. the case where potential ar-
rivals are discouraged by long waiting lines. We could consider this process
directly by the methods of Chapter B; let us instead consider the diffusion
approximation Xt. Let x0 solve

a(x0) = 1 (D8a)

so that x0 is the “deterministic equilibrium” queue length: for a continuous-
space approximation to be sensible we must suppose x0 is large. The natural
diffusion approximation has

µ(x) = a(x) − 1; σ(x) = a(x) + 1.

We shall give an approximation for the first hitting time Tb on a level b > x0

such that

1 − a(b) is small;

∫ b

x0

(1 − a(x)) dx is not small. (D8b)

This first condition implies we can write σ2(x) ≈ 2 over the range we are
concerned with. But then we are in the setting of the previous example,
with potential function

H(x) =

∫ x

(1 − a(y)) dy.
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The second condition of (D8b) ensures that b is in the tail of the stationary
distribution, and then (D7b, D7c) yield

Tb has approximately exponential distribution, rate

λb = (1 − a(b))

(−a′(x0)

2π

) 1
2

exp

(
−
∫ b

x0

(1 − a(x)) dx

)
(D8c)

D9 Example: The Ornstein-Uhlenbeck process. The (general)
Ornstein-Uhlenbeck process is the diffusion with

µ(x) = −µx, σ2(x) = σ2.

The standard Ornstein-Uhlenbeck process is the case µ = 1, σ2 = 2:

µ(x) = −x, σ2(x) = 2.

The stationary distribution is, in the general case, the Normal(0, σ2/2µ)
distribution; so in particular, the standard Ornstein-Uhlenbeck process has
the standard Normal stationary distribution.

From (D4a) we can read off the exponential approximation for hitting
times Tb. It is convenient to express these in terms of the standard Normal
density φ(x). In the general case

Tb
D≈ exponential, rate λb =

(
2µ3

σ2

) 1
2

bφ(σ−1b
√

2µ). (D9a)

provided that b is large compared to σ2/(2µ). For the standard Ornstein-
Uhlenbeck process, this takes the simple form

Tb
D≈ exponential, rate λb = bφ(b), (D9b)

and this approximation turns out to be good for b ≥ 3, say.
The Ornstein-Uhlenbeck process is of fundamental importance in appli-

cations, because almost any stochastic system which can be regarded as “a
stable deterministic system plus random fluctuations” can be approximated
(for small random fluctuations, at least) by an Ornstein-Uhlenbeck process.
For instance, it arises as the heavy-traffic limit of the M/M/∞ queue, in
stable population models, as well as numerous “small noise” physics set-
tings. In such settings, (D9b) gives the chance of large deviations (in the
non-technical sense!) from equilibrium during a time interval, using the
equivalent form

Mt ≡ sup
0≤s≤t

Xs satisfies P (Mt ≤ b) ≈ exp(−bφ(b)t); t large (D9c)
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for the standard process.
For later use, we record that by (D1c) the mean clump size of { t : Xt ≥

b } for the general Ornstein-Uhlenbeck process is

ECb =
1

2
σ2µ−2b−2. (D9d)

D10 Gaussian processes. The stationary Ornstein-Uhlenbeck process
is not only a diffusion but also a Gaussian process (recall Section C22 for
discussion) with mean zero and covariance function

R(t) = (2µ)−1σ2 exp(−µ|t|) (general)
= exp(−|t|) (standard)

(D10a)

In particular,

R(t) ∼ (2µ)−1σ2 − 1
2σ

2|t| as t→ 0 (general)
∼ 1 − |t| as t→ 0 (standard)

(D10b)

Consider now a stationary mean-zero Gaussian process Xt which is not
Markovian. In Section C23 we treated the case where R(t) ∼ R(0)− θt2 as
t→ 0, which is the case where the sample paths are differentiable. Consider
now the case

R(t) ∼ v − θ|t| as t→ 0. (D10c)

This is the “locally Brownian” case. For we can directly calculate that,

given X0 = x, then Xt − x
D≈ Normal(− θ

vxt, 2θt) for small t ≥ 0; more
generally, given X0 = x then for small t the process Xt − x is approxi-
mately Brownian motion with drift −θx and variance 2θv. Thus we can
apply our heuristic (Section D2) in this setting. Rather than repeat calcu-
lations, for a Gaussian process satisfying (D10c) we simply “match” with
the corresponding Ornstein-Uhlenbeck process via

σ2 = 2θ; µ =
θ

v
. (D10d)

Then (D9a) shows that, for a Gaussian process of form (D10c),

Tb
D≈ exponential, rate λb = θv−3/2bφ(bv−1/2). (D10e)

It is worth recording also that, by (D9d), the mean clump size for { t : Xt ≥
b } is

ECb = v2θ−1b−2. (D10f)

In practice, when studying a stationary Gaussian process it is natural to
scale so that the variance is 1, so let us explicitly state:

For a stationary mean-zero Gaussian process with R(t) ∼
1 − θ|t| as t → 0, we have Tb

D≈ exponential, rate λb =
θbφ(b), b ≥ 3.

(D10g)
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Of course, the heuristic also requires some “no long-range dependence”
condition, which essentially means that R(t) must go to 0 not too slowly
as t→ ∞.

D11 Example: System response to external shocks. Suppose a
unit “shock” at time t0 causes response h(t− t0) at times t ≥ t0, where h is
a smooth function with h(t) ↓ 0 as t→ ∞. At Example C13 we considered
the case of Poisson shocks; now let us consider the case of “white noise”,
in which case the total response at time t may be written as

Xt =

∫ t

−∞

f(t− s) dBs. (D11a)

Then X is a stationary mean-zero Gaussian process with covariance func-
tion

R(t) =

∫ ∞

0

f(s)f(s+ t) ds.

Suppose we normalize so that varXt ≡
∫∞

0
f2(s) ds = 1. Then (D10g) gives

the heuristic approximation for Tb, or equivalently for maxs≤tXs, in terms
of

θ = −R′(0) = −
∫ ∞

0

f(s)f ′(s) ds =
1

2
f2(0).

More interesting examples involve non-stationary forms of the heuristic,
arising from non-stationary processes or from curved boundary crossing
problems. Here is a simple example of the former.

D12 Example: Maximum of self-normalized Brownian bridge.
Let B0

t be the standard Brownian bridge and, for small a > 0, consider

Ma = max
a≤t≤1−a

(
B0

t

σ(t)

)
,

where σ2(t) = varB0
t = t(1 − t). We can re-write this as

Ma = max
a≤t≤1−a

Xt; Xt =
B0

t

σ(t)

and now X is a mean-zero Gaussian process with variance 1. But X is not
stationary; instead we can calculate that the covariance function satisfies

R(t, t+ s) ∼ 1 − θt|s| as s→ 0; where θt = (2t(1 − t))−1. (D12a)

For any Gaussian process of the form (D12a) (for any θt), we can argue as
follows. We want to apply the heuristic to the random set S = { t : Xt ≥ b }.
Around any fixed t0 the process behaves like the stationary process with
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R(s) ∼ 1 − θt0 |s| as s → 0, so that the clump rate around t0 is given by
(D10g) as

λb(t0) = θt0bφ(b).

Thus the non-stationary form (A4g) of the heuristic gives

P ( max
t1≤t≤t2

Xt ≤ b) = P (S ∩ [t1, t2] empty)

≈ exp

(
−
∫ t2

t1

λb(t) dt

)

≈ exp

(
−bφ(b)

∫ t2

t1

θt dt

)
. (D12b)

In our particular case, the integral is

∫ 1−a

a

(2t(1 − t))−1 dt = log(a−1 − 1)

and so we get

P (Ma ≤ b) ≈ exp(−bφ(b) log(a−1 − 1)). (D12c)

D13 Boundary-crossing. For a locally Brownian process Xt we can
use the heuristic to study the first hitting (or crossing) times

T = min{ t : Xt = b(t) } (D13a)

where b(t) is a smooth boundary or barrier. The essential requirement is
that the boundary be remote in the sense

P (Xt ≥ b(t)) is small for each t. (D13b)

(our discussion treats upper boundaries, but obviously can be applied to
lower boundaries too). Recall now the discussion (Section D2) of the heuris-
tic for a stationary locally Brownian process Xt crossing the level b. There
we used the random set S1 = { t : Xt ∈ (b, b+ δ) } for δ small. So here it is
natural to use the random set S = { t : Xt ∈ (b(t), b(t)+ δ) }. In estimating
the clump size, a crude approximation is to ignore the slope of the bound-
ary and replace it by the level line; thus estimating the mean clump size
for a clump near t0 as the mean clump size for { t : Xt ∈ (b(t), b(t) + δ) }.
And this is tantamount to estimating the clump rate for S as

λ(t) = λb(t); λb the clump rate for Xt crossing level b (D13c)

= fX(b(t))µ(b(t)) by (D2b). (D13d)

Naturally, for this “level approximation” to be sensible we need b(t) to have
small slope:

b′(t) small for all t. (D13e)
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Taking account of the slope involves some subtleties, and is deferred until
Section D29: the asymptotics of the next few examples are not affected by
the correction for slope.

As usual, given the clump rate λ(t) for S we estimate

P (T > t) ≈ exp(−
∫ t

0

λ(s) ds) (D13f)

P

(
X does not cross bound-
ary between t1 and t2

)
≈ exp(−

∫ t2

t1

λ(s) ds). (D13g)

Similarly, we can adapt (D2d, D2e) to this setting to obtain a “non-
homogeneous compound Poisson” approximation for the length of time
Xt spends above the boundary b(t), but the results are rather complicated.

D14 Example: Boundary-crossing for reflecting Brownian mo-
tion. As the simplest example of the foregoing, consider reflecting
Brownian motion Xt as in Example D6. For a remote barrier b(t) with b′(t)
small, we can put together (D6b) and (D13c, D13g) to get

P (X does not cross b(t) between t1 and t2)

≈ exp

(−2µ2

σ2
·
∫ t2

t1

exp

(−2µb(t)

σ2

)
dt

)
. (D14a)

We can use these estimates to study asymptotic sample path questions such
as: is Xt ≤ b(t) ultimately (i.e. for all sufficiently large t)? Indeed (D14a)
gives

P (Xt ≤ b(t) ultimately) =





1 if
∫∞

exp
(

−2µb(t)
σ2

)
dt <∞

0 if
∫∞

exp
(

−2µb(t)
σ2

)
dt = ∞

. (D14b)

In particular, if we consider b(t) = c log t for large t,

P (Xt ≤ c log t ultimately) =

{
1 if c > σ2

2µ

0 if c < σ2

2µ

.

In other words,

lim sup
t→∞

Xt

log t
=
σ2

2µ
. a.s. (D14c)

There is an important conceptual point to be made here. The initial ap-
proximation (D14a) is already somewhat rough, because e.g. of the “level
approximation” in Section D13. Then the “integral test” result (D14b) is
much cruder, being purely asymptotic and throwing away the constant
factor “2µ2/σ2” as irrelevant for convergence of the integral. Finally the
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“lim sup” result (D14c) is much cruder again, a kind of 1-parameter ver-
sion of (D14b). The general point is that a.s. limit results may look deep or
sharp at first sight, but are always merely crude corollaries of distributional
approximations which tell you what’s really going on.

D15 Example: Brownian LIL. Let Xt be the standard Ornstein-
Uhlenbeck process, and let b(t) be a remote barrier with b′(t) small. We can
argue exactly as in the last example. Putting together (D9b) and (D13c,
D13g) gives

P

(
Xt does not cross b(t)
between t1 and t2

)
≈ exp(−

∫ t2

t1

b(t)φ(b(t)) dt). (D15a)

Then

P (Xt ≤ b(t) ultimately) =

{
1 if

∫∞
b(t) exp(− 1

2b
2(t)) dt <∞

0 if
∫∞

b(t) exp(− 1
2b

2(t)) dt = ∞ .

(D15b)
Considering b(t) = (2c log t)1/2 gives

lim sup
t→∞

Xt

(2 log t)
1
2

= 1 a.s. (D15c)

The significance of these results is that standard Brownian motion and stan-
dard Ornstein-Uhlenbeck process are deterministic space-and-time-changes
of each other. Specifically,

If B(t) is standard Brownian motion then X(t) ≡
e−tB(e2t) is standard Ornstein-Uhlenbeck process; if X(t)
is standard Ornstein-Uhlenbeck process then B(t) ≡
t1/2X( 1

2 log t) is standard Brownian motion.

(D15d)

Using this transformation, it is easy to see that (D15c) is equivalent to the
usual law of the iterated logarithm for a standard Brownian motion:

lim sup
t→∞

Bt

(2t log log t)
1
2

= 1 a.s. (D15e)

And (D15b) is equivalent to the integral test

P (Bt ≤ t
1
2 c(t) ultimately) =

{
1 if

∫∞
t−1c(t) exp(− 1

2c
2(t)) dt <∞

0 if
∫∞

t−1c(t) exp(− 1
2c

2(t)) dt = ∞ .

(D15f)
Again, it is important to understand that these a.s. limit results are just
crude consequences of distributional approximations for boundary-crossings.
It is straightforward to use the heuristic (D15a) to obtain more quantitative
information, e.g. approximations to the distributions of the times of

the last crossing of Bt over (ct log log t)1/2, (c > 2) (D15g)
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the first crossing after t0 of Bt over (ct log log t)1/2, (c < 2): (D15h)

since the calculus gets messy we shall leave it to the reader!

D16 Maxima and boundary-crossing for general Gaussian pro-
cesses. Given a Gaussian process Xt with m(t) ≡ EXt non-zero, and
a boundary b(t), then we can simplify the boundary-crossing problem in
one of two ways: replace Xt by Xt −m(t) and b(t) by b(t) −m(t), to get
a boundary-crossing problem for a mean-zero process; or replace Xt by
Xt − b(t) to get a level-crossing problem for a non-zero-mean process. The
former is useful when the transformed boundary is only slowly sloping, as
the examples above show. The latter is useful when P (Xt > b(t)) is maxi-
mized at some point t∗ and falls off reasonably rapidly on either sider of t∗.
In such cases, the transformed problem can often be approximated by the
technique in the following examples. The technique rests upon the fact: if
f(t) has its minimum at t0, if f(t0) > 0 and φ(f(t0)) is small, and if f and
g are smooth and g > 0, then

∫
g(t)φ(f(t)) ≈ (f(t0)f

′′(t0))
− 1

2 exp(−1

2
f2(t0))g(t0). (D16a)

This is a restatement of (C21e), obtained by Laplace’s method.

D17 Example: Maximum of Brownian bridge. Let B0
t , 0 ≤ t ≤ 1

be Brownian bridge, that is the non-homogeneous Gaussian diffusion with

B0
t

D
= Normal(0, σ2(t)), σ2(t) = t(1 − t)

cov(B0
s , B

0
t ) = s(1 − t), s ≤ t

(D17a)

drift rate µ(x, t) = − x

1 − t
; variance rate ≡ 1. (D17b)

Let M = sup0≤t≤1B
0
t . It turns out that M has a simple exact distribution:

P (M > b) = exp(−2b2), 0 ≤ b <∞. (D17c)

Let us see what the heuristic gives. Fix a high level b. Let S be the random
set { t : B0

t ∈ (b, b+ δ) }. By (D17a),

pb(t) ≡
P (B0

t ∈ (b, b+ δ))

δ
= σ−1(t)φ

(
b

σ(t)

)
.

Now the non-homogeneous version of our heuristic (D2b) is

λb(t) = pb(t)µb(t) (D17d)
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where −µb(t) is the drift of the incremental process (Xt+u − b | Xt = b),
u ≥ 0. By (D17b), µb(t) = b/(1 − t) and hence

λb(t) = b(1 − t)−1σ−1(t)φ

(
b

σ(t)

)
. (D17e)

Since we are interested in the tail of M rather than the whole distribution,
we write (A10f)

P (M > b) ≈
∫ 1

0

λb(t) dt; b large. (D17f)

We estimate the integral using (D16a), with

f(t) =
b

σ(t)
=

b√
t(1 − t)

; g(t) = b(1 − t)−1σ−1(t).

We easily find

t0 =
1

2
; f(t0) = 2b; f ′′(t0) = 8b; g(t0) = 4b

and so (D16a) gives

P (M > b) ≈
∫
λb(t) dt ≈ exp(−2b2); b large. (D17g)

It is purely fortuitous, though reassuring, that the heuristic approximation
gives the actual exact answer in this example. In the examples below the
heuristic estimates of P (M > b) are only asymptotically correct. The max-
imum of the Brownian bridge arises as the limiting null distribution of the
Kolmogorov-Smirnov test statistic in 1 dimension; d-dimensional analogs
lead to the study of maxima of Gaussian fields, treated in Chapter J.

D18 Maxima of non-stationary Gaussian processes. We can ab-
stract the last example as follows. Let Xt, t1 ≤ t ≤ t2 be Gaussian with

EXt = m(t), varXt = v(t), (D18a)

E(Xt+u − b | Xt = b) ∼ −uµ(b, t)
and var(Xt+u | Xt = b) ∼ uσ2(t) as u ↓ 0.

(D18b)

Let M = maxt1≤t≤t2 Xt. Fix b and let fb(t) = (b−m(t))/v1/2(t). Suppose
fb(t) is minimized at some t∗b ∈ (t1, t2) and φ(f(t∗b)) is small. Then

P (M > b) ≈ v−
1
2 (t∗b)µ(b, t∗b) (fb(t

∗
b)f

′′
b (t∗b))

− 1
2 exp(−f2

b (t∗b)/2). (D18c)

This is exactly the same argument as in Example D17; as at (D17d), the
random set S = { t : Xt ∈ (b, b+ δ) } has clump rate

λb(t) = pb(t)µ(b, t) = v−
1
2 (t)φ(fb(t))µ(b, t),
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and writing P (M > b) ≈
∫
λb(t) dt and estimating the integral via (D16a)

gives the result (D18c).
Here are three examples.

D19 Example: Maximum of Brownian Bridge with drift. Con-
sider

Xt = B0
t + ct, 0 ≤ t ≤ 1, where B0 is Brownian bridge;

M = maxXt.

We study P (M > b) for b > max(0, c); this is equivalent to studying the
probability of B0 crossing the sloping line b− ct.

In the notation of Section D18 we find

m(t) = ct

v(t) = t(1 − t)

µ(b, t) =
b− c

1 − t

fb(t) = (b− ct)(t(1 − t))−
1
2

fb(t
∗
b) = 2(b(b− c))

1
2

t∗b =
b

2b− c

v(t∗b) = b(b− c)(2b− c)−2

f ′′b (t∗b) =
1

2
(2b− c)v−

3
2 (t∗b)

and (D18c) gives

P (M > b) ≈ exp(−b(b− c)); b large. (D19a)

D20 Example: Brownian motion and quadratic boundary. Let

Xt = Bt − t2, t ≥ 0.

We study M = supt≥0Xt. More generally, for a, σ > 0 we could consider

Mσ,a = sup
t≥0

σBt − at2

but a scaling argument shows Mσ,a
D
= a1/5σ4/5M . Studying M is equivalent

to studying crossing probabilities for quadratic boundaries:

P (Bt crosses b+ at2) = P (M1,a > b) = P (M > ba−1/5).
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In the notation of Section D18,

m(t) = −t2
v(t) = t

µ(b, t) = 2t

fb(t) = (b+ t2)t−
1
2

t∗b =

(
b

3

)1/3

fb(t
∗
b) = 4

(
b

3

)3/4

f ′′b (t∗b) = 35/4b−1/4

and (D18c) gives

P (M > b) ≈ 3−
1
2 exp

(
−
(

4b

3

) 3
2

)
, b large. (D20a)

D21 Example: Ornstein-Uhlenbeck quadratic boundary. Let Yt

be the standard Ornstein-Uhlenbeck process (Example D9), let

Xt = Yt − at2, −∞ < t <∞.

and let Ma = supXt. For small a, we shall estimate the distribution of
Ma. This arises in the following context. If Z(t) is a process which can be
regarded as “a deterministic process z(t)+small noise”, then one can often

model Z(t)−z(t) as an Ornstein-Uhlenbeck process Ŷt, say, with parameters
(σ2, µ) as at Example D9, with σ2 small. Suppose z(t) is maximized at t0,
and suppose we are interested in maxZ(t). Then we can write

max
t
Z(t) − z(t0) ≈ max

t
Ŷt −

1

2
z′′(t0)t

2

D
= 2−

1
2σMa; where a = −1

2
µ−2z′′(t0).

(The last relation is obtained by scaling the general Ornstein-Uhlenbeck

process Ŷ into the standard Ornstein-Uhlenbeck process Y ).
In the notation of Section D18,

m(t) = −at2
v(t) = 1

fb(t) = b+ at2

t∗b = 0

fb(t
∗
b) = b

f ′′b (t∗b) = 2a

µ(b, 0) = b
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and (D18c) gives

P (Ma > b) ≈ λa,b =

(
b

2a

) 1
2

exp(−1

2
b2); b large (D21a)

In this setting, as a → 0 we can use the full form of the heuristic to
approximate the whole distribution of Ma:

P (Ma ≤ b) ≈ exp(−λa,b); a small. (D21b)

Remarks All of our examples so far in this chapter rest upon the simple
form (Section D2) of the heuristic. This is certainly the most natural form
of the heuristic to use for locally Brownian processes; and we could give
more examples in the same spirit. Instead, it seems more interesting to
give applications of other forms of the heuristic. Example D23 is a nice
application of the “conditioning on semi-local maxima” approach: here are
some preliminaries.

D22 Semi-local maxima for the Ornstein-Uhlenbeck process.
For the standard Ornstein-Uhlenbeck process, our basic result is that the
clump rate for { t : Xt ≥ b } is

λb = bφ(b), b large.

Recall from Sections A7 and C26 the notion of the point process (t∗, x∗)
of times and heights of semi-local maxima of Xt. At high levels, this will
approximate the Poisson point process of rate

L(x) = − d

dx
λx = x2φ(x) (D22a)

(to first order), by (C26b). It is interesting to derive this directly by the
“conditioning on semi-local maxima” form of the heuristic.

Given X0 = x0, we know that x0 − Xt behaves (in the short term) as
Brownian motion Yt with drift x0 and variance 2. Now condition onX0 = x0

and on (0, x0) being a semi-local maximum; then x0 −Xt ≡ Zx0

t , say, will
behave as Yt conditioned to stay positive. It turns out (see Section D41)
that such “conditioned Brownian motion” is a certain diffusion, and we can
therefore calculate its mean sojourn density at y, which turns out to be

m(x0, y) = x−1
0 (1 − exp(−x0y)). (D22b)

Now as at (C26e) the rate L(x) of semi-local maxima satisfies

φ(y) = 2

∫ ∞

y

L(x)m(x, x− y) dx (D22c)
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where the factor 2 appears because (C26e) uses two-sided occupation den-
sity. Anticipating a solution of the form L(x) = a(x)φ(x) for polynomial
a(x), (D22c) becomes

1 ≈ 2a(y)

∫ ∞

y

φ(x)

φ(y)
·m(x, y − x) dx

≈ 2a(y)y−1

∫ ∞

0

e−yu(1 − e−yu) du

= a(y)y−2, giving (D22a).

D23 Example: A storage/queuing process. Imagine a supermarket
with a linear parking lot with spaces number 1, 2, 3, . . .. Cars arrive as a
Poisson process of rate ρ, and park in the lowest numbered vacant space.
Each car remains for a random time with exponential(1) distribution, in-
dependent of everything else, and then departs. This describes a certain
Markov process whose states are subsets of the positive integers, represent-
ing the set of occupied spaces. This process has a stationary distribution;
it seems hard to describe completely the stationary distribution, but some
features can be studied. Consider the sub-processes

Vt = number of cars parked at time t
Rt = right-most occupied space at time t.

The process Vt is just the M/M/∞ queue, whose stationary distribution
is Poisson(ρ). Rt is a complicated non-Markov process, but we shall give
a heavy-traffic (ρ → ∞) approximation. The first idea is that the rescaled
“number of cars” process Xt = ρ−1/2(Vt − ρ) approximates, for large ρ,
the standard Ornstein-Uhlenbeck process (calculate conditional means and
variances!). Set D = log(ρ1/2) and define b = b(ρ) by

bφ(b)D = 1. (D23a)

The point process N of semi-local maxima (x, t) of X is approximately
Poisson with rate

L(x) = x2φ(x) by (D22a)

≈ b2φ(b) exp(−b(x− b)) for x around b

≈ b

D
· exp(−b(x− b)) by (D23a). (D23b)

Now consider a semi-local maximum (v0, t0) of V , where v0 is around
ρ + ρ1/2b, and consider how many of the K cars in places ρ thru v0 are
still present at time t0 + t. Each car has chance e−t of being present. So for
t = (1−ε) logK this chance is Kε−1 and so about Kε cars will still remain;
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FIGURE D23a.

whereas at time t = (1 + ε) logK it is likely that no cars remain. Thus the
position Yt of the right-most of these cars is about

Yt ≈ v0 for t0 ≤ t ≤ t0 + log(bρ1/2) ≈ t0 +D

= ρ+O(ρ1/2) for t > t0 +D

Except for times around semi-local maxima, Vt is small compared to ρ +
bρ1/2, and arrivals at those times will not affect Rt. This argument leads
to the approximation

Rt ≈ max{ r : (r, s) is a semi-local maximum of V , for
some t−D < s < t }.

Putting Rt = ρ+ ρ1/2R∗
t ,

R∗
t ≈ max{x : (x, s) ∈ N for some t−D < s < t }.

Thus the point process description of maxima gives the description of the
process Rt. We can specialize to get the stationary distribution:

P (R∗
t ≤ r) ≈ P (no points of N in [r,∞) × [t−D, t])

≈ exp(−
∫ ∞

r

∫ t

t−D

L(x′) dt′ dx′)

= exp(− exp(−b(r − b)) using (D23b).

This translates to

Rt
D≈ ρ+ ρ1/2(b+ b−1ξ3) (D23d)
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where ξ3 has the double-exponential distribution (C1c). From (D23a), we
can calculate that b = b(ρ) is asymptotic to (2 log log ρ)1/2.

D24 Approximation by unstable Ornstein-Uhlenbeck process.
Our earlier applications of the heuristic to hitting times for diffusions used
the fact that around a high level b the diffusion could be approximated by
Brownian motion with drift. Occasionally, as in the example below, we are
interested in an “unstable equilibrium” point b, and here the natural ap-
proximating process is the unstable Ornstein-Uhlenbeck process Yt, defined
as the diffusion with drift and variance

µ(y) = µy, σ2(y) = σ2; where µ > 0.

This is a transient process. We shall need the result, given by (D3.2), that
its mean occupation density at 0 is

G−∞,∞(0, 0) =
1

2
π

1
2µ− 1

2σ−1. (D24a)

D25 Example: Escape from a potential well. As in Example D7
let Xt be a diffusion controlled by a smooth potential H:

µ(x0) = −H ′(x); σ2(x) = σ2.

Suppose H is a double-welled potential, as in the sketch, with the barrier
height H(b) − H(x0) large compared to σ2. Let T be the time, starting
in the well near x0, to cross into the other well near x1. By (D3e) one
can find an exact expression for ET , but the heuristic gives an informative
approximation. First, we can say ET ≈ 2Ex0

Tb, since after reaching b the
process is equally likely to descend into either well, and the descent time
is small compared to the ascent time. Next, to calculate Ex0

Tb there is
no harm is making the potential symmetric about b, by replacing the well
around x1 by the mirror image of the left well.

Write π(x) for the stationary density and

G(b)δ = Eb( sojourn time in (b, b− δ) before hitting x0 or x1).

By the “renewal-sojourn” form (Section A8) of the heuristic applied to
{ t : Xt ∈ (b, b− δ) }, this random set has clump rate

λb =
π(b)

G(b)
(D25a)

and Tb
D≈ exponential(λb). Now by (D7c),

π(b) ≈ 1

2
π−1

(
H ′′(x0)

π

) 1
2

exp

(−2(H(b) −H(x0))

σ2

)
,
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FIGURE D25a.

the factor 1
2 arising from the fact we have two wells. Next, given Xt0 = b

the incremental process Yt = Xt0+t − b behaves in the short run like the
unstable Ornstein-Uhlenbeck process with drift

µ(y) = −H ′(b+ y) ≈ −yH ′′(b).

So (D24a) gives

G(b) ≈ 1

2
π

1
2 (−H ′′(b))−

1
2σ−1.

So by (D25a)

ET ≈ 2ETb ≈
2

λb
≈ 2π(−H ′′(b)H ′′(x0))

− 1
2 exp(2σ−2(H(b) −H(x0))).

(D25b)
In chemical reaction theory, this is called the Arrhenius formula.

D26 Example: Diffusion in random environment. As above, con-
sider a diffusion with variance rate σ2 controlled by a potential H. Now
regard H as a sample path from a stationary process (Hx : −∞ < x <∞)
with smooth paths. For simplicity, suppose the random process H has dis-

tribution symmetric in the sense (Hx)
D
= (−Hx), and that the clump rates

for {x : Hx ≥ b } or {x : Hx ≤ −b } satisfy

λb ∼ a(b)e−θb as b→ ∞; where a(·) is subexponential. (D26a)

Suppose also that around large negative local minima (x∗, Hx∗ = −b) the
incremental process Hx∗+x + b is locally like ξbx

2, for (maybe random) ξb

such that ξb does not go to 0 or ∞ exponentially fast as b→ ∞.
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Consider a large interval [−L,L] of the space line. On this interval
P (maxHx ≤ b) ≈ exp(−Lλb) by the heuristic for the extremes of H,
and so by (D25a) maxHx ≈ θ−1 logL and minHx ≈ −θ−1 logL. Let ∆
be the depth of the deepest “well” on the interval; that is, the maximum
over −L ≤ x1 < x2 < x3 ≤ L of min(Hx1

− Hx2
, Hx3

− Hx4
). Then

∆ ≈ 2θ−1 logL. Now consider the diffusion Xt controlled by H. The ar-
guments of Example D25 indicate that the time to escape from a well of
depth ∆ is of order exp(2∆/σ2). Hence the time to escape from the deepest
well in [−L,L] is of order

L4/(θσ2) (D26b)

Now consider the long-term behavior of Xt as a function of the variance
rate σ2. For σ2 < 2/θ, (D26b) shows that the time to exit [−L,L] is of
larger order than L2, which is the exit time for Brownian motion without
drift. In other words, Xt is “subdiffusive” in the sense that |Xt| grows
of slower order than t1/2. On the other hand, if σ is large then (D26b)
suggests that the influence of the potential on the long-term behavior of
Xt is negligible compared with the effect of the intrinsic variance, so that
Xt should behave roughly like Brownian motion without drift in the long
term. (Although the potential will affect the variance).

D27 Interpolating between Gaussian processes. In studying max-
ima of stationary Gaussian processes, we have studied the two basic cases
where the covariance function R(t) behaves as 1 − 1

2θt
2 or as 1 − θ|t| as

t → 0. But there are other cases. A theoretically interesting case is where
there is a fractional power law:

R(t) ∼ 1 − θ|t|α as t→ 0, some 0 < α ≤ 2.

In this case it turns out that the clump rate λb for { t : Xt ≥ b }, b large,
has the form

λb = K1,αθ
1/αb−1+2/αφ(b)

where K1,α is a constant depending only on α. The best way to handle this
case is via the “harmonic mean” form of the heuristic; the argument is the
same for d-parameter fields, and we defer it until Section J18.

The next example treats a different kind of interpolation.

D28 Example: Smoothed Ornstein-Uhlenbeck. Let Xt be the
Ornstein-Uhlenbeck process with covariance R(t) = exp(−µt), t > 0. For
fixed, small T > 0 let Yt be the smoothed “local average” process

Yt = T−1

∫ t

t−T

Xs ds.

The idea is that a physical process might be modeled adequately on the
large scale by an Ornstein-Uhlenbeck process, but on the small scale its
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paths should be smooth; the averaging procedure achieves this. We calcu-
late

EY0 = 0

EY 2
0 ≈ 1 − µT

3
(D28a)

EY0Yt ≈ EY 2
0 − µt2

T
0 ≤ t� T (D28b)

≈ exp(−µt) t ≥ T. (D28c)

We want to estimate the clump rates λb,T for high levels b. Of course, if we
fix T and let b → ∞ we can apply the result for smooth processes. What
we want is an estimate which for fixed b interpolates between the Ornstein-
Uhlenbeck result for T = 0 and the smooth result for T non-negligible.
This is much harder than the previous examples: there our estimates can
be shown to be asymptotically correct, whereas here we are concerned with
a non-asymptotic question. Our method, and result, is rather crude.

Let C be the size of the clumps of { t : Yt > b }. Let ρb,T be the rate of
downcrossing of Y over b, which we will calculate later from Rice’s formula.
Now consider the processes Xt, Yt conditioned on Y making a downcrossing
of b at time 0. Under this conditioning, define

q = P (Yt = b for some T ≤ t ≤ t0)

α = E(duration of time t in [T, t0] that Yt > b).

Here t0, representing “the short term” in the heuristic, is such that T �
t0 � mean first hitting time on b. We will calculate α later by approxi-
mating by Brownian motion. I assert

α ≈ qEC (D28d)

λb,T ≈ ρb,T (1 − q). (D28e)

The idea is that a downcrossing is unlikely to be followed by an upcrossing
within time T ; and the distributions of (X,Y ) at successive upcrossings
within a clump should be roughly i.i.d. Thus the number N of upcrossings
in a clump should be roughly geometric: P (N = n) = (1 − q)qn−1. So
(D28e) follows from (A9f) and (D28d) is obtained by conditioning on some
upcrossing occurring. Now the fundamental identity and the Normal tail
estimate give

λb,TEC = P (Y0 > b) ≈ φ0(b)

b
, where φ0 is the density of Y0.(D28f)

Solving (D28d), (D28e), (D28f) for λb,T gives

λb,T =

(
1

ρb,T
+

αb

φ0(b)

)−1

. (D28g)
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We calculate ρb,T from (C23b), using θ = 2µ/T because of (D28b):

ρb,T = φ0(b) ·
( µ

Tπ

) 1
2

. (D28h)

Estimating α is harder. Conditional on X0 = x0 ≈ b, we can calculate from
(C22a) that for T ≤ t� t0,

E(Yt −X0) ≈ −bµ(t− T/2); var(Yt −X0) ≈ 2µ(t− T/2). (D28i)

Now α depends only on the conditional means and variances of Yt, not on
the covariances. By (D28i), these means and variances are approximately
those of Zt−T/2, where Z is Brownian motion with drift −µ̂ = −µb and
variance σ̂2 = σ2 = 2µ, and Z0 = b. So

α ≈ α̂ ≡ E(duration of time t in [T/2,∞) that Zt > b).

A brief calculation gives

α̂ =
σ̂2

µ̂2
· Φ(µ̂T

1
2 2−

1
2 σ̂−1); where Φ is the Normal tail d.f.

Substituting this and (D28h) into (D28g) and rearranging, we get

λb,T = µbφ0(b)(cπ
1
2 + 2Φ(

1

2
c))−1; where c = (µb2T )

1
2 . (D28j)

Note that by (D28a),

φ0(b) ≈ φ(b)eµbT/3; where φ is the Normal density.

We can check that (D28j) agrees with the known limits. If T = 0 then
Φ(0) = 1

2 implies λb,T = µbφ(b), the Ornstein-Uhlenbeck result. If T is

fixed and b→ ∞, then λb,T ∼ µ1/2T−1/2π−1/2φ0(b), which is the result for
the smooth Gaussian process satisfying (D28b).

D29 Boundary-crossing revisited. Let us return to the setting of
Section D2, the heuristic for a locally Brownian process Xt, and suppose
now that we have a smooth barrier b(t), which is remote in the sense

P (Xt > b(t)) is small, for each t.

As in Section D2, we can apply the heuristic to S = { t : Xt ∈ (b(t), b(t) +
δ) }. Given Xt0 = b(t0), the incremental process Xt0+u − b(t0) behaves for
small u like Brownian motion with drift −µ(b(t0)), and hence Xt0+u−b(t0+
u) behaves like Brownian motion with drift −(µ(b(t0))+ b′(t0)). Using this
latter Brownian motion as in Section D2 to estimate the clump size of S,
we get the non-homogeneous clump rate

λ(t) = fXt(b(t))(µ(b(t)) + b′(t)). (D29a)
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As usual, this is used in

P (Xs crosses b(s) during [0, t]) ≈ 1 − exp(−
∫ t

0

λ(s) ds).

Previously (Section D13) we treated boundary-crossing by ignoring the
b′(t) term in (D29a); that gave the correct first-order approximation for
the type of slowly-increasing boundaries in those examples.

It is natural to regard (D29a) as the “second-order approximation” for
boundary-crossing. But this is dangerous: there may be other second-order
effects of equal magnitude. Let us consider a standard Ornstein-Uhlenbeck
process, and look for a clump rate of the form

λ(t) = φ(b(t))a(t); a(·) varying slowly relative to φ. (D29b)

Fix t, and compute the density of Xt at b(t) by conditioning on the time
t− s at which the clump {u : Xu = b(u) } started:

φ(b(t)) dt =

∫

0+

λ(t− s)P (Xt ∈ db(t) | Xt−s = b(t− s)) ds (D29c)

≈ a(t) dt

∫

0+

φ(b(t− s))(4πs)−
1
2 exp

(−(b(t) + b′(t))2s2

4s

)
ds

approximating Xt−s+u −Xt−s for u small by Brownian motion with drift
−b(t) and variance 2. The usual Normal tail estimate (C21d) gives φ(b(t−
s))/φ(b(t)) ≈ exp(sb(t)b′(t)), and so

1 ≈ a(t)

∫ ∞

0

(4πs)−
1
2 exp

(−(b(t) − b′(t))2s

4

)
ds

Now the integral also occurs as the mean sojourn density at 0 for Brownian
motion with constant drift (b(t) − b′(t)) and variance 2; and this mean
sojourn density is 1/(b(t) − b′(t)). Thus a(t) = b(t) − b′(t) and hence

λ(t) = φ(b(t))(b(t)− b′(t)). (D29d)

This is different from the approximation (D29a): the “+” has turned into
a “−”.

What’s going on here is difficult to say in words. Essentially it is an effect
caused by the rapid decrease of the Normal density φ(x). For a process Xt

with marginal density f(x) which decreases exponentially or polynomially

(or anything slower than all e−ax2

) as x → ∞, the original approximation
(D29a) is correct; so (D29a) applies to reflecting Brownian motion or the
Gamma process, for instance. The Normal density is a critical case, and
(D29a) does indeed change to (D29d) for the Ornstein-Uhlenbeck process.
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D30 Tangent approximation for Brownian boundary-crossing.
As in (D15), a time-change argument transforms results for the Ornstein-
Uhlenbeck process into results for standard Brownian motion Bt. Here is
the transform of (D29d). Let g(t) be smooth with t−1/2g(t) large. Let T be
the first crossing time of Bt over g(t). Let

λ(s) = s−3/2(g(s) − sg′(s))φ(s−
1
2 g(s)). (D30a)

Then under weak conditions

P (T ≤ t) ≈
∫ t

0

λ(s) ds provided this quantity is small; (D30b)

and under more stringent conditions

P (T > t) ≈ exp(−
∫ t

0

λ(s) ds) for all t. (D30c)

This has a nice interpretation: let Ls be the line tangent to g at s, then
there is an explicit density hLs(t) for the first hitting time of B on Ls, and
λ(s) = hLs(s). So (D30a) is the tangent approximation.

To justify (D30c) one needs roughly (see Section D33 for references) that
g(s) grows like s1/2. For instance, if

ga(s) = (ct log(a/t))
1
2 ; c > 0 fixed

or

ga(t) = (c+ at)
1
2 ; c > 0 fixed

then the approximations T̂a given by (D30b) are asymptotically correct as
a→ ∞;

sup
t

|P (T̂a ≤ t) − P (Ta ≤ t)| → 0 as a→ ∞.

On the other hand, if

ga(t) = atc; 0 < c <
1

2
fixed

then only the weaker result (D30b) holds: precisely, the approximation T̂a

satisfies

P (T̂a ≤ ta) ∼ P (Ta ≤ ta) as a→ ∞ for all (ta) s.t. one side → 0.
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COMMENTARY

D31 General references. The remarks at Section C29 on general sta-
tionary processes apply in part to the special processes considered in this chap-
ter. There is no comprehensive account of our type of examples. Leadbetter et
al. (1983) Chapter 8 treats Gaussian processes which behave locally like the
Ornstein-Uhlenbeck process; papers of Berman (1982a; 1982b; 1983a; 1988)
cover diffusions. But these rigorous treatments make the results look hard; the
point of the heuristic is to show they are mostly immediate consequences of
the one simple idea in Section D2.

D32 Diffusion background. Karlin and Taylor [KT] is adequate for our
needs; another good introduction is Oksendal (1985). Rigorous treatments take
a lot of time and energy to achieve useful results: Freedman (1971) is a con-
cise rigorous introduction. Rogers and Williams (1987) is the best theoretical
overview.

D33 Boundary crossing for Brownian motion. There is a large but
somewhat disorganized literature on this topic. Jennen (1985) and Lerche
(1986) discuss the tangent approximation (D30), the latter in relation to the
LIL. Karatzas and Shreve (1987) sec. 4.3C give an introduction to Brownian
motion boundary crossing via differential equations and martingales. Siegmund
(1985; 1986) discusses boundary crossing from the statistical “sequential anal-
ysis” viewpoint, where the errors in the diffusion approximation need to be
considered.

Another set of references to Brownian motion and Ornstein-Uhlenbeck pro-
cess boundary crossing results can be found in Buonocore et al. (1987).

D34 References for specific examples not mentioned elsewhere.
More general queueing examples in the spirit of Example D8 are in Knessl et
al. (1986b). For Brownian motion and a quadratic boundary (Example D20)
the exact distribution has been found recently by Groeneboom (1988). The
problem can be transformed into the maximum of a mean-zero Gaussian pro-
cess, and relates to bounds on the size of Brownian motion stopped at random
times — see Song and Yor (1987). I don’t know any discussion of the analogous
Ornstein-Uhlenbeck problem (Example D21). The argument in Example D23
(queueing/storage) is from Aldous (1986); an exact expression is in Coffman
et al. (1985). Example D26 (diffusion in random environment): this precise
example does not seem to have been discussed, although the “phase change”
behavior it exhibits is theoretically interesting. Schumacher (1985) treats some
related 1-dimensional examples. Bramson and Durrett (1988) treat some dis-
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crete d-dimensional models which are subdiffusive. The literature on random
walks and diffusions in random environments mostly deals with the case where
the drift, not the potential, is stationary (in other words, the potential has
stationary increments) — see e.g. Durrett (1986). Example D28 (smoothed
Ornstein-Uhlenbeck) is treated differently in Vanmarcke (1982) and Naess
(1984).

D35 Slepian model processes. At various places we have used the idea
that a process, looked at in a short time interval after an upcrossing, has
a simple form. In Gaussian theory this is called the Slepian model process:
Lindgren (1984b) gives a nice survey.

D36 Long-range dependence. It must be kept in mind that all our
heuristic results require a background assumption of “no long-range depen-
dence”. Results for some processes with long-range dependence are given in
Taqqu (1979), Maejima (1982), Berman (1984).

D37 Exponential limit distribution for hitting times. For positive-
recurrent diffusions, the exponential limit distribution (D4c) is trivial to prove,
by adapting the “regeneration” argument of Section B24.1. For non-Markov
processes some explicit mixing condition is required.

In principle, for diffusions one can find the exact hitting time distribution by
analytic methods (Karlin and Taylor [KT] p. 203), but one rarely gets an explicit
solution. The regeneration argument and the argument for (D4h) combine to
make a simple rigorous proof of

Proposition D37.1 For a positive-recurrent diffusion on (a,∞),

sup
t

∣∣∣∣P ( max
0≤s≤t

Xs ≤ b) − exp

(
− t

2S(b)M(a,∞)

)∣∣∣∣→ 0 as b→ ∞.

Various complicated proofs appeared in the past — see Davis (1982) for dis-
cussion. Berman (1983a) discusses smoothness assumptions on µ, σ2 leading
to the simpler form (D4a), and treats sojourn time distributions.

D38 Berman’s method. The ergodic-exit form (A9) of the heuristic for
continuous process, using clump distribution C+ for clumps of time spent
above b, has been formalized by Berman (1982b). Here are his results, in our
heuristic language.

Let Xt be stationary with only short-range dependence. We study

Mt = max
0≤s≤t

Xs

Lt,b = sojourn time of Xs, 0 ≤ s ≤ t, in [b,∞).
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Define X∗
b (t) to be the process X(t) conditioned on {X(0) > b}. Suppose

that as b → ∞ we can rescale X∗ so that it approximates some limit process
Z; that is

w(b)

(
X∗

b

(
t

v(b)

)
− y

)
D→ Z(t) as b→ ∞, (D38a)

where v(b) → ∞. Let D+ be the sojourn time of Z(t), t ≥ 0 in [0,∞), and
let h(x) be the density of D+.

With those assumptions, here is the heuristic analysis. Let Cb be the distri-
bution of the clumps of time that X spends in [b,∞), and let λb be the clump
rate. The fundamental identity is

λbECb = P (X0 > b). (D38b)

Think of D+ as the distribution of the clump of time that Z spends above
0 during time [0,∞) conditional on {Z(0) > 0}. The corresponding uncondi-
tioned clump distribution D, obtained from the relation (A9d), satisfies

P (D > x) = h(x)ED (D38c)

ED =
1

h(0)
. (D38d)

And from assumption (D38a),

v(b)ECb → ED as b→ ∞. (D38e)

Solving (D38b,D38d,D38e) for λb gives

λb ∼ h(0)v(b)P (X0 > b), (D38f)

which we use in our usual estimate form Mt:

P (Mt ≤ b) ≈ exp(−tλb). (D38g)

One way to make a limit theorem is to fix t and let b→ ∞; then

P (Mt > b) ∼ th(0)v(b)P (X0 > b) (D38h)

which is Berman’s Theorem 14.1. Now consider sojourn times in the same
setting of t fixed, b → ∞. Ultimately there will be at most one clump, oc-

curring with chance ∼ tλb, whose duration Cb satisfies v(b)Cb
D→ D by the

approximation (D38a) of X by Z. So

P (Lt,b · v(b) > x) ∼ tλbP (D > x)

∼ tv(b)P (X0 > b)h(x) by (D38c,D38f)(D38i)

and this is Berman’s Theorem 3.1.
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Now consider t and b both large. The Compound Poisson form (Section A19)
of the heuristic gives

Lt,b
D≈ POIS(tλbµCb

(·)),

where µCb
is the distribution of Cb. Since v(b)Cb

D→ D, this scales to

v(b)Lt,b
D≈ POIS(tλbµD(·)). (D38j)

Now think of h(·) as the measure h(dx) = h′(x) dx. Then (D38c) says

µD(·) = EDh(·)

and using (D38f,D38d) we find that (D38j) becomes

v(b)Lt,b
D≈ POIS(tv(b)P (X0 > b)h(·)). (D38k)

This is the “natural” compound Poisson approximation for sojourn time, just as
(D38g,D38f) is the “natural” approximation for Mt. To make a limit theorem,
define b = b(t) by

tv(b)P (X0 > b) = 1. (D38l)

Then (D38k) gives

v(b)Lt,b
D→ POIS(h(·)) as t→ ∞ (D38m)

which is Theorem 4.1 of Berman (1983b). A final result, Theorem 19.1 of
Berman (1982b), is:

for b = b(t) defined at (D38j),

P (w(b)(Mt − b) < x) → exp(−h(0)e−x) as t→ ∞.
(D38n)

For x = 0, this is just (D38f,D38g); establishing this for general x involves a
clever rescaling argument for which the reader is referred to the original paper.

This is one of the most wide-ranging formalizations of any version of the
heuristic which has been developed. But in several ways it is not completely sat-
isfactory. The reader will notice that we didn’t use this form of the heuristic in
any of the examples. I do not know any continuous-path example in which this
ergodic-exit form is easiest; for locally Brownian process the renewal-sojourn
form (Section D2) is easier to use. Thus for ease of application one would
like to see a wide-ranging formalization of Section D2. From an opposite view-
point, any formalization of this ergodic-exit method will require smoothness
hypotheses to ensure the density h of D+ exists; the “harmonic mean” form
of the heuristic does not require so much smoothness, and I suspect it can be
formalized in greater generality.
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D39 Durbin’s formula. For a discrete-time, integer-valued, skip-free pro-
cess Xn, the first hitting time T on a skip-free increasing barrier b(n) satisfies
(trivially)

P (T = n) = P (Xn = b(n))P (Xm < b(m) for all m < n | Xn = b(n)).
(D39a)

Now let Xt be a continuous-time continuous-path process with marginal den-
sity ft; let b(t) be a smooth barrier; let T be the first hitting time of Xt on
b(t); and let g(t) be the density of T . Then one expects a formula analogous
to (D39a):

g(t) = ft(b(t))θ(t) (D39b)

where θ(t) is some continuous analogue of the final term of (D39a). For a
process with smooth paths it is easy to give a variant of Rice’s formula in form
(D39b). For locally Brownian processes, it is rather less easy to guess that the
formula for θ(t) in (D39b) is

θ(t) = lim
δ↓0

δ−1E((b(t− δ) −Xt−δ)1At−δ
| Xt = b(t)) (D39c)

where At = {Xs < b(s) for all 0 ≤ s ≤ t}. Durbin (1985) developed this
in the context of Gaussian processes, so we name it Durbin’s formula. Once
written down, it is not so hard to verify the formula: heuristically, the essential
condition seems to be that var(Xt+δ −Xt | Xt = x) ∼ σ2(x, t)δ as δ ↓ 0 for
smooth σ2.

Thus another approach to approximations for boundary-crossing probabilities
is to start from the exact formula (D39b,D39c) and then approximate. Durbin
(1985) develops the tangent approximation for Brownian motion boundary-
crossing, and several ingenious and more refined approximations, in this way.
Both the theory (exactly what type of processes does (D39c) work for?) and
applications seem worthy of further study: a start is made in Rychlik (1987).

D40 Sojourn distribution for Brownian motion. For Brownian mo-
tion Xt with drift −1 and variance 1, the sojourn time Γ in [0,∞) has distribu-
tion given by (D1f). This may be derived by setting up and solving a differential
equation. A more elegant probabilistic approach is as follows. Let L be the last
time t that Xt = 0. Informally “each time X is at 0 has the same chance to
be the last time”, so the density fL(t) is proportional to the density of Xt at
0, giving

fL(t) = (2πt)−
1
2 e−

1
2
t.

Given L = t0, the processX behaves during [0, t0] as rescaled Brownian bridge,
so (Γ, L) = (UL,L) where U is the sojourn time in [0,∞) for Brownian bridge.
But U is uniform on (0, 1) by a symmetry argument and this specifies the

distribution UL
D
= Γ. See Imhof (1986) for details.
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D41 Conditioned diffusion. Consider a diffusion Xt with drift and vari-
ance µ(x), σ

2(x), and let X0 = 0. For a < 0 < b, let X̂t be Xt conditioned

on {Tb < Ta}, and killed at b. Then X̂ is again a diffusion, and its drift and
variance can be calculated explicitly (Karlin and Taylor [KT] p. 261). In some

cases we can let a → 0 and b → ∞ and get a limit diffusion X̂t which we
interpret as “Xt conditioned on Xt > 0 for all t > 0”. In particular, let Xt be
Brownian motion with drift µ > 0 and variance σ2; then X̂t has

µ̂(x) = µ+ 2µ

(
exp

(
2µx

σ2

)
− 1

)−1

; σ̂2 = σ2

and the mean occupation density G(0, x) at x is

G(0, x) = µ−1

(
1 − exp

(
−2µx

σ2

))
.

This result is used in the discussion of semi-local maxima at (D22).

D42 The quasi-Markov estimate of clump size. The argument of
Example D28 can be abstracted as follows. Consider a sparse random mosaic
S on R1, where the clumps consist of N component intervals. Condition on 0
being the right endpoint of some component interval of a clump C; let

C+ = C ∩ (0,∞), C+ = length(C+).

Now assume N has a geometric distribution:

P (N = n) = q(1 − q)n−1, n ≥ 1 (for some q)

and suppose the lengths of the component intervals are i.i.d. This implies

EC+ = (1 − q)EC. (D42a)

Using the notation of Section A9, write p = P (x ∈ S) and let ψ be the rate
of component intervals of clumps. Then

λ = ψq by (A9f) (D42b)

p = λEC by the fundamental identity. (D42c)

Eliminating q and EC from these equations gives the quasi-Markov estimate
of the clump rate λ:

λ =

(
EC+

p
+

1

ψ

)−1

. (D42d)

We should emphasize that (D42d) is unlikely to give the “correct” value of λ.
Rather, it is a crude method to use only when no better method can be found.



E Simple Combinatorics

E1 Introduction. Here are four classic elementary problems, and ap-
proximate solutions for large N .

For the first three problems, imagine drawing at random with replace-
ment from a box with N balls, labeled 1 through N .

E1.1 Waiting time problem. What is the number T of draws required
until a prespecified ball is drawn?

Solution: T/N
D≈ exponential(1).

E1.2 Birthday problem. What is the number T of draws required until
some (unspecified) ball is drawn which had previously been drawn?

Solution: T/N1/2 D≈ R, where P (R > x) = exp(−x2/2).

E1.3 Coupon-collector’s problem. What is the number T of draws re-
quired until every ball has been drawn at least once?

Solution: T ≈ N logN , or more precisely

N−1(T −N logN)
D≈ ξ, where P (ξ ≤ x) = exp(−e−x).

For the fourth problem, imagine two well-shuffled decks of cards, each
deck having cards labeled 1 through N . A match occurs at i if the i’th card
in one deck is the same (i.e., has the same label) as the i’th card in the
other deck.

E1.4 Matching problem. What is the total number T of matches between
the two decks?

Solution: T
D≈ Poisson(1).

By stretching our imagination a little, we can regard almost all the prob-
lems discussed in these notes as generalizations of these four elementary
problems. For instance, problem E1.1 concerns the time for a certain pro-
cess X1, X2, X3, (which happens to be i.i.d. uniform) to first hit a value i;
Chapters B, C, D were mostly devoted to such first hitting time problems
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for more general random processes. Chapter F will give extensions of prob-
lems E1.2–E1.4 to Markov chains, and Chapter H will treat geometrical
problems, such as the chance of randomly-placed discs covering the unit
square, which are generalizations of the coupon-collector’s problem.

Of course these basic problems, and simple extensions, can be solved
exactly by combinatorial and analytic techniques, so studying them via
our heuristic seems silly. But for more complicated extensions it becomes
harder to find informative combinatorial solutions, or to prove asymptotics
analytically, whereas our heuristics allow us to write down approximations
with little effort. The aim of this chapter is to discuss the immediate ex-
tensions of Examples E1.2, E1.3, E1.4. First, this is a convenient time to
discuss

E2 Poissonization. Let 1 ≥ p(1) ≥ p(2) ≥ · · · ≥ p(n) → 0 as n → ∞.
Think of p(n) as the probability of some given event happening, in the
presence of n objects (balls, particles, random variables, etc.). Sometimes
it is easier to calculate, instead of p(n), the chance q(θ) of this same event
happening with a random Poisson(θ) number of objects. Then

q(θ) =
∑

n≥0

p(n)
e−θθn

n!
.

Given q(θ), one might try to invert analytically to find p(n); instead, let us
just ask the obvious question “when is q(n) a reasonable estimate of p(n)?”
I assert that the required condition for q to be a good approximation to p
in mid-range (i.e., when q(n) is not near 1 or 0) is

− θ1/2q′(θ) is small; for θ such that q(θ) = 1/2, say. (E2a)

For consider the extreme case where p(n) jumps from 1 to 0 at n0, say.
Then q(θ) is a “smoothed” version of p(n), and needs the interval (n0 −
2n

1/2
0 , n0 + 2n

1/2
0 ) to go from near 1 to near 0, so the derivative q′(n0) will

be of order n
−1/2
0 . Condition (E2a) stops this happening; it ensures that

q(θ) and thence p(n) do not alter much over intervals of the form (n±n1/2)
in mid-range.

Note that our heuristic usually gives estimates in the form

q(θ) ≈ exp(−f(θ)).

In this case (E2a) becomes, replacing 1/2 by e−1 for convenience:

q(n) is a reasonable approximation for p(n) in mid-range
provided θ1/2f ′(θ) is small, for θ such that f(θ) = 1.

(E2b)

The reader may check this condition is satisfied in the examples where we
use Poissonization.
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The situation is somewhat different in the tails. By direct calculation,

if p(n) ∼ anj as n→ ∞, then q(θ) ∼ aθj as θ → ∞
if p(n) ∼ anjxn as n→ ∞, then q(θ) ∼ axjθje−(1−x)θ. (E2c)

Thus when q(θ) has polynomial tail it is a reasonable estimate of p(n) in
the tail, whereas when q has exponential tail we use in the tail the estimate
of p obtained from (E2c):

if q(θ) ∼ aθje−sθ as θ → ∞, then p(n) ∼ a(1 − s)−jnj(1 − s)n. (E2d)

E3 Example: The birthday problem. Poissonization provides a sim-
ple heuristic for obtaining approximations in the birthday problem. Instead
of drawing balls at times 1, 2, 3, . . . , think of balls being drawn at times of
a Poisson process of rate 1. Say a “match” occurs at t if a ball is drawn
at t which has previously been drawn. I assert that, for t small compared
with N ,

the process of matches is approximately a non-
homogeneous Poisson process of rate λ(t) = t/N .

(E3a)

Then T = time of first match satisfies

P (T > t) ≈ exp
(
−
∫ t

0

λ(u) du
)

= exp

(
− t

2/2

N

)
. (E3b)

In other words T
D≈ N1/2R, as stated at (E1.2). To argue (E3a),

P (match involving ball i during [t, t+ δ])

≈ δN−1P (ball i drawn before time t)

≈ δN−1 t

N
,

and so

P (some match during [t, t+ δ]) ≈ δ
t

N
,

which gives (E3a), since the probability is only negligibly affected by any
previous matches.

Of course one can write down the exact distribution of T in this basic
birthday problem; the point is that the heuristic extends unchanged to
variations of the problem for which the exact results become more complex.
Here are some examples.
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E4 Example: K-matches. What is the distribution of TK = number
of draws until some ball is drawn for the K’th time? I assert that (compare
(E3a))

the process of K-matches is approximately a
non-homogeneous Poisson process of rate
λ(t) = (t/N)K−1/(K − 1)!

(E4a)

So TK satisfies

P (TK > t) ≈ exp

(
−
∫ t

0

λ(u) du

)
= exp

(−tK
K!

N1−K

)
.

That is,

TK
D≈ N1−K−1RK ; where P (RK > x) = exp(−xK/K!). (E4b)

To argue (E4a),

P (K-match involving ball i during [t, t+ δ])

≈ δN−1P (ball i drawn K − 1 times before time t)

≈ δN−1e−t/N (t/N)K−1

(K − 1)!

since the times of drawing ball i form a Poisson process of rate 1/N . Now
e−t/N ≈ 1 since t is supposed small compared to N ; so

P (some K-match during [t, t+ δ]) ≈ δ
(t/N)K−1

(K − 1)!

giving (E4a).

E5 Example: Unequal probabilities. Suppose at each draw, ball i is
drawn with chance pi, where maxi≤N pi is small. In this case, T = number
of draws until some ball is drawn a second time satisfies

T
D≈
(∑

p2
i

)− 1
2 R. (E5a)

For the process of times at which ball i is drawn is approximately a Poisson
process of rate pi. So

P (match involving ball i during [t, t+ δ])

≈ δpiP (ball i drawn before time t)

≈ δpitpi;

and so
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P (some match during [t, t+ δ])

≈ δ
∑

p2
i t.

Thus we have (E3a) with 1/N replaced by
∑
p2

i , and this leads to

P (T > t) ≈ exp

(
−1

2
t2
∑

p2
i

)
(E5b)

which is equivalent to (E5a).

E6 Example: Marsaglia random number test. PickK integers i.i.d.
uniformly from {1, . . . , N}, and arrange in increasing order 1 ≤ X1 ≤ X2 ≤
· · · ≤ XK . Form the successive differences Dj = Xj −Xj−1, and consider
the chance that all these numbers D1, D2, . . . , DK are different. I assert

P (all D’s different) ≈ exp

(−K3

4N

)
. (E6a)

This has been proposed as a test for computer random number generators.
To argue (E6a), note that the D’s are approximately i.i.d. geometric with
mean µ = N/K:

P (Dj = i) ≈ pi = µ−1(1 − µ−1)i, i ≥ 1.

Thus (E5b) says

P (D’s all different) ≈ exp

(
−1

2
K2
∑

p2
i

)
.

and (E6a) follows by calculating
∑
p2

i ≈ 1
2µ

−1 = 1
2K/N .

E7 Several types of coincidence. Another direction for generaliza-
tion of the basic birthday problem can be stated abstractly as follows. Let
(Xj) be i.i.d. with distribution µ on some space S. Let (C1, C2, . . . ) be a
finite or countable collection of subsets of S. Let

pi = P (X1 ∈ Ci, X2 ∈ Ci) = µ2(Ci)

p = P (X1 ∈ Ci and X2 ∈ Ci, for some i)

and suppose

p is small; max pi/p is small. (E7a)

For j < k let Aj,k be the event “Xj ∈ Ci and Xk ∈ Ci, for some i”.
From (E7a) we can argue heuristically that the events Aj,k are roughly
independent, and then that

P (Xj ∈ Ci and Xk ∈ Ci; for some i and some
1 ≤ j < k ≤ N) ≈ 1 − exp(− 1

2N
2p).

(E7b)
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For a concrete example, suppose we pick N people at random and cate-
gorize each person in two ways, e.g., “last name” and “city of birth”, which
may be dependent. What is the chance that there is some coincidence, i.e.,
that some pair of people have either the same last name or the same city
of birth? Let

q
i,̂ı

= P (last name = i, city of birth = ı̂)

qi,· = P (last name = i); q
·,̂ı

= P ( city of birth = ı̂)

p =
∑

i

q2i,· +
∑

ı̂

q2
·,̂ı

−
∑

i

∑

ı̂

q2
i,̂ı
.

Then p is the chance of a coincidence involving a specified pair of people,
and (E7b) says

P (some coincidence amongst N people) ≈ exp(− 1
2N

2p)
is a reasonable approximation provided

(E7c)

p; max
i
q2i,·/p; max

ı̂

q2
·,̂ı
/p all small. (E7d)

For the simplest case, suppose there are K1 (resp. K2) categories of the
first (second) type, and the distribution is uniform over categories of each
type and independent between types: that is, q

i,̂ı
≡ 1/K1K2. Then the

number T of people one needs to sample until finding some coincidence is

T
D≈
(

1

K1
+

1

K2

)−1

R; P (R > t) = exp(−1

2
t2). (E7e)

E8 Example: Similar bridge hands. As another example in this ab-
stract set-up, the chance that two sets of 13 cards (dealt from different
decks) have 8 or more cards in common is about 1/500. So if you play
bridge for a (long) evening and are dealt 25 hands, the chance that some
two of your hands will have at least 8 cards in common is, by (E7b), about

1 − exp

(
−1

2

252

500

)
:

this is roughly a 50–50 chance. Bridge players often have remarkable mem-
ories of their past hands — this would make a good test of memory!

We now turn to matching problems. Fix N large, and let X1, . . . , XN ;
Y1, . . . , YN be independent uniform random permutations of {1, 2, . . . , N}.

A trite variation of the basic matching problem is to consider Mj = #{ i :
|Xi−Yi| ≤ j }. For fixed j, asN → ∞ we have P (|Xi−Yi| ≤ j) ∼ (2j+1)/N
and these events are asymptotically independent, so

Mj
D≈ Poisson(2j + 1).
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Here is a more interesting variation.

E9 Example: Matching K-sets. For fixed small K, let I be the set of
K-element subsets i

˜
= {i1, . . . , iK} of {1, . . . , N}. Say i

˜
is a K-match if the

sets {Xi1 , . . . , XiK} and {Yi1 , . . . , YiK} are identical, but {Xj1 , . . . , Xjk
}

and {Yj1 , . . . , Yjk
} are not identical for any proper subset {j1, . . . , jk} of

{i1, . . . , iK}. Let MK be the number of K-matches (so M1 is the number
of matches, as in problem E1.4). So MK = #(S∩I), where S is the random
set ofK-matches. We want to apply the heuristic to S. Observe that if i

˜
and

ı̂
˜

areK-matches, then either i
˜

= ı̂
˜

or i
˜

and ı̂
˜

are disjoint (else the values ofX
and Y match on i

˜
∩ ı̂
˜
, which is forbidden by definition). Thus the clump size

C ≡ 1. For each i
˜
, the chance that {Xi1 , . . . , XiK} and {Yi1 , . . . , YiK} are

identical is 1/
(

N
K

)
. Suppose they are identical. Define u1 = Xi1 , ur = the Yij

for whichXij = ur−1. Then i
˜

is aK-match iff u2, u3, . . . , uK are all different
from u1, and this has chance (K−1)/K×(K−2)/(K−1)×· · ·×1/2 = 1/K.
So

p = P (i
˜

is a K-match) =

(
K

(
N

K

))−1

and our heuristic clump rate is λ = p/EC = p, since C ≡ 1. So

MK = #(S ∩ I) D≈ Poisson(λ#I) by the heuristic (Section A4)

D≈ Poisson(1/K) since #I =

(
N

K

)
. (E9a)

This example is simple enough to solve exactly (see Section E21). Here’s
another example in the same setting where we really use clumping.

E10 Example: Nearby pairs. Let D be the smallest L ≥ 2 such that
for some i,

|{Xi, Xi+1, . . . , Xi+L−1} ∩ {Yi, Yi+1, . . . , Yi+L−1}| ≥ 2 (E10a)

We shall estimate the distribution of D. Fix L, and let S be the random set
of i for which (E10a) holds. For each i the cardinality of the intersection
in (E10a) is approximately Binomial(L,L/N) because each Y has chance
L/N of matching some X. So

p = p(i ∈ S) ≈ 1

2

(
L2

N

)2

provided this quantity is small. To estimate EC, fix i and condition on
i ∈ S. Then P (i+1 6∈ S) ≈ P (Xi or Yi is one of the matched values) ≈ 4/L
provided this quantity is small. We can now use the ergodic-exit technique
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(A9h) to estimate the clump rate

λ ≈ p(4/L) ≈ 2L3

N2
,

and so

P (D > L) ≈ P (S ∩ {1, 2, . . . , N} empty)

≈ exp(−λN)

≈ exp(−2
L3

N
) (E10b)

E11 Example: Basic coupon-collectors problem. We now turn to
other versions of the coupon-collector’s problem. The basic example in Sec-
tion E1.3 can be rephrased as follows. Suppose we have a large number N
of boxes. Put balls independently uniformly into these boxes; what is the
number T of balls needed until every box has at least one ball? As usual,
we get a simple estimate by Poissonization. Imagine the placement times
as a Poisson process of rate 1. Then

P (box j empty at time t) ≈ exp

(
− t

N

)
,

for any particular box j. But Poissonization makes boxes independent. So
Qt = the number of empty boxes at time t satisfies

Qt
D≈ Poisson, mean N exp

(
− t

N

)
; t large. (E11a)

In particular

P (T ≤ t) = P (Qt = 0)

≈ exp(−N exp(−t/N)). (E11b)

This can be rearranged to

N−1(T −N logN)
D≈ ξ; where P (ξ ≤ x) = exp(−e−x). (E11c)

or more crudely to
T ≈ N logN. (E11d)

Here are some simple variations on the basic problem.

E12 Example: Time until most boxes have at least one ball. Let
0 < α < 1. Let Tα be the time (= number of balls) until there are at
most Nα empty boxes. By (E11a), Tα is approximately the solution t of
N exp(−t/N) = Nα, and so the crude approximation analogous to (E11d)
is

Tα ≈ (1 − α)N logN. (E12a)
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E13 Example: Time until all boxes have at least (K + 1) balls.
For t large,

P (box j has < K + 1 balls at time t)

≈ P (box j has K balls at time t)

= e−t/N (t/N)K/K!

Write QK
t = number of boxes with < K + 1 balls at time t. Then QK

t

D≈
Poisson, mean Ne−t/N (t/N)K/K! So the time TK until all boxes have at
least K + 1 balls satisfies

P (TK ≤ t) = P (QK
t = 0)

≈ exp(−Ne−t/N (t/N)K/K!).

This rearranges to

TK ≈ N logN +KN log logN. (E13a)

E14 Example: Unequal probabilities. Suppose each ball goes into
box j with probability pj , where max pj is small. Then

P (box j empty at time t) ≈ exp(−pjt),

and the crude result (E11c) becomes:

T ≈ the solution t of
∑

exp(−pjt) = 1 (E14a)

= Φ(µ), say, where µ indicates the distribution (pj).

This doesn’t have an explicit solution in terms of the (pj) — unlike the
birthday problem (Example E5) — and this hampers our ability to handle
more complicated extensions of the coupon-collector’s problem.

E15 Abstract versions of CCP. Let (Xi) be i.i.d. with some distri-
bution µ on a space S. Let (Aj) be subsets of S. Then a generalization of
the coupon-collector’s problem is to study

T ≡ min{n : for each j there exist m ≤ n such that Xm ∈ Aj }. (E15a)

In the case where (Aj) is a partition, we are back to the setting of Exam-
ple E14 above, and T ≈ the solution t of

∑

j

exp(−tµ(Aj)) = 1. (E15b)

This remains true for many more general families (Aj). For t defined at
(E15b) let S be the random set of j such that Aj has not been hit by
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(X1, . . . , Xt). Using the heuristic, the essential condition for T ≈ t is that
S should not form clumps, but instead consist of isolated points. In general
(A6f) a sufficient condition for this is

∑

k near j

P (k ∈ S | j ∈ S) is small, for all j.

In the present setting,

P (k ∈ S | j ∈ S) ≈ exp(−tµ(Ak \Aj)).

Thus the heuristic sufficient condition for T ≈ t at (E15b) is

∑

k

exp(−tµ(Ak \Aj)) is small, for each j (E15c)

where the sum is taken over those Ak which overlap Aj significantly.

E16 Example: Counting regular graphs. We are familiar with the
use of combinatorial counting results in probability theory. Here is an ele-
gant example of the converse, a “counting” result whose only known proof
is via an essentially probabilistic argument. Call a graph improper if we
allow

1. loops (that is, an edge from a vertex to itself); and

2. multiple edges between the same pair of vertices.

Call a graph proper if these are not allowed. Let A(N, d) be the number of
proper graphs on N labeled vertices such that there are exactly d edges at
each vertex (here d ≥ 3 and dN is even). We shall argue

A(N, d) ∼ (Nd)!

( 1
2Nd)!2

Nd/2(d!)N
exp(−λ−λ2), as N → ∞, d fixed (E16a)

where λ = 1
2 (d− 1).

Put Nd balls in a box: d balls marked “1”, d balls marked “2”, . . . and d
balls marked “N”. Draw the balls two at a time, without replacement, and
each time a pair is drawn create an edge between the corresponding vertices
1, 2, . . . , N . This constructs a random graph, which may be improper, but
it is easy to see:

conditional on the constructed graph being proper, it is
equally likely to be any proper graph.

In other words,

1

A(N, d)
=

q

P (graph is proper)
=

q

P (X = 0, Y = 0)
(E16c)



116 E16. Example: Counting regular graphs.

where q is the chance the construction yields a specified proper graph,

X = number of vertices i such that there is a loop from i to i,

Y = number of pairs of vertices (i, j) linked by multiple edges.

It is not hard to calculate q = ( 1
2Nd)!(d!)

N2Nd/2/(Nd)!. So the counting
result (E16a) will be a consequence of the probabilistic result

(X,Y ) are asymptotically independent Poissons, means λ and λ2.
(E16d)

To argue this heuristically, let Bi,j be the event that there are multiple
edges between i and j. Then

P (Bi,j) ∼
1

2

(d− 1)2

N2
∑

k 6=j

P (Bi,k | Bi,j) → 0.

So applying the heuristic to S = { (i, j) : Bi,j occurs }, the clumps consist of
single points (A6f) and so Y = |S| has approximately Poisson distribution
with mean E |S| =

(
N
2

)
P (Bi,j) → λ2. The argument for X is similar.

COMMENTARY

E17 General references. There is a vast literature on combinatorial
problems. The basic problems are treated in David and Barton (1962), Feller
(1968) and Johnson and Kotz (1977). Asymptotics of “balls in boxes” prob-
lems are treated in detail by Kolchin et al. (1978). Ivanov el al. (1984) discuss
more recent Russian literature. The forthcoming work of Diaconis and Mosteller
(1989) treats coincidence problems.

The references in Section A18 show how Stein’s method can be used to give
explicit bounds in certain approximations.

E18 Poissonization. Holst (1986) gives a careful account of Poisoniza-
tion in several simple models. Presumably (E2a) can be formalized as follows:

if supθ −θ1/2q′(θ) < δ then sup |p(n) − q(n)| ≤ ε for some
explicit function ε(δ) → 0 as δ → 0.

Assertion (E2d) is really an easy Tauberian theorem.

E19 The random number test. Marsaglia (unpublished) gives a heuris-
tic argument for Example E6; Diaconis (unpublished) has proved the corre-
sponding limit theorem.
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It is interesting to note that the sequential version of this problem is dif-
ferent. Fix N ; pick X1, X2, . . . and for each K let AK be the event “all
D’s different” for the D’s formed from X1, . . . , XK . Then Example E6 says
P (AK) ≈ exp(−K3/4N). In this example, unlike our other “birthday” prob-
lems, it is possible for matches to be broken, so the (AK) are not decreasing.
So for

T = min{K : AK does not occur }
P (T > K) 6= P (AK). My rough calculations give

P (T > K) ≈ exp(−K3/3N).

E20 Abstract forms of the birthday problem. Formalizations of
Section E7 may be derived from the Poisson limit theorem for U-statistics
(Silverman and Brown (1978)); explicit bounds on errors can be found using
Stein’s method.

E21 Cycles of random permutations. In the matching problems (Ex-
amples E9,E10) we could take the sequence (Xi) to be (1, 2, . . . , N) without
changing the problem. In this setting, the r.v. MK of Example E9 is just the
number of cycles of length K in a uniform random permutation of (1, . . . , N).
Properties of MK have been studied extensively — see, e.g., Shepp and Lloyd
(1966).

E22 Random regular graphs. The argument in Example E16 is from
Bollobas (1985) Section 2.4.



F
Combinatorics for
Processes

In this chapter we study analogues of the birthday problem, the match-
ing problem and the coupon-collector’s problem for finite-valued stochastic
processes (Xn;n ≥ 1) more complicated than i.i.d.

F1 Birthday problem for Markov chains. For an idea of the issues
involved, consider a stationary Markov chain (Xn) with stationary distri-
bution π, and consider the birthday problem, i.e. the distribution of

T = min{n ≥ 2 : Xn = Xm for some 1 ≤ m < n }. (F1a)

We seek approximations for T , in the case where ET is large. Let 1 � τ �
ET , with τ representing “the short term”. As in Section B2, suppose that
at each state i we can approximate the distribution of i = X0, X1, . . . , Xτ

by the distribution of i = X∗
0 , X

∗
1 , . . . , X

∗
τ for some transient chain X∗;

write
q(i) = Pi(X

∗ returns to i).

We need to distinguish between “local” matches, where (F1a) holds for
some n − m ≤ τ , and “long-range” matches with n − m > τ . For local
matches, consider the random set S1 of times m for which Xn = Xm for
some m < n ≤ m+ τ . Then

p1 ≡ P (m ∈ S1) ≈
∑

π(i)q(i).

Write c1 for the mean clump size in S1; the heuristic says that the clump
rate λ1 = p1/c1. So

P (no local matches before time n) ≈ P (S1 ∩ [1, n] empty)

≈ exp(−λ1n)

≈ exp(−nc−1
1

∑
π(i)q(i)).

For long-range matches, consider the random set

S2 = { (j,m) : m− j > τ, Xm = Xj }.
Write c2 for the mean clump size in S2. Assuming no long-range depen-
dence,

p2 ≡ P ((j,m) ∈ S2) ≈
∑

π2(i),
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and the heuristic says that the clump rate λ2 = p2/c2. So

P (no long-range matches before time n) ≈ P (S2 ∩ [1, n]2 empty)

≈ exp(−1

2
n2λ2)

≈ exp(−1

2
n2c−1

2

∑
π2(i)).

Thus we get the approximation

P (T > n) ≈ exp(−nc−1
1

∑
π(i)q(i) − 1

2
n2c−1

2

∑
π2(i)). (F1b)

In principle one can seek to formalize this as a limit theorem for a sequence
of processes X(K). In this general setting it is not clear how to estimate the
mean clump sizes c1, c2. Fortunately, in natural examples one type of match
(local or long-range) dominates, and the calculation of c usually turns out
to be easy, as we shall now show.

The simplest examples concern transient random walks. Of course these
do not quite fit into the setting above: they are easy because they can have
only local matches. Take T as in (F1a).

F2 Example: Simple random walk on ZK . Here Xn =
∑n

m=1 ξm,
say. Now T ≤ R ≡ min{m : ξm = −ξm−1 }, and R − 1 has geometric
distribution with mean 2K. For largeK it is easy to see that P (T = R) ≈ 1,
so that T/(2K) has approximately exponential(1) distribution.

F3 Example: Random walks with large step. Fix d ≥ 3. For large
K, consider the random walkXn =

∑n
m=1 ξm in Zd whose step distribution

ξ is uniform on {i
˜

= (i1, . . . , id) : |ij | ≤ K for all j}. Write S1 for the
random set of times n such thatXm = Xn for some m > n. Let qK = P (Xn

ever returns to 0). Then P (n ∈ S1) = qK , and since the steps ξ are spread
out there is no tendency for S1 to form clumps, so P (T > n) ≈ exp(−nqK).
Finally, we can estimate qK by considering the random walk Sn on Rd

whose steps have the continuous uniform distribution on {x
˜

= (x1, . . . , xd) :

|xj | ≤ 1 for all j }. Then P (Xn = 0) ≈ K−dfn(0), where fn is the density
of Sn, and so

qK ≈ K−d
∞∑

n=1

fn(0).

We turn now to random walks on finite groups, which are a special case
of stationary Markov chains. Such random walks were studied at Examples
B6,B7 in the context of first hitting times; here are two different examples
where we study the “birthday” time T of (F1a).
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F4 Example: Simple random walk on the K-cube. Take I =
{0, 1}K , regarded as the vertices of the unit cube in K dimensions. Let Xn

be simple random walk on I: at each step a random coordinate is chosen
and changes parity. This is equivalent to the Ehrenfest urn model with K
labeled balls. In the context of the birthday problem it behaves similarly
to Example F2. Let R be the first time n such that the same coordinate
is changed at n − 1 and n. Then T ≤ R, P (T = R) ≈ 1 for large K,
and R − 1 has geometric distribution with mean K. So for large K, T is
approximately exponential with mean K.

F5 Example: Another card shuffle. Some effort is needed to con-
struct an interesting example where the long-range matches dominate: here
is one. As at Example B6 consider repeated random shuffles of a K-card
deck (K even), and consider the shuffling method “take the top card and
insert it randomly into the bottom half of the deck”. I claim that for K
large, T behaves as in the i.i.d. case, that is

P (T > n) ≈ exp

(
−1

2

n2

K!

)
.

Consider first the long-range matches. If Xj = Xm for m− j large then
there is no tendency for nearby matches. So c2 = 1, and then (F1b) shows
that the contribution to P (T > n) from long-range matches is of the form
stated. Thus the issue is to show that there are no local matches before
time O(

√
K!). By (F1b) we have to show

q ≡ P (return to initial configuration in short term) = o(K!)−
1
2 . (F5a)

Let i be the initial configuration. For n < 1
2K it is impossible that Xn = i.

In any block of 1
2K shuffles there are (K/2)K/2 possible series of random

choices, and a little thought reveals these all lead to different configurations;
it follows that

P (Xn = i) ≤
(

1

2
K

)− 1
2
K

for n ≥ 1

2
K

= o(K!)−
1
2

and this leads to (F5a).

F6 Matching problems. Let us now shift attention away from birth-
day problems toward matching problems: we shall see later there is a con-
nection. Let (Xn) and (Yn) be stationary processes without long-range
dependence, independent of each other. The matching time

T = min{n : Xn = Yn } (F6a)
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is just the first time that the bivariate process (Xn, Yn) enters the set
{(x, x)}, and can be studied using the techniques of earlier chapters. The
“shift-match” time

T = min{n : Xi = Yj for some i, j ≤ n } (F6b)

involves some new issues. To study T , we need some notation. Let fX(x) =
P (X1 = x) and let cX(x) be the mean size of clumps of visits of (Xn) to
x; define fY , cY similarly. Let p = P (X1 = Y1) =

∑
x fX(x)fY (x), and let

Z have the distribution of X1 given X1 = Y1. To make T large, suppose p
is small. We also make a curious-looking hypothesis: there exists 0 ≤ θ < 1
such that

P (Xi+1 = Yj+1 | Xi = Yj , past) ≈ θ regardless of the past. (F6c)

We shall give an argument for the approximation

P (T > K) ≈ exp(−K2p(1 − θ)); (F6d)

to justify this we shall need the extra hypotheses

KEfX(Z), KEfY (Z), E(cX(Z) − 1) and E(cY (Z) − 1) are all small.
(F6e)

FIGURE F6a.

Consider the random set S = { (i, j) : Xi = Yj }. It is clear that, on the
large scale, S does not look Poisson, since if a value x occurs as Xi1 , Xi2 , . . .
and as Yj1 , Yj2 , . . . then all points of the irregular grid {iv, jw; v, w ≥ 1}
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occur in S, and so S has this kind of long-range dependence. However,
consider a large square [1,K]2 and suppose we have the property

when a match Xi = Yj = x occurs in the square, it is
unlikely that x appears as any other X-value or Y -value
in the square.

(F6f)

In this case we can apply the heuristic to S ∩ [1,K]2, and the clumps of
matches will be diagonal lines only, as pictured.

For (F6f) implies first that the long-range dependence mentioned above
does not affect the square; and second that points like ◦ can not be in
S, else the match-values at the points above and to the left of ◦ would be
identical. Applying the heuristic, P ((i, j) ∈ S) = p and by (F6c) the clump
sizes are approximately geometric, mean (1− θ)−1. Thus the clump rate is
λ = p(1 − θ), yielding (F6d). Finally, we want to show that (F6f) follows
from (F6e). The value Z = Xi = Yj at match (i, j) is distributed as X1

given X1 = Y1. So the mean number of extra times Z occurs locally in (Xn)
is E(cX(Z)− 1); and the mean number of non-local times is KEfX(Z). So
hypothesis (F6f) makes it unlikely that Z occurs as any other X-value or
Y -value.

F7 Matching blocks. The most-studied aspect of these combinatorial
topics is the problem of matching blocks of two sequences, motivated by
DNA comparisons (see Section F19). Suppose we have underlying station-
ary sequences (ξn), (ηn), independent of each other, each without long-
range dependence. Let MK be the length of the longest block which occurs
in the first K terms of each sequence:

MK = max{m : (ξi−m+1, . . . , ξi) = (ηj−m+1, . . . , ηj) for some i, j ≤ K }.
To study MK , fix m large. Let (Xn) be the process of m-blocks for (ξn),
that is Xn = (ξn−m+1, . . . , ξn), and let (Yn) be the process of m-blocks for
(ηn). Then

P (MK < m) = P (T > K) (F7a)

where T is the shift-match time of (F6b). Let uξ(s) = P (ξ1 = s), uη(s) =
P (η1 = s).

F8 Example: Matching blocks: the i.i.d. case. Consider the case
where (ξn) and (ηn) are each i.i.d. (with different distributions, perhaps).
Then

p = P (Xn = Yn) = qm where q = P (ξ1 = η1) =
∑

s

uξ(s)uη(s).

and (F6c) holds for θ = q. So, if the extra hypotheses (F6e) hold, then
(F6d) and (F7a) above imply the approximation

P (MK < m) ≈ exp(−K2(1 − q)qm). (F8a)
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This distributional approximation implies the weaker approximation

MK ≈ 2 logK

log(1/q)
. (F8b)

To verify the extra hypotheses, recall first the “patterns in coin-tossing”
discussion (Example B5). Local matches are caused by a pattern overlap-
ping itself; for m large, it is clear that a typical pattern of length m does
not overlap itself substantially, so the hypothesis that E(cX(Z) − 1) be
small is satisfied. For the other hypothesis, let ν have the distribution of ξ1
given ξ1 = η1; then the Z in (F6e) is Z = (ν1, . . . , νm) with i.i.d. entries.
So EfX(Z) = (Euξ(ν))

m. Thus the condition we need to verify is

K(Euξ(ν))
m → 0 for K, m related by K2(1 − q)qm → c ∈ (0,∞).

This reduces to the condition
∑

s

u2
ξ(s)uη(s) < q3/2 (F8c)

and the similar condition with ξ, η interchanged.
Thus our heuristic arguments suggest (F8c) is a sufficient condition

for the approximations (F8a,F8b). To see that (F8c) is a real constraint,
consider the binary case where uξ(0) = uξ(1) = 1

2 , uη(0) = α > 1
2 ,

uη(1) = 1 − α. Then (F8c) is the condition α < 0.82. This suggests that
the limit theorems corresponding to (F8a,F8b) hold for some but not all
α; and this turns out to be true (see Section F19) although our bound on
α is conservative. In general it turns out that

MK ∼ C logK

log(1/q)
a.s. as K → ∞, (F8d)

where B depends on the distributions ξ, η; and where B = 2 if these
distributions are not too dissimilar.

F9 Example: Matching blocks: the Markov case. Now consider
the setting above, but let (ξn) and(ηn) be stationary Markov chains with
transition matrices P ξ(s, t), P η(s, t). Write

pm = P ((ξ1, . . . , ξm) = (η1, . . . , ηm)).

Let Q be the matrix Q(s, t) = P ξ(s, t)P η(s, t), that is with entrywise
multiplication rather than matrix multiplication. Then

pm ∼ aθm as m (F9a)

where θ is the largest eigenvalue of Q and a is related to the corresponding
eigenvectors (see Example M4). Moreover, (F6c) holds for this θ, using
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(F9a). So, as in the i.i.d. case, (F6d) yields the approximations

P (MK < m) ≈ exp(−K2a(1 − θ)θm) (F9b)

MK ∼ 2 logK

log(1/θ)
as K → ∞. (F9c)

Again, these require the extra hypotheses (F6e); as in the i.i.d case, these
reduce to requirements that the transition matrices P ξ, P η be not too
different.

F10 Birthday problem for blocks. Given a single sequence (ξn), we
can study the longest block which occurs twice:

MK = max{m : (ξj−m+1, . . . , ξj) = (ξi−m+1, . . . , ξi) for some i ≤ j ≤ K }.

But long-range matches behave exactly like matches between two indepen-
dent copies of (ξn). So if nearby matches can be neglected, then we can
repeat the arguments for (F8a), (F9b) to get

[i.i.d. case] P (MK < m) ≈ exp(−1

2
K2(1 − q)qm); (F10a)

q =
∑

s

P 2(ξ1 = s).

[Markov case] P (MK < m) ≈ exp(−1

2
K2a(1 − θ)θm). (F10b)

Note the “ 1
2K

2” here, being the approximate size of { (i, j) : 1 ≤ i < j ≤
K }. The condition under which nearby matches can be neglected is, in the
notation of (F6e),

KE(cX(X) − 1) is small (F10c)

In the i.i.d. case this is automatic; the Markov case is less clear.

F11 Covering problems. Changing direction, let us consider for an
I-valued sequence (Xn) the time

V = min

{
t :

t⋃

n=1

{Xn} = I

}
.

In the i.i.d. setting (Example E14) this was the coupon collector’s problem;
in general let us call V the covering time. As observed in Example E14
even in the i.i.d. case the approximation for V is rather non-explicit for
non-uniform distributions. Thus a natural class of dependent processes to
study in this context is the class of random walks on finite groups (Examples
F4,F5,B6,B7) since they have uniform stationary distribution.
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F12 Covering problems for random walks. Let (Xn) be a station-
ary random walk on a finite group I and let i0 be a reference state. Suppose
as in Section B2 that, given X0 = i0, the process (Xn) can be approximated
by a transient process (X∗

n). Then as at Section B2

Ti0 has approximately exponential distribution, mean cN (F12a)

where N = |I| and c is the mean number of visits of X∗ to i0. By the
symmetry of the random walk, (F12a) holds for all i ∈ I. Now let t, s be
related by t = cN(log(N) + s). Then

P (Ti > t) ≈ exp

(
− t

cN

)
≈ N−1e−s.

For fixed t let Ai be the event {Ti > t}. Under the condition

∑

j near i0

P (Aj | Ai0) ≈ 0 (F12b)

the heuristic says that the events {Ai; i ∈ I } do not clump and so

P (
⋂

i

Ac
i ) ≈

∏

i

P (Ac
i)

That is

P (V ≤ t) ≈ (P (Ti > t))N

≈ exp(−e−s)

= P (ξ3 ≤ s) for the extreme value distribution ξ3.

Thus we get the approximation

V − cN logN

cN

D≈ ξ3, (F12c)

or more crudely

V

cN logN
≈ 1. (F12d)

These approximations depend not only on the familiar “local transience”
property but also upon condition (F12b). To study this latter condition,
write qj = Pi0(X

∗ hits j), q′j = Pj(X
∗ hits i0), Tj,i0 = min{n : X∗

n = j or
i0}. We can estimate the distribution of Tj,i0 using the heuristic method
developed at Section B12. In the notation there , Ei0Ci0 = c = EjCj ,
Ei0Cj = qjc, EjCi0 = q′jc, and then (B12b) gives, after some algebra,

P (Tj,i0 > t) ≈ exp(−λjt); λj =
2 − qj − q′j
cN(1 − qjq′j)

.
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Recall that Aj = {Tj > t} for t = cN(log(N) + s), and that P (Ai0) ≈
N−1e−s. So

P (Aj | Ai0) =
P (Tj,i0 > t)

P (Ti0 > t)

≈ N−αj after some algebra,

where

αj =
1 − qj − q′j + qjq

′
j

1 − qjq′j

=
1 − qj
1 + qj

if qj = q′j .

Thus condition (F12b) is
∑

j near i0

N−αj ≈ 0. (F12e)

Here are two explicit examples.

F13 Example: Random walk on Zd modulo N . In this example
(Example B7), for d ≥ 3 the conclusion (F12c) is

V −RdN
d log(Nd)

RdNd

D≈ ξ3, N large.

To verify condition (F12e), for the unrestricted transient walk X∗ in d ≥ 3

dimensions we have qj = q′j ≤ A|j|1− 1
2
d for some A < 1. Writing m = |j|,

the sum in (F12e) becomes

∑

m≥1

md−1(Nd)−1+A(m1− 1
2

d)

and the sum tends to 0 as N → ∞.

F14 Example: Simple random walk on the K-cube. In this ex-
ample (Example F4) there is an interesting subtlety. Here N = 2K ; take
i0 = (0, . . . , 0) and for j = (j1, . . . , jK) let j =

∑
u |ju|. Then qj = q′j =

O(K−|j|) and so condition (F12e) is easily satisfied. To use (F12c) we need
an estimate of the mean size c of clumps of visits to i0, and the esti-
mate has to be accurate to within O(1/ logN). In this example, we take
c = 1+1/K+O(K−2), where the factor 1/K gives the chance of returning
to i0 after 2 steps. Then (F12c) gives

V − (K + 1)2K log 2

2K

D≈ ξ3.
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The “1” makes this different from the result for i.i.d. uniform sampling on
the K-cube. One might guess the difference is due to dependence between
unvisited sites for the random walk, but our argument shows not; the dif-
ference is caused merely by the random walk being a little slower to hit
specified points.

F15 Covering problem for i.i.d. blocks. Let (ηn) be i.i.d. finite-
valued. For m ≥ 1 let Xn = (ηn−m+1, . . . , ηn), n ≥ m, and let µm =
distribution(Xn). Let Vm be the coupon collectors time for (Xn). It is easy
to see heuristically that, for Φ as at Example E14,

Vm

Φ(µn)
→
p

1 as m→ ∞. (F15a)

Except in the uniform case, it is not so clear how the sequence Φ(µm)
behaves in terms of distribution(η1), nor how to prove the more refined
results about convergence to ξ3; this seems a natural thesis topic.

We end the chapter with some miscellaneous examples.

F16 Example: Dispersal of many walks. Consider N independent
simple symmetric random walks on Zd, in continuous time (mean 1 holds),
all started at the origin 0. For N large, what is the first time T that none
of the walks is at the origin?

Consider first a single walk X(t) = (X1(t), . . . , Xd(t)). Each coordinate
performs independent random walks on Z1 with variance 1/d, so the CLT
gives P (Xi(t) = 0) ≈ (2πt/d)−1/2 for large t. So

P (X(t) = 0) ≈
(

2πt

d

)−d/2

for t large.

Let m(t) = N(2πt/d)−d/2. For large t, the number of walks at 0 at time t
is approximately Poisson(m(t)). Moreover, the numbers Nx(t) of walks at
lattice points x near 0 will be approximately i.i.d. Poisson(m(t)). We want
to apply the heuristic to the random set S of times t at which there are no
walks at 0. So

p(t) ≡ P (t ∈ S) = P (N0(t) = 0) ≈ exp(−m(t)).

For the relevant values of t it turns out that m(t) is large; given t ∈ S there
will be many walks at neighbors x of 0, and the clump is likely to end when
the first neighbor makes a transition to 0. So ft, the rate of clump-ending
given t ∈ S, is about

(2d)−1E

( ∑

x neighbor 0

Nx(t) | N0(t) = 0

)
≈ m(t).
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So the ergodic-exit form (A9c) of the heuristic gives clump rate

λ(t) = p(t)ft

≈ m(t) exp(−m(t)).

So the non-stationary form of the heuristic gives

− log P (T > t) ≈
∫ t

0

λ(s) ds

≈ m(t)

∫ t

0

exp(−m(s)) ds

≈ m(t) exp(−m(t))

−m′(t)

≈ 2d−1t exp(−m(t))

≈ 2d−1t exp

(
−N

(
2πt

d

)− 1
2
d)
. (F16a)

More crudely, this gives

T ≈ d(2π)−1

(
N

logN

)2/d

. (F16b)

F17 Example: M/M/∞ combinatorics. A different class of “combi-
natorics for processes” examples arises as follows. The elementary combi-
natorial problems of Chapter E may be stated in terms of K draws from a
box of N balls labeled 1, 2, . . . , N . Now consider the M/M/∞ ball process
whose states are (multi-)sets of labeled balls; new balls arrive as a Poisson
(rate K) process and are given a random label (uniform on 1, ..., N); balls
stay for an exponential(1) time and are then removed. We consider the
stationary processes, for which the number of balls present at time t has
Poisson(K) distribution. Let B be a property applicable to labeled balls.
There are associated events At = “B holds at time t for the M/M/∞ ball
process”. Suppose p = P (At) = P (B holds at time t) is small. Then we
can estimate

T = min{ t : B holds at time t }
by applying the main heuristic to S = { t : B holds at time t }. Here are
the two basic examples.

F17.1 Birthday problems. Here T is the first time the M/M/∞ ball pro-
cess contains two balls with the same label. Suppose K2/N is small; then
as at Example E3

p = P (some 2 balls have the same label at time t) ≈ K2

2N
.
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We shall show that the clump size C for S has EC ≈ 1
2 . Then the heuristic

says T is approximately exponential with mean

ET ≈ 1

λ
=
EC

p
≈ N

K2
.

To obtain the estimate for EC, suppose 0 ∈ S. Then at time 0 there
are 2 balls present with the same label. These balls will be removed at
times ξ1, ξ2 with exponential(1) distributions. So the C+ of Section A9 has

C+ D≈ min(ξ1, ξ2)
D≈ exponential(2), and then (A21c) gives EC ≈ 1

2 .

F17.2 Coupon-collector’s problem. Here T is the first time at which every
label 1, 2, . . . , N is taken by some ball. Suppose K is smaller than N logN−
O(N), but not o(N logN). Write Mm for the number of labels l such that
exactly m balls present at time t have label l. Consider the component
intervals of the set S = { t : all labels present at time t }. I assert that the
rate of right end-points of such component intervals is

ψ = P (M1 = 1,M0 = 0).

This follows by observing that an interval ends at t if some ball is removed
at t whose label, l say, is not represented by any other ball present. Further,
one can argue that it is unlikely that any new ball with label l will arrive
before some other label is extinguished. So the clumps of S occur as isolated
intervals. By Section A9

T
D≈ exponential(ψ). (F17a)

To estimate ψ, note that the number of balls with a specific label has
Poisson(K/N) distribution. So

M0
D≈ Poisson, mean Ne−K/N

M1
D≈ Poisson, mean Ke−K/N

and M0 and M1 are approximately independent. Hence

ψ ≈ Ke−K/N exp(−(K +N)e−K/N ). (F17b)

COMMENTARY

I do not know any general survey of this area: results are scattered in research
papers. One of the purposes of this chapter is to exhibit this field as an area
of active current research.
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F18 Birthday problems. Birthday problems for random walks on groups
(Examples F2–F5) are studied in Aldous (1985), and the limit theorems corre-
sponding to the heuristic are proved. Birthday problems for i.i.d. blocks (F10a)
were studied in Zubkov and Mikhailov (1974); more recent work on the i.i.d.
and Markov block cases is contained in references below.

F19 Block matching problems. DNA sequences can be regarded as se-
quences of letters from a 4-word alphabet. The occurrence of a long sequence
in different organisms, or in different parts of the DNA of a single organ-
ism, has interesting biological interpretations; one can try to decide whether
such matches are “real” or “just chance coincidence” by making a probability
model for DNA sequences and seeing what the model predicts for long chance
matches. This has been the motivation for recent work formalizing approxima-
tions (F8a,F8b), (F9b,F9c) as limit theorems. See Arratia et al. (1984; 1985b;
1985a; 1988; 1988) and Karlin and Ost (1987; 1988) for a variety of rigorous
limit theorems in this setting. The main result which is not heuristically clear is
the formula for B in (F8d), and the condition for B = 2 which justifies (F8b):
see Arratia and Waterman (1985a). In the binary i.i.d. case discussed under
(F8c), the critical value for the cruder “strong law” (F8b) is α ≈ 0.89. It seems
unknown what is the critical value for the “extreme value distribution” limit
(F8a) to hold: perhaps our heuristic argument for α ≈ 0.82 gives the correct
answer.

F20 Covering problems. For random walks on groups, the weak result
(F12d) holds under “rapid mixing” conditions: Aldous (1983a). Matthews
(1988b) discusses the use of group representation theory to establish the
stronger result (F12a), and treats several examples including Example F14,
random walk on the k-cube. In Example F13 (random walk on Zd modulo N)
our heuristic results for d ≥ 3 can presumably be formalized: thesis project!
For d = 1 this is a classic elementary problem, and EV ∼ 1

2N
2 and the point

visited last is distributed uniformly off the starting point. For d = 2 the prob-
lem seems hard: see (L9). Various aspects of the “i.i.d blocks” example, in the
uniform case, have been treated in Mori (1988a; 1988b): the non-uniform case
has apparently not been studied, and would make a good thesis project.

Covering problems for random walks on graphs have been studied in some
detail: see Vol. 2 of Journal of Theoretical Probability.

F21 Miscellany. A simple example in the spirit of this chapter concerns
runs in subsets for Markov chains: this is treated in Example M3 as the proto-
type example for the eigenvalue method.

Harry Kesten has unpublished work related to Example F16 in the discrete-
time setting.

The examples on M/M/∞ combinatorics are artificial but cute.



G
Exponential Combinatorial
Extrema

G1 Introduction. We study the following type of problem. For each K
we have a family {XK

i : i ∈ IK } of random variables which are dependent
but identically distributed; and |IK | → ∞ exponentially fast as K → ∞.
We are interested in the behavior of MK = maxi∈IK

XK
i . Suppose that

there exists c∗ ∈ (0,∞) such that (after normalizing the X’s, if necessary)

|IK |P (XK
i > c) → 0 as K → ∞; all c > c∗

|IK |P (XK
i > c) → ∞ as K → ∞; all c < c∗

Then Boole’s inequality implies

P (MK > c) → 0 as K → ∞; all c > c∗ (G1a)

Call c∗ the natural outer bound for MK (for a minimization problem the
analogous argument gives a lower bound c∗; we call these outer bounds for
consistency).

Question: does MK →
p
ĉ, for some ĉ (with ĉ ≤ c∗ necessarily)?

In all natural examples, it does. Moreover we can divide the examples into
three categories, as follows.

1. MK →
p
c∗, and this can be proved using the simple “second moment

method” described below.

2. MK →
p
c∗, but the second moment method does not work.

3. MK →
p
ĉ for some ĉ < c∗.

We shall describe several examples in each category. These examples do
not fit into the d-dimensional framework for the heuristic described in
Chapter A. Essentially, we are sketching rigorous arguments related to the
heuristic instead of using the heuristic itself.

The second-moment method was mentioned at Section A15. For asymp-
totics, we need only the following simple consequence of Chebyshev’s in-
equality.
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Lemma G1.1 Let NK be non-negative integer-valued random variables
such that ENK → ∞ and EN2

K/(ENK)2 → 1. Then P (NK = 0) → 0.

Now consider a family (AK
i ; i ∈ IK) of events; typically we will have

AK
i = {XK

i > cK} for some family of random variables XK
i . Call (AK

i )
stationary if for each i0, i1 in IK there exists a permutation π of IK such

that π(i0) = i1 and (AK
i ; i ∈ IK)

D
= (AK

π(i); i ∈ IK). Then pK = P (AK
i )

does not depend on i.

Lemma G1.2 Suppose that (AK
i ) is stationary for each K, and suppose

that pK |IK | → ∞ as K → ∞. If

∑

i6=i0

P (AK
i | AK

i0
)

pK |IK | → 1 as K → ∞

then

P (
⋃

IK

AK
i ) → 1.

This follows from Lemma G1.1 by considering NK =
∑

IK
1AK

i
. Now the

second-moment method, in the context (G1a), can be stated as follows.
Take suitable cK → c∗, let AK

i = {XK
i ≥ cK} and attempt to verify the

hypotheses of Lemma G1.2; if so, this implies P (MK ≥ cK) → 1 and hence
MK →

p
c∗.

We now start some examples; the first is the classic example of the
method.

G2 Example: Cliques in random graphs. Given a graph G, a clique
H is a subset of vertices such that (i, j) is an edge for every distinct pair
i, j ∈ H; in other words, H is the vertex-set of a complete subgraph. The
clique number of a graph G is

cl(G) = max{ |H| : H is a clique of G }.
Let G(K, q) be the random graph on K labeled vertices obtained by letting
P ((i, j) is an edge) = q for each distinct pair i, j, independently for different
pairs. Let CL(K, q) be the (random) clique number cl(G(K, q)). It turns out
that, asK → ∞ for fixed 0 < q < 1, the random quantity CL(K, q) is nearly
deterministic. Define x = x(K, q) as the (unique, for large K) real number
such that (

K

x

)
q

1
2
x(x−1) = 1. (G2a)

Then x = (2 logK)/(log q−1) + O(log logK); all limits are as K → ∞ for
fixed q. Let x∗ be the nearest integer to x. We shall sketch a proof of

P (CL(K, q) = x∗ or x∗ − 1) → 1. (G2b)
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First fix K and 1 ≤ m ≤ K. Let H = {H ⊂ {1, . . . ,K} : |H| = m }. Let
G(K, q) be the random graph on vertices {1, . . . ,K}. For H ∈ H let AH be
the event “H is a clique for G(K, q)”. Then P (AH) = qm(m−1)/2 and so

∑

H

P (AH) =

(
K

m

)
q

1
2
m(m−1). (G2c)

If CL(K, q) > x∗ then there is some clique of size x∗ + 1, so

P (CL(K, q) > x∗) ≤
(

K

x∗ + 1

)
q

1
2
(x∗+1)x∗

→ 0,
using the definition of x and the
fact that x∗ + 1 ≥ x+ 1

2
.(G2d)

For the other bound, note first that {AH : H ∈ H} is stationary. Put
m = x∗ − 1 ≤ x− 1

2 and let

µ =

(
K

m

)
q

1
2
m(m−1). (G2e)

Then µ→ ∞ from the definition of x. Let H0 = {1, . . . ,m}. If we can prove

µ−1
∑

H 6=H0

P (AH | AH0
) → 1 (G2f)

then by Lemma G1.2 we have P (CL(K, q) ≥ x∗ − 1) = P (
⋃
AH) → 1,

establishing (G2b). To prove (G2f), note first that AH is independent of
AH0

if |H ∩H0| ≤ 1. Since µ =
∑

H P (AH) ≥∑|H∩H0|≤1 P (AH | AH0
), it

will suffice to prove

µ−1
∑

2≤|H∩H0|≤m−1

P (AH | AH0
) → 0. (G2g)

Now for 2 ≤ i ≤ K there are
(
m
i

)(
K−m
m−i

)
sets H with |H ∩H0| = i; for each

such H there are
(
m
2

)
−
(

i
2

)
possible edges i, j ∈ H which are not in H0,

and so P (AH | AH0
) = qm(m−1)/2−i(i−1)/2. So the quantity (G2g) is

(
K

m

)−1 ∑

2≤i≤m−1

(
m

i

)(
K −m

m− i

)
q−

1
2
i(i−1).

Now routine but tedious calculations show this does indeed tend to zero.

G3 Example: Covering problem on the K-cube. The second-
moment method provides a technique for seeking to formalize some of our
heuristic results. Consider for instance Example F14, the time VK taken
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for simple random walk on the vertices IK of the K-cube to visit all 2K

vertices. For fixed s let mK(s) = (1 +K−1)2K(s + log 2K). Let Ti be the
first hitting time on i. For fixed K, s let Ai = {Ti > mK(s)}. Suppose that
the hitting time approximations used in Example F14 could be formalized
to prove

2KP (Ai) → e−s as K → ∞; (G3a)∑

j 6=i

P (Aj | Ai) → e−s as K → ∞. (G3b)

Then for s−K → −∞ sufficiently slowly we can apply Lemma G1.2 and
deduce

P
(
(1 +K−1)2K(s−K + log 2K)

≤ VK ≤ (1 +K−1)2K(s+K + log 2K)
)

→ 1 for all s+K → ∞, s−K → −∞.
(G3c)

Of course this is somewhat weaker than the convergence in distribution
assertion in Example F14.

G4 Example: Optimum partitioning of numbers. Let Y have a
continuous density, EY = 0, EY 2 = σ2 <∞. Let (Y1, . . . , YK), K even, be
i.i.d. copies of Y and consider

MK = min
H⊂{1,...,K}

|H|= 1
2
K

∣∣∣∣
∑

i∈H

Yi −
∑

i6∈H

Yi

∣∣∣∣. (G4a)

We shall estimate the size of MK as K → ∞. The set IK of unordered
partitions {H,HC} has |IK | = 1

2

(
K

K/2

)
∼ (2πK)−1/22K . Write XH =

∑
i∈H Yi−

∑
i6∈H Yi. The central limit theorem says XH

D≈ Normal(0,Kσ2).
Under suitable conditions on Y we can get a stronger “local” central limit
theorem showing that the density of XH at 0 approximates the Normal
density at 0 and hence

P (|XH | ≤ x) ≈ 2x

σ(2πK)
1
2

for small x. (G4b)

Now fix c and put
xK = (πσK)2−Kc.

Then (G4b) implies

|IK |P (|XH | ≤ xK) → c as K → ∞. (G4c)

Suppose we can formalize (G4c) and also
∑

G6=H

P (|XG| ≤ xK | |XH | ≤ xK) → c as K → ∞. (G4d)
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Then (G4c) and (G4d) will hold for c+K → ∞ sufficiently slowly, and then
Lemma G1.2 implies the following result:

P (c−K ≤ (πσK)−12KMK ≤ c+K) → 1 as K → ∞; all c−K → 0, c+K → ∞.
(G4e)

To sketch an argument for (G4d), let Hj have |Hj ∩ H| = 1
2K − j. The

quantity at (G4d) is

1

2

1
2
K−1∑

j=1

(
K/2

j

)2

P (|XHj
| ≤ xK | |XH | ≤ xK). (G4f)

For fixed j we can argue that the conditional density of XHj
given XH is

bounded as K → ∞ and hence the contribution from j is
(
K/2

j

)2
O(xK) →

0. So it suffices to consider (G4f) with the sum taken over j0(K) ≤ j ≤
1
2K − j0(K), for j0(K) → ∞ slowly. For j in this range we can appeal to
a bivariate Normal approximation:

(XHj
, XH)

D≈ Normal, mean 0, variance Kσ2, covariance (K − 4j)σ2.

Putting a2
j,K = 4j/K, the corresponding local approximation is

P (|XJj
| ≤ xK | |XH | ≤ xK) ≈ 2xK

aj,Kσ(2πK)
1
2

≈ (2πK)−
1
2 2−Ka−1

j,Kc.

Now the unconditional probability has the same form except with aj,K

replaced by 1. And the sum of the unconditional probabilities tends to c,
by (G4c). Thus the proof of (G4d) reduces to proving

1
2
K−j0(K)∑

j=j0(K)

(
K/2

j

)2

2−KK− 1
2 (a−1

j,K − 1) → 0. (G4g)

And this is routine calculus.

G5 Exponential sums. Several later examples involve sums of i.i.d.
exponential random variables. It is convenient to record a lemma.

Lemma G5.1 Let (ξi) be i.i.d. exponential(1), and let SK =
∑K

i=1 ξi.
Then as K → ∞,

P (SK ≤ a) ∼ e−a a
K

K!
, a > 0 fixed; (G5a)

P (SK ≤ aK) ∼ (1 − a)−1e−aK
(aK)K

K!
, K−1aK → a < 1;(G5b)
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K−1 log P (K−1SK ≤ a) → 1 + log a− a; a < 1; (G5c)

P (SK ≥ bK) ∼ b(b− 1)−1e−bK
(bK)K

K!
, K−1bK → b > 1;(G5d)

K−1 log P (K−1SK ≥ b) → 1 + log b− b, b > 1; (G5e)

P (SK ≥ Kψ
( c
K

)
) ∼ cK

K!
, 0 < c <∞, (G5f)

where ψ is the inverse function of xe−x, x > 1.

These estimates follow from the Poisson process representation: if Z(λ)
denotes a Poisson(λ) variable then P (SK ≤ a) = P (Z(a) ≥ K), and
the results follow from the formula for the Poisson distribution. Our use of
exponential ξi in examples is merely for convenience, to be able to use these
explicit estimates, and often results extend to more general distributions.
In particular, note that the basic large deviation theorem gives analogues
of (G5c) and (G5e) for more general distributions.

We shall also use the simple result: if n → ∞, L/n → a, and M/n →
b > a then

n−1 log

(
M

L

)
→ b log b− a log a− (b− a) log(b− a). (G5g)

We now start “Category 2” examples: the following is perhaps the pro-
totype.

G6 Example: First-passage percolation on the binary tree. At-
tach independent exponential(1) variables ξe to edges of the infinite rooted
binary tree. For each K let IK be the set of vertices at depth K. For i ∈ IK

there is a unique path π(i) from the root vertex to i; let Xi =
∑

e∈π(i) ξe.
The intuitive story is that water is introduced at the root vertex at time 0
and percolates down edges, taking time ξi,j to pass down an edge (i, j). So
Xi is the time at which vertex i is first wetted.

Let MK = maxIK
Xi, mK = minIK

Xi. We shall show

K−1MK → c2 a.s., K−1mK → c1 a.s., where 0 <
c1 < 1 < c2 <∞ are the solutions of 2ce1−c = 1.

(G6a)

We shall give the argument for MK , and the same argument holds for
mK . Fix c. Since |IK | = 2K and each Xi, i ∈ IK has the distribution of
SK in Lemma G5.1, it follows from (G5e) that

|IK |P (X
(K)
i ≥ cK) →

{
0 c > c2
∞ c < c2

(G6b)

and the convergence is exponentially fast. Since

P (MK ≥ cK) ≤ |IK |P (X
(K)
i ≥ cK),



G. Exponential Combinatorial Extrema 137

by considering c > c2 we easily see that lim supK−1MK ≤ c2 a.s.. The
opposite inequality uses an “embedded branching process” argument. Fix
c < c2. By (G6b) there exists L such that

|IL|P (X
(L)
i ≥ cL) > 1. (G6c)

Consider the process Bj , j ≥ 0, defined as follows. B0 is the root vertex. Bj

is the set of vertices ij at level jL such that

the ancestor vertex ij−1 at level (j − 1)L is in Bj−1; (G6d)
∑

e∈σ(i)

ξe ≥ cL, where σ(i) is the path from ij−1 to ij . (G6e)

Then the process |Bj | is precisely the branching process with offspring

distribution η = |{ i ∈ IL : X
(L)
i ≥ cL}|. By (G6c) Eη > 1 and so q ≡

P (|Bj | → ∞ as j → ∞) > 0. Now if Bj is non-empty then MjL/jL ≥ c, so

P (lim inf K−1MK > c) ≥ q (G6f)

Now consider a level d. Applying the argument above to initial vertex i ∈ Id

instead of the root vertex, and using independence,

P (lim infK−1MK ≥ c) ≥ 1 − (1 − q)d.

Since d is arbitrary the probability must equal 1, completing the proof of
(G6a).

Remarks

1. The second-moment method does not work here. Intuitively, if Zn

is the size of the n’th generation in a supercritical branching pro-
cess then we expect Zn/EZn → some non-degenerate Z, and hence
we cannot have EZ2

n/(EZn)2 → 1; so we cannot apply the second-
moment method to counting variables which behave like populations
of a branching process.

2. The result (G6a) generalizes to any distribution ξ satisfying an ap-
propriate large deviation theorem. In particular, for the Bernouilli
case P (ξ = 1) = p ≥ 1

2 , P (ξ = 0) = 1 − p we have

K−1MK → 1 a.s., K−1mK → c a.s., where c satisfies
log 2+c log c+(1−c) log(1−c)+c log p+(1−c) log(1−p) = 0.

3. The other Category 2 examples known (to me) exploit similar branch-
ing process ideas. There are some open problems whose analysis in-
volves “dependent branching processes”, as in the next example.
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G7 Example: Percolation on the K-cube. Consider the unit cube
{0, 1}K in K dimensions. To each edge attach independent exponential(1)
random variables ξ. Write 0

˜
= (0, 0, . . . , 0) and 1

˜
= (1, 1, . . . , 1) for di-

ametrically opposite vertices. Let IK be the set of paths of length K
from 0 to 1; each i ∈ IK is of the form 0

˜
= v0, v1, . . . , vk = 1

˜
. Let

Xi =
∑

(vj ,vj−1)∈i ξvj−1,vj
be the sum of the random edge-weights along

path i. We shall consider MK = maxIK
Xi and mK = minIK

Xi.
Since |IK | = K! and each Xi is distributed as SK in (G5.1), we obtain

from (G5a,G5f) the following outer bounds:

P (mK ≤ a) → 0 as K → ∞; each a < 1 (G7a)

P (MK ≥ Kψ(c/K)) → 0 as K → ∞; each c > 1. (G7b)

Note (G7b) implies the cruder result

P (MK/(K logK) ≥ c) → 0; c > 1. (G7c)

It is easy to prove

MK/(K logK) →
p

1. (G7d)

For consider the greedy algorithm. That is, consider the random path G of
vertices 0

˜
= V0, V1, V2, . . . , VK = 1

˜
chosen as follows: Vj+1 is the neighbor

v of Vj for which ξVj ,v is maximal, amongst the K− j allowable neighbors,
that is those for which (Vj , v) is not parallel to any previous edge (Vu, Vu+1).
For this path

XG
D
=

K∑

j=1

ηj where (ηj) are independent, ηj
D
= max(ξ1, . . . , ξj).

(G7e)

Now ηj ≈ log j, so XG ≈ ∑K
j=1 log j ≈ K(logK − 1); it is easy to for-

malize this estimate (e.g. by considering variances and using Chebyshev’s
inequality) to prove

P (XG/(K logK) ≤ c) → 0; c < 1.

Since MK ≥ XG, this result and (G7c) proves (G7d).
This argument does not work so well for the minimum mK . Using the

greedy algorithm which chooses the minimal edge-weight at each step, we
get the analogue of (G7e) with η̂j = min(ξ1, . . . , ξj). Here Eη̂j = 1/j and

hence EXG =
∑K

j=1 1/j ≈ logK. Thus for mK we get an upper bound of
order logK, which is a long way from the lower bound of 1 given by (G7a).

There is good reason to believe (Section G20) that mK is in fact bounded
as K → ∞, and some reason to believe

Conjecture G7.1 mK →
p

1 as K → ∞.
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This seems a good thesis topic. A natural approach would be to try to
mimic the argument in Example G6: fix c > 1 and 1 � L � K and
consider the sets Bj of vertices at distance jL from 0 such that there is a
path to some vertex of Bj−1 with average ξ-value ≤ c/K. Then |Bj | grows
as a kind of non-homogeneous dependent branching process.

Turning to Category 3 examples, let us first consider an artificial example
where it is easy to see what the correct limiting constant ĉ is.

G8 Example: Bayesian binary strings. Let (Lm,m ≥ 1) be i.i.d.
random variables with 0 < L < 1. For each 1 ≤ i ≤ K consider binary
strings $i(n) = Xi(1), Xi(2), . . . , Xi(n) obtained as follows. Conditional on
Lm, the m’th digits (Xi(m), 1 ≤ i ≤ K) are i.i.d. Bernouilli, P (Xi(m) =
1) = Lm = 1 − P (Xi(m) = 0). Let TK be the smallest n for which the
strings ($i(n), 1 ≤ i ≤ K) are all distinct. We shall show that

TK

logK
→
p
ĉ as K → ∞ (G8a)

for a certain constant ĉ.
Consider first a distinct pair i, j. Then

P (Xi(1) = Xj(1)) = E(L2 + (1 − L)2)

= a2, say, (G8b)

and so P ($i(n) = $j(n)) = a2n. WritingNn for the number of pairs i, j ≤ K
such that $i(n) = $j(n), we have

P (TK > n) = P (Nn ≥ 1) ≤ ENn =

(
K

2

)
a2n.

By considering nK ∼ c logK we see that the natural outer bound is c∗ =
−1/ log a; that is

P

(
TK

logK
> c

)
→ 0 for c > c∗.

But it turns out that c∗ is not the correct constant for (G8a). To give the
right argument, consider first the non-uniform birthday problem (Exam-
ple E5) where (Yi) are i.i.d. from a distribution with probabilities (qj). The
heuristic gave

P (Yi, 1 ≤ i ≤ r all distinct) ≈ exp(−1

2
r2
∑

q2j ). (G8c)

and it can be shown that the error is bounded by f(max qj) for some
f(x) → 0 as x → 0. In the current example, conditional on L1, . . . , Ln the
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strings ($i(n); 1 ≤ i ≤ K) are i.i.d. from a distribution whose probabilities

are the 2n numbers of the form
∏n

m=1 L̂m, where each L̂m = Lm or 1−Lm.
Applying (G8c),

∣∣∣∣∣P (TK ≤ n | L1, . . . , Ln) − exp(−1

2
K2

n∏

m=1

(L2
m + (1 − Lm)2))

∣∣∣∣∣

≤ f(

n∏

m=1

max(Lm, 1 − Lm)). (G8d)

Define

ĉ = − 2

E log(L2 + (1 − L)2)
.

The strong law of large numbers says

n−1 log(
n∏

m=1

(L2
m + (1 − Lm)2) → −2

ĉ
as n→ ∞.

Consider nK ∼ c logK. Then

1

2
K2

nK∏

m=1

(L2
m + (1 − L2

m)) →
{

0 as K → ∞; c > ĉ
∞ as K → ∞; c < ĉ

.

So from (G8d)

P (TK ≤ nK) →
{

1 c > ĉ
0 c < ĉ

,

and this gives (G8a) for ĉ.

G9 Example: Common cycle partitions in random permutations.
A permutation π of {1, . . . , N} partitions that set into cycles of π. Consider
K independent random uniform permutations (πu) of {1, . . . , N} and let
Q(N,K) be the probability that there exists i1, i2 ∈ {1, . . . , N} such that
i1 and i2 are in the same cycle of πu for each 1 ≤ u ≤ K. If KN ∼ c logN
then one can show

Q(N,KN ) →
{

0 as N → ∞; c > ĉ
1 as N → ∞; c < ĉ

(G9a)

for ĉ defined below. In fact, this example is almost the same as Example G8;
that problem involved independent random partitions into 2 subsets, and
here we have random partitions into a random number of subsets. For one
uniform random permutation of {1, . . . , N} let (Y1, Y2, . . . ) = N−1(vector
of cycle lengths). Then as N → ∞ it is known that

(Y1, Y2, . . . )
D→ (L1, L2, . . . ), where

L1 = (1 − U1)
L2 = U1(1 − U2)
L3 = U1U2(1 − U3)

(G9b)
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and so on, for i.i.d. (Ui) uniform on (0, 1). We can now repeat the arguments
for Example G8 to show that (G9a) holds for

ĉ = −2
(
E log

∑
L2

i

)−1

. (G9c)

G10 Conditioning on maxima. One of our basic heuristic techniques
is conditioning on semi-local maxima (Section A7). In hard combinatorial
problems we can sometimes use the simpler idea of conditioning on the
global maximum to get rigorous bounds. Here are two examples.

G11 Example: Common subsequences in fair coin-tossing. Let
(ξ1, . . . , ξK), (η1, . . . , ηK) be i.i.d. with P (ξi = 1) = P (ξi = 0) = P (ηi =
1) = P (ηi = 0) = 1

2 . Let LK ≤ K be the length of the longest string
of 0’s and 1’s which occurs as some increasing subsequence of (ξ1, . . . , ξK)
and which also occurs as some increasing subsequence of (η1, . . . , ηK). For
example, the starred valued below

ξ 0∗ 0 1∗ 1∗ 0∗ 1 0∗ 1∗

η 0∗ 1∗ 1∗ 1 0∗ 0∗ 0 1∗

indicate a common subsequence 011001 of length 6. The subadditive ergodic
theorem (Section G21) implies

K−1LK → c∗ a.s. (G11a)

for some constant c∗. The value of c∗ is unknown: we shall derive an upper
bound.

Fix 1 ≤ m ≤ q ≤ K. For specified 1 ≤ i1 < i2 < · · · < im ≤ K and
1 ≤ j1 < · · · < jm ≤ K we have P ((ξi1 , . . . , ξim) = (ηj1 , . . . , ηjm)) = 1

2

m
.

So

E(# of common subsequences of length m) =

(
K

m

)2
1

2

m

. (G11b)

Now if there exists a common subsequence of length q, then by looking at
any m positions we get a common subsequence of length m, and so the
expectation in (G11b) is at least

(
q
m

)
P (LK ≥ q). Rearranging,

P (LK ≥ q) ≤ 1

2

m(K
m

)2/(
q

m

)
.

Now fix 0 < b < c < 1 and take limits as K → ∞, m/K → b, q/K → c,
using (G5g).

lim sup
K→∞

logK−1 log P (LK ≥ q) ≤ g(b, c)

≡ −b log b− 2(1 − b) log(1 − b) − c log c+ (c− b) log(c− b) − b log 2.
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Now the left side does not involve b, so we can replace the right side by its
infimum over 0 < b < c. Thus the constant in (G11a) must satisfy

c∗ ≤ sup

{
c < 1 : inf

0<b<c
g(b, c) ≥ 0

}
= 0.904 (G11c)

G12 Example: Anticliques in sparse random graphs. A subset H
of vertices of a graph is an anticlique (or independent set) if there is no edge
(i, j) with both endpoints in H. In other words, an anticlique is a clique
of the complementary graph. The independence number ind(G) of a graph
G is the size of the largest anticlique. Fix 1 < α < ∞ and consider the
random graphs G(K,α/K) (in the notation of Example G2): these graphs
are sparse because the mean degree → α as K → ∞. It is believed that
K−1 ind(G(K,α/K)) tends to a constant limit as K → ∞. We shall derive
an upper bound c∗(α) such that

P (ind(G(K,α/K)) > cK) → 0 as K → ∞; c > c∗(α). (G12a)

The argument is very similar to the previous example. Fix 1 ≤ m ≤ q ≤ K.
Then for a specified subset H of vertices of size m,

P (H is an anticlique of G(K,α/K)) =
(
1 − α

K

) 1
2
m(m−1)

.

So

E(# of anticliques of size m) =

(
K

m

)(
1 − α

K

) 1
2
m(m−1)

. (G12b)

If there exists an anticlique of size q, then all its subsets of size m are
anticliques, so the expectation in (G12b) is at least

(
q
m

)
P (indG(K,α/K) ≥

q). Rearranging,

P (indG(K,α/K) ≥ q) ≤ (1 − α/K)
1
2
m(m−1)

(
K

m

)/(
q

m

)
.

Now fix 0 < b < c < 1 and let K → ∞, m/K → b, q/K → c.

lim sup
K→∞

K−1 log P (indG(K,α/K) ≥ q) ≤ fα(b, c)

≡ −(1 − b) log(1 − b) − c log c+ (c− b) log(c− b) − 1

2
αb2.

Again the left side does not involve b, so we can take the infimum over b.
Thus (G12a) holds for

c∗(α) = sup{ c < 1 : inf
0<b<c

fα(b, c) ≥ 0 }

which can be calculated numerically.
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G13 The harmonic mean formula. The examples above worked out
easily because there is a deterministic implication: a long common subse-
quence or large anticlique implies there are at least a deterministic number
of smaller common subsequence or anticliques. Where such deterministic
relations are not present, the technique becomes impractical. The harmonic
mean formula, in the exact form (Section A17), offers an alternative method
of getting rigorous bounds. Let us sketch one example.

G14 Example: Partitioning sparse random graphs. For a graph
G with an even number of vertices define

part(G) = min
H,HC

{number of edges from H to HC},

the minimum taken over all partitions {H,HC} of the vertices with |H| =
|HC |. Consider now the sparse random graphs G(2K,α/K) with α > 1

2 .
We shall argue

P (part(G(2K,α/K)) ≤ cK) → 0 as K → ∞; c < ĉα (G14a)

for ĉα defined as follows. Let

fα(θ) = −θ log 4 − θ log(θ) − (1 − θ) log(1 − θ) − αθ + (1 − θ) log(1 − e−α)

fα = sup
0<θ<1

fα(θ)

hα(x) = log 4 + x− α+ x log(α/x) + fα.

ĉα =

{
0 if hα(0) ≥ 0
min{x > 0 : hα(x) = 0 } otherwise

To show this, fix 1 < m < K. Let I be the set of partitions of {1, . . . , 2K}
into sets H, Hc of size K. Let AH be the event that G(2K,α/K) has at
most m edges from H to Hc. Then

p ≡ P (AH) = P (Z ≤ m) where Z
D
= Binomial(K2, α/K)

≈ P (Z ′ ≤ m) where Z ′ D
= Poisson(αK);

|I| =

(
2K

K

)
.

Write X =
∑

H 1AH
. Applying Lemma A17.1,

P (part(G(2K,α/K)) ≤ m)

= P (
⋃
AH)

= P (Z ′ ≤ m)

(
2K

K

)
E(X−1|AH0

) (G14b)
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where H0 = {1, 2, . . . ,K} say. Now let K → ∞, m/K → c < ĉα. Then

K−1 log P (Z ′ ≤ m) → c− α+ c log(α/c)

K−1 log

(
2K

K

)
→ log 4

and so to prove (G14a) is will suffice to show that

K−1 logE(X−1|AH0
) is asymptotically ≤ fα. (G14c)

To show this, let J0 be the subset of vertices j in H0 such that j has no
edges to H0; similarly let J1 be the subset of vertices j in Hc

0 such that j
has no edges to Hc

0 . Let Y = min(|J0|, |J1|). For any 0 ≤ u ≤ Y we can
choose u vertices from J0 and u vertices from J1 and swap them to obtain
a new partition {H,HC} which will have at most m edges from H to HC .
Thus

X ≥
Y∑

u=0

(
Y

u

)2

= g(Y ) say, on AH0
.

Now Y is independent of AH0
, so

E(X−1|AH0
) ≤ E(1/g(Y )) =

K∑

y=0

1

g(y)
P (Y = y).

Write Y0 = |J0|. Then P (Y = y) ≤ 2P (Y0 = y). Since the sum is at most
K times its maximum term, the proof of (G14c) reduces to

K−1 log( max
0≤y≤K

1

g(y)
P (Y0 = y)) → fα. (G14d)

This in turn reduces to

K−1 log(1/g(θK)) +K−1 log P (Y0 = θK) → fα(θ); 0 < θ < 1.
(G14e)

Now g(y) =
∑

u

(
y
u

)2 ≈ 22y, and so the first term in (G14e) tends to
−θ log 4. Next, suppose we had

Y0
D
= Binomial(K, e−α). (G14f)

Then the second term in (G14e) would converge to the remaining terms of
fα(θ), completing the proof. For a fixed vertex j in H0, the chance that j
has no edges toH0 is (1−α/K)K−1 ≈ e−α. If these events were independent
as j varies then (G14f) would be exactly true; intuitively, these events are
“sufficiently independent” that Y0 should have the same large deviation
behavior.
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G15 Tree-indexed processes. We now describe a class of examples
which are intermediate in difficulty between the (hard) “exponential max-
ima” examples of this chapter and the (easy) “d-parameter maxima” ex-
amples treated elsewhere in this book. Fix r ≥ 2. Let I be the infinite
(r + 1)-tree, that is the graph without circuits where every vertex has de-
gree r + 1. Let i0 ∈ I be a distinguished vertex. Write IK for the set of
vertices within distance K of i0. Then |IK | is of order rK : precisely,

|IK | = 1 + (r + 1) + (r + 1)r + · · · + (r + 1)rK−1 =
(r + 1)rK − 2

r − 1
.

Consider a real-valued process (Xi : i ∈ I) indexed by the (r+1)-tree. There
are natural notions of stationary and Markov for such processes. Given any

bivariate distribution (Y1, Y2) which is symmetric (i.e. (Y1, Y2)
D
= (Y2, Y1))

there exists a unique stationary Markov process (Xi : i ∈ I) such that

(Xi1 , Xi2)
D
= (Y1, Y2) for each edge (i1, i2).

For such a process, let us consider

MK = max
IK

Xi

as an “exponentially growing” analog of the maxima of 1-parameter station-
ary Markov chains discussed in Chapters B and C. Here are two examples

G16 Example: An additive process. Fix a parameter 0 < a < ∞.
Let (Y1, Y2) have a symmetric joint distribution such that

Y1
D
= Y2

D
= exponential(1) (G16a)

distribution(Y1 − y | Y1 = y)
D→ Normal(−a, 2a) as y → ∞. (G16b)

Such a distribution can be obtained by considering stationary reflecting
Brownian motion on [0,∞) with drift −a and variance 2a. Let (Xi) be the
associated tree-indexed process and MK its maximal process, as above. It
turns out that

K−1MK →
{
c(a) a ≤ log r
log r a ≥ log r

a.s. as K → ∞ (G16c)

where c(a) = (4a log r)1/2 − a. In other words, the behavior of MK is
different for a > log r than for a < log r.

The full argument for (G16c) is technical, but let us just observe where
the upper bound comes from. It is clear from (G16a) that log r is the natural
upper bound (G1a) for MK/K. Now consider

M̂K = max{Xi : distance(i, i0) = K }.
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When M̂K is large, it evolves essentially like the rightmost particle in the
following spatial branching process on R1. Each particle is born at some
point x ∈ R1; after unit time, the particle dies and is replaced by r offspring
particles at i.i.d. Normal(x − a, 2a) positions. Standard theory for such

spatial branching processes (e.g. Mollison (1978)) yields M̂K/K → c(a)
a.s. This leads to the asymptotic upper bound c(a) for MK/K.

G17 Example: An extremal process. The example above exhibited
a qualitative change at a parameter value which was a priori unexpected.
Here is an example which does not have such a change, although a priori
one would expect it!

Fix a parameter 0 < q < 1. We can construct a symmetric joint distri-
bution (Y1, Y2) such that

Y1
D
= Y2

D
= ξ3; P (ξ3 ≤ y) = exp(−e−y) (G17a)

P (Y2 > z | Y1 = y) = (1 − q)P (ξ3 > z) for z > y (G17b)

P (Y2 = y | Y1 = y) → q

1 − q
as y → ∞. (G17c)

We leave the reader to discover the natural construction. Let (Xi) be the
associated tree-indexed process (Section G15) and MK the maximal pro-
cess. One might argue as follows. Suppose Xi0 = y, large. Then (G17c)
implies that the size of the connected component of { i : Xi = y } contain-
ing i0 behaves like the total population size Z in the branching process
whose offspring distribution is Binomial(r + 1, q/(1 − q)) in the first gen-
eration and Binomial(r, q/(1 − q)) in subsequent generations. Clearly Z
behaves quite differently in the subcritical (rq/(1 − q) < 1) and super-
critical (rq/(1 − q) > 1) cases, and one might expect the difference to be
reflected in the behavior of MK , because the subcritical case corresponds to
“finite-range dependence” between events {Xi ≥ y} while the supercritical
case has infinite-range dependence. But this doesn’t happen: using (G17b)
it is easy to write down the exact distribution of MK as

P (MK ≤ z) = (1 − (1 − q)P (ξ3 > z))|IK |−1P (ξ3 ≤ z).

This distribution varies perfectly smoothly with the parameter q.
The paradox is easily resolved using our heuristic. The behavior of MK

depends on the mean clump size EC, and Z is the conditioned clump size
C̃ in the notation of Section A6. So the harmonic mean formula says that
the behavior of MK depends on E(1/Z), and this (unlike EZ) behaves
smoothly as q varies.
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COMMENTARY

There seems no systematic account of the range of problems we have consid-
ered. Bollobas (1985) gives a thorough treatment of random graphs, and also
has a useful account of different estimates for probabilities of unions (inclusion-
exclusion, etc.) and of the second-moment method. Another area which has
been studied in detail is first-passage percolation; see Kesten (1987).

G18 Notes on the examples. Example G2 (cliques) is now classic: see
Bollobas (1985) XI.1 for more detailed results.

Example G4 (optimum partitioning) is taken from Karmarkar et al. (1986);
some non-trivial analysis is required to justify the local Normal approximations.

Example G6 (percolation on binary tree) is well-known; see e.g. Durrett
(1984) for the 0–1 case. The technique of looking for an embedded branching
process is a standard first approach to studying processes growing in space.

Example G7 (percolation on theK-cube) seems a new problem. Rick Durrett
has observed that, in the random subgraph of {0, 1}K where edges are present
with probability c/K, the chance that there exists a path of length K from
0 to 1 tends to 1 as K → ∞ for c > e; it follows that an asymptotic upper
bound for mK is 1

2e.
Examples G8 and G9 are artificial. The behavior of cycle lengths in random

permutations (G9b) is discussed in Vershik and Schmidt (1977).
Examples G12 and G14 (sparse random graphs) are from Aldous (1988a),

and improve on the natural outer bounds given by Boole’s inequality.

G19 Longest common subsequences. Example G11 generalizes in a
natural way. Let µ be a distribution on a finite set S and let (ξi), (ηi) be
i.i.d. (µ) sequences. Let LK be the length of the longest string s1, s2, . . . , sL

which occurs as some increasing subsequence of (ξ1, . . . , ξK) and also as some
increasing subsequence of (η1, . . . , ηK). Then the subadditive ergodic theorem
says

LK

K
→ c(µ) a.s.

for some constant c(µ). But the value of c(µ) is not known, even in the
simplest case (Example G11) where µ(0) = µ(1) = 1

2 . For bounds see Chvatal
and Sankoff (1975), Deken (1979). The argument for (G11c) is from Arratia
(unpublished). A related known result concerns longest increasing sequences in
random permutations. For a permutation π of {1, . . . ,K} there is a maximal
length sequence i1 < · · · < im such that π(ii) < π(i2) < · · · < π(im). Let
mK be this maximal length for a uniform random permutation. Then

K− 1
2MK →

p
2;

see Logan and Shepp (1977), Vershik and Kerov (1977).



148 G19. Longest common subsequences.

G20 Minimal matrix sums. For a random matrix (ξi,j : 1 ≤ i, j ≤ K)
with i.i.d. exponential(1) entries, consider

MK = min
π

K∑

i=1

ξi,π(i)

where the minimum is taken over all permutations π of {1, . . . ,K}. At first
sight this problem is similar to Example G7; each involves the minimum of
K! sums with the same distribution, and the same arguments with Boole’s
inequality and the greedy algorithm lead to the same asymptotic upper and
lower bounds (1 and logK). But the problems are different. Here the asymp-
totic bounds can be improved to 1 + e−1 and 2; moreover simulation suggests

MK ≈ 1.6, K large.

See Karp and Steele (1985).

G21 Abstract problems. In some hard (Category III) problems one can
apply the subadditive ergodic theorem (Kingman (1976)) to show that a limit-
ing constant c exists; this works in many first-passage percolation models (on
a fixed graph) and in Example G11. But there is no known general result which
implies the existence of a limiting constant in Examples G7,G12,G14 and G20;
finding such a result is a challenging open problem.

There ought also to be more powerful general results for handling Cate-
gory II examples. Consider the following setting. Let (ξi) be i.i.d. For each
K let (AK

1 , . . . , A
K
NK

) be a family of K-element subsets of {1, 2, . . . , QK}
satisfying some symmetry conditions. Suppose K−1 logNK → a > 0. Let
φ(θ) = E exp(θξ1) and suppose there exists c∗ such that a infθ e

−θc∗φ(θ) = 1.
LetMK = maxi≤NK

∑
j∈AK

i
ξj . Then the large deviation theorem implies that

P (K−1MK > c) → 0; c > c∗.

Can one give “combinatorial” conditions, involving e.g. the intersection num-
bers |AK

j ∩ AK
1 |, j ≥ 2, which imply K−1MK →

p
c∗ and cover natural cases

such as Example G6?

G22 Tree-indexed processes. Our examples are artificial, but this class
of processes seems theoretically interesting as the simplest class of “exponential
combinatorial” problems which exhibits a wide range of behavior.

There is a long tradition in probability -physics of using tree models as
substitutes for lattice models: in this area (Ising models, etc.) the tree models
are much simpler. For our purposes the tree processes are more complicated
than d-parameter processes. For instance, there is no d-parameter analog of
the behavior in Example G16.



H Stochastic Geometry

Readers who do not have any particular knowledge of stochastic geometry
should be reassured to learn that the author doesn’t, either. This chapter
contains problems with a geometric (2-dimensional, mostly) setting which
can be solved heuristically without any specialized geometric arguments.
One exception is that we will need some properties of the Poisson line
process at Section H2: this process is treated in Solomon (1978), which is
the friendliest introduction to stochastic geometry.

Here is our prototype example.

H1 Example: Holes and clusters in random scatter. Throw down
a large number θ of points randomly (uniformly) in the unit square. By
chance, some regions of the square will be empty, while at some places sev-
eral points will fall close together. Thus we can consider random variables

L = radius of largest circle containing 0 points; (H1a)

MK = radius of smallest circle containing K points (K ≥ 2)(H1b)

where the circles are required to lie inside the unit square. We shall estimate
the distributions of these random variables.

First consider a Poisson process of points (which we shall call particles)
on the plane R2, with rate θ per unit area. Let D(x, r) be the disc of
center x and radius r. To study the random variable L of (H1a), fix r and
consider the random set S of those centers x such that D(x, r) contains 0
particles. Use the heuristic to suppose that S consists of clumps C of area
C, occurring as a Poisson process of some rate λ per unit area. (This is one
case where the appropriateness of the heuristic is intuitively clear.) Then

p = P (D(x, r) contains 0 particles) = exp(−θπr2)

and we shall show later that

EC ≈ π−1r−2θ−2. (H1c)

So the fundamental identity gives the clump rate for S

λ =
p

EC
= πθ2r2 exp(−θπr2).
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Now the original problem concerning a fixed number θ of particles in the
unit square U may be approximated by regarding that process as the re-
striction to U of the Poisson process on R2 (this restriction actually pro-
duces a Poisson(θ) number of particles in U , but for large θ this makes
negligible difference). The event “L < r” is, up to edge effects, the same as
the event “S does not intersect U∗ = [r, 1 − r] × [r, 1 − r]”, and so

P (L < r) ≈ P (S ∩ U∗ empty)

≈ exp(−λ(1 − 2r)2)

≈ exp
(
−πθ2r2 exp(−θπr2)(1 − 2r)2

)
. (H1d)

Consider the random variable MK of (H1b). Fix r, and consider the
random set SK of those centers x such that D(x, r) contains at least K
particles. Use the heuristic:

p = P (D(x, r) contains at least K particles)

≈ exp(−θπr2) (θπr2)K

K!

since we are interested in small values of r. We will show later

ECK ≈ r2cK , (H1e)

where cK is a constant depending only on K. The fundamental identity
yields λK . Restricting to the unit square U as above,

P (MK > r) ≈ P (SK ∩ U∗ empty)

≈ exp(−λK(1 − 2r)2)

≈ exp

(
−r−2c−1

K exp(−θπr2) (θπr2)K

K!
(1 − 2r)2

)
.(H1f)

Remark: In both cases, the only effort required is in the calculation of
the mean clump sizes. In both cases we estimate this by conditioning on a
fixed point, say the origin 0

˜
, being in S, and then studying the area C̃ of

the clump C̃ containing 0
˜
. Only at this stage do the arguments for the two

cases diverge.
Let us first consider the clump size for SK . Given 0

˜
∈ SK , the distribution

D(0
˜
, r) contains at least K particles; since we are interested in small r,

suppose exactly K particles. These particles are distributed uniformly i.i.d.
on D(0

˜
, r), say at positions (X1, . . . , XK). Ignoring other particles, a point

x near 0
˜

is in C̃K iff |x−Xi| < r for all i. That is:

C̃K is the intersection of D(Xi, r), 1 ≤ i ≤ K.

Thus the mean clump size is, by the harmonic mean formula (Section A6),

ECK =
(
E
(
1/ area(C̃K)

))−1

. (H1g)
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FIGURE H1a.

In particular, by scaling, we get (H1e):

ECK = r2cK ,

where cK is the value of ECK for r = 1. I do not know an explicit formula
for cK — of course it could be calculated numerically — but there is some
motivation for

Conjecture H1.1 cK = π/K2.

Indeed, this is true forK = 1 and 2 by calculation, and holds asymptotically
as K → ∞ by an argument in Section H3 below. An alternative expression
for cK is given at Section H16.

H2 The Poisson line process. A constant theme in using the heuristic
is the local approximation of complicated processes by standard processes.
To calculate mean clump size for S above, we shall approximate by the
Poisson line process in the plane. A good account of this process is Solomon
(1978), from which the following definition and result are taken.

A line can be described as a pair (d, φ), where d is the signed length
of the perpendicular to the line from the origin, and φ is the angle this
perpendicular makes with the x-axis. Note we restrict 0 ≤ φ ≤ π, so −∞ <
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d < ∞. A process of lines (di, φi : −∞ < i < ∞) is a Poisson line process
of intensity τ if

1. · · · < d−2 < d−1 < d0 < d1 < · · · is a Poisson point process of rate τ
on the line;

2. the angles φi are i.i.d. uniform on [0, π), independent of (di).

An important property of this process is that its distribution is invariant
under translations and rotations of the plane. This process cuts the plane
into polygons of random area A; we need the result

EA =
π

τ2
. (H2a)

H3 A clump size calculation. We now return to the calculation of
clump size for S in Example H1. Condition on 0

˜
∈ S. Then the disc D(0

˜
, r)

contains no particles. Let Xi be the positions of the particles; then a point
x near 0

˜
is in C̃ iff |x−Xi| > r for all i. So

C̃ is the complement of the union
⋃

i

D(Xi, r).

We can approximate C̃ by the polygon Ã obtained by “straightening the
edges” of C̃ in the following way: the edges of Ã are the lines li which are
perpendicular to the line (0

˜
, Xi) and tangent to the disc D(Xi, r). I assert

that near 0
˜

the lines li are approximately a Poisson line process of
intensity τ = πrθ.

(H3a)

To see this, note first that the distances r < |X1| < |X2| < · · · form a non-
homogeneous Poisson point process with intensity ρ(x) = 2πθx on (r,∞).
Thus for the lines li = (di, φi), the unsigned distances |di| = |Xi| − r are a
Poisson point process of rate 2π(d+ r)θ, that is to say approximately 2πrθ
for d near 0. Finally, taking signed distances halves the rate, giving (H3a).

Thus the clump C̃ is approximately distributed as the polygon Ã contain-
ing 0

˜
in a Poisson line process of intensity τ = πrθ. So the clumps C must

be like the polygons A, and so their mean areas EC, EA are approximately
equal. So (H2a) gives (H1c).

Finally, let us reconsider the clumps CK for SK in Example H1 associated
with the random variables MK . Suppose K is large. Then the distances
r > |X1| > |X2| > |X3| > · · · > |XK | form approximately a Poisson process

of rate 2πx·K/(πr2). We can then argue as above that C̃K is like the polygon
containing 0

˜
in a Poisson line process of intensity τ = πrK/(πr2) = K/r.

Using (H2a) as above, we get ECK ≈ r2(π/K2), as stated below (H1.1).
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FIGURE H3a.

Remarks Many subsequent examples are variants of the above example, so
let us give here some remarks common to all.

1. Problems with a fixed number θ of points can be approximated by
problems with a Poisson(θ) number of points, so one may as well use a
Poisson model from the start. Then our problems become equivalent
to problems about (exact) mosaic processes. Specifically, let M be the
mosaic where centers have rate θ and the constituent random sets D
are discs of radius r. Then P (L < r) in (H1a) is, up to boundary
effects, just P (M covers the unit square). And, if in the definition of
“mosaic” we count number of overlaps, then P (MK ≤ r) in (H1b) is
just P (M has K overlaps somewhere in the unit square).

Hall (1988) gives a detailed treatment of coverage problems for mo-
saics.

2. In theoretical treatments, boundary effects can be avoided by work-
ing on the torus. In any case they are asymptotically negligible; but
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(especially in high dimensions) boundary effects may play a large role
in non-asymptotic probabilities.

3. Analogous to Section C24, our approximations in (H1d,H1f) are in-
tended for the range of r where the right side is increasing (resp.
decreasing) in r.

H4 Example: Empty squares in random scatter. As before, con-
sider a Poisson process, rate θ, of particles in the unit square U . Suppose
θ is large. For small s, we shall approximate

q(θ, s) = P (some square of side s is empty of particles).

Equivalently, q(θ, s) = P (M does not cover U), where M is the random
mosaic whose centers have intensity θ and whose constituent random sets
are squares of side s. (Here “squares” have sides parallel to the sides of U .)

Each such square of side s can be labeled by its center x; note x ∈ Û =
[s/2, 1 − s/2] × [s/2, 1 − s/2]. We apply the heuristic to the random set S
of centers x of empty squares. Since the process of particles is the Poisson
process of rate θ,

p = P (square with center x is empty) = exp(−θs2).

Condition on the square with center x0 being empty, and consider the
clump C̃. Let X1, X2, X3, X4 be the distances from each side of this square
to the nearest particle (see diagram).

Ignoring diagonally-placed nearby particles, we see

C̃ is the rectangle [x0 −X1, x0 +X3] × [x0 −X4, x0 +X2],

and so

C̃ = (X1 +X3)(X2 +X4).

Now the Xi are approximately independent, exponential(θs), because

P (Xi > x) = P (a certain rectangle of sides s, x is empty)

≈ exp(−θsx).

Thus we get an explicit estimate for the complete distribution of C̃, so by
(A6a) we can compute the distribution of C:

C
D
= X1X2 (H4a)

(this is analogous to the 1-dimensional case (Section A21)). In particular,

EC = (θs)−2.
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FIGURE H4a.

Getting the clump rate λ from the fundamental identity, we have

1 − q(θ, s) = P (S ∩ U empty)

≈ exp(−λ(1 − s)2)

≈ exp(−(1 − s)2(θs)2 exp(−θs2)). (H4b)

One reason for treating this example is to add to our collection of explicit
clump size distributions. So in the “mosaic” interpretation of the example
(remark 1 above), we could use (A4f) to write out an explicit compound
Poisson approximation for area(MC ∩U). Another reason is to illustrate a
technical issue about Poissonization. In developing (H4a) we thought of θ as
large and fixed; the quantity at (H4b) is then a reasonable approximation
for the distribution function P (L < s) of L = side length of largest empty
square. An alternative viewpoint is to consider s as small and fixed, and
regard (H4b) as an approximation for the distribution function P (N ≤
θ) of N = number of particles needed until there is no empty square of
side s. Again the approximation will be reasonable for the middle of the
distribution of N . But the asymptotic form

P (N > θ) ∼ (1 − s)2s2θ2 exp(−s2θ) as θ → ∞; s fixed (H4c)
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suggested by (H4b) is wrong. Instead of a(n) = P (N > n) = P (some
empty square amongst n particles), the argument for (H4b) and (H4c)
involved treating the particle process as a Poisson process, which really
puts a random Poisson(θ) number of particles in U . Thus what we really
have at (H4c) is an estimate for the Poisson mixture

a∗(θ) =
∑

n

a(n)e−θ θ
n

n!
.

To estimate a(n) we have to “unmix”; doing so (see E2d) gives

P (N > n) ∼ s2(1 + s)−2n2(1 − s2)n as n→ ∞; s fixed. (H4d)

Remark: There is nothing very special about discs or squares, as far as
the use of the heuristic is concerned. What matters is that the class of
geometric shapes under study has a finite-dimensional parametrization;
we shall illustrate by doing the case of rectangles. Similar problems for
Gaussian random fields are treated in Chapter J. Note that we cannot
treat a large class like the class of convex sets by this method, since this
class doesn’t have a finite-dimensional parametrization.

H5 Example: Empty rectangles in random scatter. As before,
throw θ particles onto the unit square U . Fix small A > 0, and consider
the chance that there is no rectangle of area A, with sides parallel to the
sides of U , which is empty of particles. We label the rectangles by (x, y, s),
where (x, y) is the position of the center and s the length; then the width
s′ is determined by s′s = A. To fit inside U requires the constraints

A ≤ s ≤ 1;
1

2
s ≤ x ≤ 1 − 1

2
s;

1

2
s′ ≤ y ≤ 1 − 1

2
s′. (H5a)

Let I ⊂ R3 be the set of (x, y, s) satisfying constraints (H5a), and let µ be
Lebesgue measure (i.e. “volume”) on I. Let S ⊂ I be the random set of
empty rectangles, and apply the heuristic.

p = P (rectangle (x, y, s) is empty) ≈ exp(−θA).

Now condition on a particular rectangle (x0, y0, s0) being in S. As in the
last example, let X1, X2, X3, X4 be the distances from the sides of the
rectangle to the nearest particles. I assert that the volume C̃ = µ(C̃) of the

clump C̃ of rectangles containing (x0, y0, s0) is approximately

C̃ =
A

6s20
·
(

(X1 +X3) +
s0
s′0

(X2 +X4)

)3

. (H5b)

To see this, fix s near s0. Then (x, y, s) ∈ C̃ iff (x, y) is in the rectangle
[x0 −X1 − 1

2 (s0 − s), x0 +X3 + 1
2 (s0 − s)]× [y0 −X4 − 1

2 (s′0 − s′), y0 +X2 +
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1
2 (s′0 − s′)]. Since ss′ = s0s

′
0 = A, we find (s′0 − s0) ≈ −s′0/s0 · (s0 − s), and

so

area{ (x, y) : (x, y, s) ∈ C̃ }

≈ (X1 +X3 + (s0 − s))(X2 +X4 −
s′0
s0

· (s0 − s))

= f(s) say.

Since C̃ =
∫
f(s) ds, where we integrate over the interval around s0 in

which f(s) > 0, we get (H5b) by calculus.
Now as in the last example, the Xi are approximately independent expo-

nential random variables, with parameters θs′0(i = 1, 3) and θs0(i = 2, 4).
So (H5b) can be rewritten as

C̃ =
s0

6A2θ3
· (Y1 + Y2 + Y3 + Y4)

3;

where the Yi are independent exponential(1). We can now calculate

EC =
(
E
(
1/C̃

))−1

=
s0
A2θ3

,

using the standard Gamma distribution of
∑
Yi. Note that this mean clump

size depends on the point (x0, y0, s0), so we are in the non-stationary setting
for the heuristic. The fundamental identity gives the non-stationary clump
rate

λ(x, y, s) =
p(s)

EC(s)
= A2θ3 exp(−θA)s−1.

So finally

P (no empty rectangle of area A)

= P (S ∩ I empty)

≈ exp(−
∫

I

λ(x, y, s) dx dy ds).

≈ exp

(
−A2θ3 exp(−θA)

∫ 1

A

s−1(1 − s)

(
1 − A

s

)
ds

)
(H5c)

by (H5a). For small A the integral is approximately log(1/A) − 2.

H6 Example: Overlapping random squares. Now consider the ana-
logue of (H1b) for squares instead of discs. That is, fix θ large and s small
and throw squares of side s onto the unit square U , their centers forming
a Poisson process of rate θ. For K ≥ 2 we shall estimate

q = P (some point of U is covered by at least K squares). (H6a)
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We apply the heuristic to S = {x : x covered by K squares }. So

p = P (Poisson(θs2) = K)

=
(θs2)K

K!
· exp(−θs2). (H6b)

Now fix x
˜
, condition on x

˜
∈ S and consider the clump C̃ containing x

˜
.

Analogously to the argument in Example H1, there are K points (Xi, Yi),
the centers of the covering squares, which are uniform on the square cen-
tered at x

˜
. Let X(i) be the order statistics of Xi− 1

2s, and similarly for Y(i).

Ignoring other nearby squares, C̃ is the rectangle

C̃ = [x− (s−X(K)), x+X(1)]× [y− (s− Y(K)), y+ Y(1)] where x
˜

= (x, y)

So

FIGURE H6a.

C̃ = area(C̃) = (X(1) + s−X(K))(Y(1) + s− Y(K))

D
= X(2)Y(2)

and it is easy to calculate

EC = harmonic mean(C̃) =

(
s

K − 1

)2

. (H6c)

The fundamental identity gives

λ =
p

EC
= θKs2K−2 (K − 1)2

K!
· exp(−θs2). (H6d)

So the q in (H6a) satisfies

q = 1 − P (S ∩ U empty) ≈ 1 − exp(−λ). (H6e)
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H7 Example: Covering K times. Throw discs of radius r, or squares
of side s, onto the unit square with their centers forming a Poisson(θ)
process; what is the probability

q = P

(
each point of the unit disc is cov-
ered by at least K discs [squares]

)
? (H7a)

Examples H1a and H4 treat the cases K = 1; the general case is similar.
Write A = πr2 or s2 for the area of the discs [squares]. Apply the heuristic
to S = {x : x covered K − 1 times }. Then

p = P (x ∈ S) = P (Poisson(θA) = K − 1) = e−θA (θA)K−1

(K − 1)!

and the heuristic says

q ≈ exp(−λ) ≈ exp
(
− p

EC

)
. (H7b)

But the arguments for EC are exactly the same as for the K = 0 case, so

EC = π−1r−2θ−2 [discs] by (H1c) (H7c)

EC = s−2θ−2 [squares] by (H4a). (H7d)

Substituting into (H7b) gives an explicit approximation for q.

H8 Example: Several types of particle. As another variant of Ex-
ample H1b, suppose 3 types of particles are thrown onto the unit square
according to Poisson processes of rate θ1, θ2, θ3. Consider

M =radius of smallest circle containing at least one parti-
cle of each type.

Fix r and apply the heuristic to S = {x : D(x, r) contains at least one
particle of each type }. Then

p = P (x ∈ S) =
∏

i

(1 − exp(−θiπr
2)) ≈ (πr2)3θ, where θ =

3∏

i=1

θi.

The argument for clump size is exactly as in Example H1b:

EC = r2c3, where c3 is the constant at (H1b), conjectured to be
π

9
.

So the heuristic says

P (M > r) = P (S ∩ U empty) ≈ exp
(
− p

EC

)

≈ exp

(
−π

3r4θ

c3

)
. (H8b)
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H9 Example: Non-uniform distributions. Consider Example H1
again, but now suppose the points are put down non-uniformly, according
to some smooth density function g(x) in U . We can then use the non-
stationary form of the heuristic. To study the MK of (H1b),

P (MK > r) ≈ exp

(
−
∫

U

λ(x) dx

)
, (H9a)

where the clump rate λ(x) is the clump rate λK of Example H1 with θ
replaced by λg(x): that is

λ(x) = r−2c−1
K

(θg(x)πr2)K

K!
· exp(−θg(x)πr2).

Suppose g attains its maximum at x0. A little calculus shows that, for θ
large, the g(x) in the “exp” term above can be approximated by g(x0), and
so
∫

U

λ(x) dx ≈ r−2c−1
K

(θπr2)K

K!
· exp(−θg(x0)πr

2) ·
∫

U

gK(x) dx. (H9b)

Substituting into (H9a) gives our approximation for MK . For the random
variable L of (H1a),

P (L < r) ≈ exp

(
−
∫

U

λ(x) dx

)
(H9c)

where the clump rate λ(x) is the clump rate λ below (H1c) with θ replaced
by θg(x): that is

λ(x) = πθ2g2(x)r2 exp(−θg(x)πr2)

Suppose g attains its minimum at x∗ ∈ interior(U). Then for large θ the
integral is dominated by the contribution from x ≈ x∗. Write

∆ = determinant

(
∂g(x1, x2)

∂xi ∂xj

)

x=x∗

.

Then (see (I1d): we use such approximations extensively in Chapter I)
∫

U

λ(x) dx ≈ πθ2g2(x∗)r2
∫

U

exp(−θg(x)πr2) dx

≈ πθ2g2(x∗)r22π(θπr2)−1∆− 1
2 exp(−θg(x∗)πr2)

≈ 2πθg2(x∗)∆− 1
2 exp(−θg(x∗)πr2). (H9d)

Substituting into (H9c) gives our explicit approximation for L.

We can formulate discrete versions of our examples — but these are often
rather trite, as the next example shows.
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H10 Example: Monochrome squares on colored lattice. Take the
N×N square lattice (N large) and color each site red, say, with probability
q, independently for each site. Given s, we can ask; what is the chance that
there is some s× s square of red sited within the lattice? To approximate
this, label a s× s square by its lowest-labeled corner (i1, i2); this gives an
index set I = {1, . . . , N − s+1}×{1, . . . , N − s+1}. Let S be the random
subset of I representing the red s× s squares. Then

p = p(i ∈ S) = qs2

.

Moreover if s is not small we have clump size C ≈ 1. For suppose the square
labeled (i1, i2) is red; in order for an adjacent square, e.g. the one labeled
(i1 +1, i2), to be red we need some s×1 strip to be red, and this has chance
qs, which will be small unless s is small. So P (C > 1) is small, and we can
take EC ≈ 1. (To be more accurate, copy the argument of Example H4 to

conclude EC ≈ (1−qs)−2.) So the fundamental identity gives λ ≈ qs2

, and
so

P (no red s× s square) ≈ P (S ∩ I empty)

≈ exp(−λ|I|)
≈ exp(−(N − s+ 1)2qs2

). (H10a)

H11 Example: Caps and great circles. All our examples so far have
been more or less direct variations on Example H1. Here we present an
example with a slightly different flavor. Let S be the surface of the unit
sphere; so area(S) = 4π. On S throw down small circular caps of radius
r, with centers following a Poisson process of rate θ per unit surface area.
Consider

q(θ, r) = P (every great circle on S intersects some cap).

Equivalently, throw down particles on S according to a Poisson(θ) process;
for each great circle γ let Dγ be the distance from γ to the nearest particle;
and let M = maxγ Dγ ; then

q(θ, r) = P (M < r).

We shall argue that for large θ,

q(θ, r) ≈ exp(−32θ2 exp(−4θrπ)). (H11a)

Fix a great circle γ. For r small, consider the strip of points on the surface
within r of γ; this strip has area ≈ (2π)(2r), and so

p ≡ P (γ intersects no cap) ≈ exp(−4πrθ). (H11b)
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Now label the points of γ as [0, 2π]. Condition on γ intersecting no cap,
and for each cap near γ let η be the point on the cap which is nearest to
γ. Then the η’s form approximately a Poisson point process of rate θ per
unit area. Let γ′ be another great circle such that the maximum distance
between γ′ and γ is b, small. Then (draw a picture!)

P (γ′ intersects no cap | γ intersects no cap)

≈ P (none of the points η lie between γ and γ ′)

≈ exp(−θ · area between γ and γ′)

≈ exp

(
−θ
∫ 2π

0

|b cos(t)| dt
)

≈ exp(−4bθ). (H11c)

Next, a great circle γ may be parameterized by its “north pole” xγ . Apply
the heuristic to S = {xγ : γ intersects no cap }. Then p = P (x ∈ S)

is given by (H11b). Fix xγ , condition on xγ ∈ S and let C̃ be the clump

containing xγ . As in Example H4, for θ large C̃ is like the corresponding
random polygon in a Poisson line process, whose intensity (by (H11c)) is
τ = 4θ. So by (H2a),

EC =
π

(4θ)2
.

The fundamental identity gives the clump rate

λ = p/EC = 16θ2π−1 exp(−4πθr).

Then
q(θ, r) = P (S ∩ S empty) ≈ exp(−λ(2π))

keeping in mind that diametrically opposite x’s describe the same γ; this
gives (H11a).

One-dimensional versions of these examples are much easier, and indeed
in some cases have tractable exact solutions (e.g. for the probability of
randomly-placed arcs of constant length covering a circle). Our type of
heuristic asymptotics makes many one-dimensional results rather easy, as
the next example shows.

H12 Example: Covering the line with intervals of random length.
Let M be a high-intensity mosaic process on R1, where the constituent
random sets B are intervals of random length B, and whose left endpoints
form a Poisson process of rate θ. Let S = Mc, the uncovered part of the
line. Given x ∈ S, let Rx > x be the next point of M; then Rx − x has
exactly exponential(θ) distribution. Thus the intervals of S have exactly
exponential(θ) distribution; in fact, it is easy to see that successive interval
lengths of S and M form an alternating renewal process.
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Applying the heuristic to S:

p = P (x ∈ S) = exp(−θEB)

EC =
1

θ

λ =
p

EC
= θ exp(−θEB)

and so

P (M covers [0, L]) = P (S ∩ [0, L] empty)

≈ exp(−λL)

≈ exp(−Lθ exp(−θEB)). (H12a)

An essentially equivalent problem is to throw a large fixed number θ of
arcs of i.i.d. lengths (Bi) onto the circle of unit circumference; this corre-
sponds asymptotically, by Poissonization, to the setting above with L = 1,
so

P (circle covered) ≈ exp(−θ exp(−θEB)). (H12b)

In this setting one can ask further questions: for instance, what is the length
D of the longest uncovered interval? To answer, recall that intervals of S
occur at rate λ, and intervals have exponential(θ) length, so that intervals
of length ≥ x occur at rate λe−θx. So

P (D < x) ≈ exp(−λe−θx)

≈ exp(−θ exp(−θ(EB + x))), x > 0. (H12c)

Similarly, we get a compound Poisson approximation for the total length
of uncovered intervals.

Returning to the “mosaic” description and the line R1, consider now
the case where the constituent random sets B are not single intervals but
instead are collections of disjoint intervals — say N intervals of total length
B, for random N and B. Then the precise alternating renewal property of
S and M is lost. However, we can calculate exactly

ψ ≡ mean rate of intervals of S
= P (0 ∈ S) × lim

δ↓0
δ−1P (δ ∈ M | 0 ∈ S)

= exp(−θEB) × θEN. (H12d)

Provided S consists of isolated small intervals, we can identify ψ with the
clump rate λ of S, as at Section A9 and obtain

P (M covers [0, L]) ≈ exp(−Lψ). (H12e)

This should be asymptotically correct, under weak conditions on B.
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H13 Example: Clusters in 1-dimensional Poisson processes. Now
consider a Poisson process of events, rate ρ say. Fix a length L and an in-
teger K such that

p = P (Z ≥ K) is small, for Z
D
= Poisson(ρL). (H13a)

We shall use the heuristic to estimate the waiting time T until the first
interval of length L which contains K events. Let S be the random set of
right endpoints of intervals of length L which contain ≥ K events. Then p
is as at (H13a). We could estimate EC as in the 2-dimensional case by con-
ditioning on an interval containing K events and considering the clump of
intervals which contain these K events, ignoring possible nearby events —
this would give EC ≈ K/L — but we can do better in 1 dimension by using
the quasi-Markov estimate (Section D42). In the notation of Section D42,

P ([0, L] contains K events, [δ, L+ δ] contains K − 1 events)

≈ P ([0, δ] contains 1 event, [δ, L+ δ] contains K − 1 events)

≈ δρP (Z = K − 1) for Z as in (H13a).

and so ψ = ρP (Z = K − 1). Now condition on t0 being the right end of
some component interval in a clump C; then there must be 1 event at t0−L
and K − 1 events distributed uniformly through [t0 − L, t0]. Consider the
process

Yu = # events in [t0 − L+ u, t0 + u].

Then Y0 = K − 1 and we can approximate Yu by the continuous-time
random walk Ŷu with transition rates

y → y + 1 rate ρ; y → y − 1 rate
K − 1

L
.

Then

EC+ ≈ EK−1(sojourn time of Ŷ in [K,∞))

≈ ρ

(
K − 1

L
− ρ

)−2

using (B2i,iv).

Estimating λ via (D42d), we conclude T is approximately exponential with
mean

ET ≈ λ−1 ≈ ρ

(
K − 1

L
− ρ

)−2

(P (Z ≥ K))−1 +
1

ρ−1(P (Z = K − 1))
.

(H13b)
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COMMENTARY

H14 General references. We have already mentioned Solomon (1978)
as a good introduction to stochastic geometry. A more comprehensive account
is in Stoyan et al. (1987). The recent book of Hall (1988) gives a rigorous
account of random mosaics, including most of our examples which can be
formulated as coverage problems. The bibliography of Naus (1979) gives ref-
erences to older papers with geometric flavors.

H15 Empty regions in random scatter. In the equivalent formulation
as coverage problems, our examples H1a, H4, H7 are treated in Hall (1988)
Chapter 3 and in papers of Hall (1985a) and Janson (1986). Bounds related to
our tail estimate (H4d) are given by Isaac (1987). Hall (1985b) gives a rigorous
account of the “vacancy” part of Example H9 (non-uniform distribution of
scatter).

Our example H5 cannot be formulated as a standard coverage problem — so
I don’t know any rigorous treatment, though formalizing our heuristic cannot be
difficult. A more elegant treatment would put the natural non-uniform measure
µ on I to make a stationary problem. More interesting is

H15.1 Thesis project. What is the size of the largest empty convex set, for
a Poisson scatter of particles in the unit square?

H16 Overlaps. The “overlap” problems H1b, H6, H8 do not seem to have
been treated explicitly in the literature (note they are different from the much
harder “connected components” problems of (H20) below). Rigorous limit the-
orems can be deduced from the Poisson limit theorem for U-statistics of Sil-
verman and Brown (1978), but this does not identify constants explicitly.

For instance, the constant cK in Conjecture H1.1 is given by

c−1
K πK =

∫

R2

· · ·
∫

R2

1(0,x1,...,xK−1 all in some disc of radius 1) dx1 . . . dxK−1

H17 Discrete problems. Problems extending Example H10 are discussed
in Nemetz and Kusolitsch (1982) Darling and Waterman (1985; 1986). In our
example we have supposed q is not near 1; as q → 1 the problem approaches
the continuous Example H4.

H18 1-dimensional coverage. Hall (1988) Chapter 2 gives a general
account of this topic.

Stein’s method (Section A18) provides a sophisticated method of proving
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Poisson-type limits and also getting explicit non-asymptotic bounds. It would
be an interesting project to formalize our assertion (H12e) about coverage by
mosaics with disconnected constituent sets, using Stein’s method. The method
can also be used to get explicit bounds in certain 2-dimensional coverage prob-
lems: see Aldous (1988c).

H19 Clustering problems in 1-dimension. Clustering problems like
Example H13 have been studied extensively. Naus (1982) gives accurate (but
complicated) approximations and references; Gates and Westcott (1985) prove
some asymptotics. Our estimate (H13b) isn’t too accurate. For instance, with
ρ = 1, L = 1, K = 5 it gives ET ≈ 95, whereas in fact ET ≈ 81.

Samuel-Cahn (1983) discusses this problem when the Poisson process is
replaced by a renewal process.

H20 Connected components in moderate-intensity mosaics. This
topic, often called “clumping”, is much harder: even the fundamental question
of when a random mosaic contains an infinite connected component is not well
understood. Roach (1968) gave an early discussion of these topics; Hall (1988)
Chapter 4 contains an up-to-date treatment.

H21 Covering with discs of decreasing size. Consider a mosaic pro-
cess of discs on the plane, where for r < 1 the rate of centers of discs of radius
(r, r + dr) is (c/r) dr, for a constant c. Let S be the uncovered region. It is
easy to see that P (x ∈ S) = 0 for each fixed point x, and so S has Lebesgue
measure 0. However, for small c it turns out that S is not empty; instead, S
is a “fractal” set. See Kahane (1985). The same happens in the 1-dimensional
case, covering the line with intervals of decreasing size — see Shepp (1972a;
1972b). This is an example where our heuristic is not applicable.



I
Multi-Dimensional
Diffusions

I1 Background. Applied to multi-dimensional diffusions, the heuristic
helps with theoretical questions such as the distribution of extreme val-
ues, and applied questions such as the rate of escape from potential wells.
Sections I1–I7 contain some basic definitions and facts we’ll need in the
examples.

In Chapter D we defined a 1-dimensional diffusion Xt as a continuous-
path Markov process such that

E(∆Xt | Xt = x) ≈ µ(x)∆t; var(∆Xt | Xt = x) ≈ σ2(x)∆t (I1a)

for specified smooth functions µ: R → R and σ: R → R. A small condi-
tional increment ∆Xt is approximately Normally distributed, so (I1a) can
be rewritten in the notation of stochastic differential equations as

dXt = µ(Xt) dt+ σ(Xt) dBt (I1b)

where Bt is Brownian motion. This is a more convenient form for discussing
the multidimensional case.

As a preliminary, recall some facts about multidimensional Normal dis-
tributions. Let Z = (Z1, . . . , Zd) be d-dimensional standard Normal (i.e.
with independent N(0, 1) components). The general Normal distribution
Y can be written as

Y = µ+AZ

for some matrix A and some vector µ. And EY = µ, and the matrix
Σ = cov(Y ) whose entries are the covariances cov(Yi, Yj) is the matrix
AAT . The distribution of Y is called the Normal(µ,Σ) distribution. The
covariance matrix Σ is symmetric and non-negative definite. In the non-
degenerate case where Σ is positive definite, the Normal(0,Σ) distribution
has density

f(x) = (2π)−
d
2 |Σ|− 1

2 exp(−1

2
xT Σ−1x) (I1c)

where |Σ| = det(Σ). Note that implicit in (I1c) is the useful integration
formula ∫

Rd
exp(−1

2
xT Σ−1x) dx = (2π)

d
2 |Σ| 12 . (I1d)
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Now let Bt = (B1
t , . . . , B

d
t ) be d-dimensional Brownian motion (i.e. with

independent components distributed as 1-dimensional standard Brownian
motion). Let µ: Rd → Rd and σ: Rd → {d × d matrices} be smooth func-
tions. Then the stochastic differential equation

dXt = µ(Xt) dt+ σ(Xt) dBt (I1e)

defines a d-dimensional diffusion, which we think of intuitively as fol-
lows: given Xt = x, the small increment ∆Xt is approximately µ(x)∆t +
σ(x)∆Bt, that is to say the d-dimensional Normal(µ(x)∆t, σ(x)σT (x)∆t)
distribution. Analogously to (I1a), we can also specify this diffusion as the
continuous-path Markov process such that

E(∆Xt | Xt = x) ≈ µ(x)∆t

cov(∆Xi
t ,∆X

j
t | Xt = x) ≈ σ(x)σT (x)

∣∣∣∣
i,j

∆t.
(I1f)

In practical examples the functions µ, σ are given and we are interested in
doing probability calculations with the corresponding diffusion Xt. There
are general equations, given below, for hitting probabilities, stationary dis-
tributions and mean hitting times. These differential equations are just the
intuitively obvious continuous analogues of the corresponding difference
equations for Markov chains (B1a,B1b).

Define operators L,L∗ acting on smooth functions f : Rd → R by

Lf =
∑

i

µi(x)
∂f

∂xi
+

1

2

∑

i

∑

j

(σ(x)σT (x))i,j
∂2f

∂xi∂xj

L∗f = −
∑

i

∂

∂xi
(µi(x)f(x))

+
1

2

∑

i

∑

j

∂2

∂xi∂xj

(
(σ(x)σT (x))i,jf(x)

)
(I1g)

Let A, B be nice subsets of Rd. Then

f(x) ≡ Px(X hits A before B) is the solution of

Lf = 0 on (A ∪B)C ; f = 1 on A, f = 0 on B.
(I1h)

If h(x) ≡ ExTA < ∞ (where as usual TA is the hitting
time of X on A), then h is the solution of

Lh = −1 on AC ; h = 0 on A

.

(I1i)
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The diffusion is positive-recurrent iff the equations

L∗π = 0; π(x) > 0,

∫

Rd
π(x) dx = 1

have a solution, in which case the solution π is the station-
ary density.

(I1j)

(Positive-recurrence is the property that the mean hitting time on any
open set is finite. In d ≥ 2 dimensions, nice diffusions do not hit prespecified
single points.)

I2 The heuristic. . The equations above and their derivations are es-
sentially the same in the d-dimensional case as in the 1-dimensional case.
The difference is that in the 1-dimensional case these equations have explicit
solutions in terms of µ and σ (Section D3), whereas in higher dimensions
there is no general explicit solution, so that approximate methods become
appealing. Our strategy for using the heuristic to estimate the hitting time
TA to a rarely visited subset A is exactly the same as in the Markov chain
case (Section B2); we need only estimate the stationary distribution and
the local behavior of the process around the boundary of A.

We start by listing some special cases where the stationary distribution
can be found explicitly.

I3 Potential function. Suppose that there is a function H: Rd → R,
thought of as a potential function, such that

µ(x) = −∇H (∇H = (
∂H

∂x1
, . . . ,

∂H

∂xd
))

σ(x) = σ0I, for a scalar constant σ0.

Then there is a stationary distribution

π(x) = c exp

(−2H(x)

σ2
0

)

where c is a normalizing constant, provided H(x) → ∞ as |x| → ∞
fast enough that

∫
exp(−2H(x)/σ2

0) dx < ∞. This is analogous to the 1-
dimensional case (Example D7).

I4 Reversible diffusions. If the equations

µi(x)π(x) =
1

2

∑

j

∂

∂xj
((σ(x)σT (x))i,jπ(x)); 1 ≤ i ≤ d

have a solution π(x) > 0 with
∫
π(x) dx = 1, then π is a stationary density

and the stationary diffusion is time-reversible. This is the analogue of the
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detailed balance equations (Section B28) in the discrete-time case. In 1
dimension (but not in d ≥ 2 dimensions) all stationary diffusions have this
property. It is easy to check that the potential function case (Section I3)
gives rise to a reversible diffusion.

I5 Ornstein-Uhlenbeck processes. The general Ornstein-Uhlenbeck
process has

µ(x) = −Ax, σ(x) = σ,

where A and σ are matrices, not dependent on x. This process is stable if
A is positive-definite, and then there is a stationary distribution π which is
Normal(0,Σ), where Σ is the symmetric positive-definite matrix satisfying

AΣ + ΣAT = σσT . (I5a)

There are various special cases. Where A is symmetric we have

Σ =
1

2
A−1σσT .

If also σ = σ0I for scalar σ0, then Σ = 1
2σ

2
0A

−1 and we are in the setting
of Section I3 with potential function H(x) = 1

2x
TAx.

I6 Brownian motion on surface of sphere. Let U(d, r) be the ball
of center 0, radius r in d dimensions. There is a natural definition of Brow-
nian motion on the surface Sd−1 of U(d, r). The stationary distribution is
uniform, by symmetry. It is useful to record the elementary formulas

“volume” of U(d, r) =
πd/2rd

(d/2)!
= vdr

d, say (I6a)

“surface area” of U(d, r) =
2πd/2rd−1

( 1
2d− 1)!

= sdr
d−1, say. (I6b)

I7 Local approximations. The final ingredient of our heuristic is the
local approximation of processes. Locally, a diffusion behaves like general
Brownian motion with constant drift and variance: say Xt with

µ(x) = µ, σ(x) = σ,

Given a hyperplane H = {x : q · x = c } where q is a unit vector, the
distance from Xt to H is given by Dt = q ·Xt − c, and it is clear that

Dt is 1-dimensional Brownian motion with drift q · µ and
variance qTσσT q.

(I7a)

Motion relative to a fixed point is a little more complicated. Let us just
consider the case Xt = σ0Bt, where Bt is standard d-dimensional (d ≥ 3)



I. Multi-Dimensional Diffusions 171

Brownian motion and σ0 is scalar. Let Tr be the first exit time from the
ball U(d, r), and let Vr be the total sojourn time within the ball. Then

E(Tr | X0 = 0) = σ−2
0 r2d−1. (I7b)

E(Vr | X0 = 0) = σ−2
0 r2(d− 2)−1 (I7c)

from which follows, by subtraction, that

E(Vr | |X0| = r) = 2σ−2
0 r2d−1(d− 2)−1. (I7d)

See Section I22 for the derivations. When we add a drift term, Xt = σ0Bt +
µt say, the exact formulas replacing (I7b–I7d) are complicated but as r → 0
formulas (I7b–I7d) are asymptotically correct, since the drift has negligible
effect in time O(r2).

We are now ready to start the examples.

I8 Example: Hitting times to small balls. Consider a diffusion in
d ≥ 3 dimensions with σ(x) = σ0I and with stationary density π. Fix r > 0
small, and fix x0 ∈ Rd. Let B be the ball, center x0, radius r, and let TB

be the first hitting time on B. Let S be the random set of times t such that
Xt ∈ B. The “local transience” property of d ≥ 3 dimensional Brownian
motion implies that the heuristic is applicable to S. The mean clump size
EC is the mean local sojourn time of X in B, starting from the boundary
of B, so by (I7d)

EC ≈ 2σ−2
0 r2d−1(d− 2)−1.

And p = P (Xt ∈ B) ≈ π(x0) volume(B) = π(x0)vdr
d for vd as in (I6a).

Using the fundamental identity, we conclude

Tb is approximately exponential,

rate =
p

EC
=

1

2
d(d− 2)vdσ

2
0r

d−2π(x0).
(I8a)

I9 Example: Near misses of moving particles. Imagine particles
moving independently in d ≥ 3 dimensions, such that at any fixed time
their spatial positions form a Poisson process of rate ρ per unit volume.
We shall consider two models for the motion of individual particles.

Model 1 Each particle moves in a straight line with constant, random ve-
locity V = (V1, . . . , Vd).

Model 2 Each particle performs Brownian motion, with zero drift and σ2

variance.
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Take a large region A, of volume |A|, and a long time interval [0, t0]. We
shall study M = minimum distance between any two particles, in region A
and time interval [0, t0].

Fix small x > 0. At any fixed time, there are about ρ|A| particles in A,
so

p ≡ P (some two particles in A are within x of each other)

≈
(
ρ|A|
2

)
vdx

d

|A|

≈ 1

2
vdρ

2|A|xd. (I9a)

We apply this heuristic to the random set S of times t that there exist two
particles within distance x. The clump sizes are estimated as follows.

Model 2 The distance between two particular particles behaves as Brown-
ian motion with variance 2σ2, so as in Example I8 we use (I7d) to
get

EC = d−1(d− 2)−1σ−2x2.

Model 1 Fix t and condition on t ∈ S. Then there are two particles within
x; call their positions Z1, Z2 and their velocities V 1, V 2. The Poisson
model for motion of particles implies that Y ≡ Z1 −Z2 is uniform on
the ball of radius x, and that V 1 and V 2 are copies of V , independent
of each other and of Y . So the instantaneous rate of change of distance
between the particles is distributed as

W ≡ (V 2 − V 1) · ξ, where ξ is a uniform unit vector. (I9b)

Now in the notation of Section A9, the ergodic-exit technique,

fC+(0) ≈ δ−1P

(
distance between two
particles at time δ is > x

∣∣∣∣
distance at
time 0 is < x

)
as δ → 0

≈ δ−1P (|Y | + δW > x)

≈ f|Y |(x)EW
+ (I9c)

≈ v−1
d sdx

−1EW+. (I9d)

(The argument for (I9c) is essentially the argument for Rice’s for-
mula)

In either model, the heuristic now gives

P (M > x) ≈ exp(−λt0) (I9e)

where the clump rate λ, calculated from the fundamental identity λ =
p/EC in Model 2 and from λ = pf+(0) in Model 1, works out as

λ =
1

2
sdρ

2|A|EW+xd−1 [Model 1] (I9f)

λ =
1

2
vdd(d− 2)ρ2σ2|A|xd−2 [Model 2] (I9g)
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I10 Example: A simple aggregation-disaggregation model. Now
imagine particles in 3 dimensions with average density ρ per unit volume.
Suppose particles can exist either individually or in linked pairs. Suppose
individual particles which come within a small distance r of each other
will form a linked pair. Suppose a linked pair splits into individuals (which
do not quickly recombine) at rate α. Suppose individual particles perform
Brownian motion, variance σ2. We shall calculate the equilibrium densities
ρ1 of individual particles, and ρ2 of pairs. Obviously,

ρ1 + 2ρ2 = ρ. (I10a)

But also
αρ2 = λρ2

1 (I10b)

where the left side is the disaggregation rate (per unit time per unit volume)
and the right side is the aggregation rate. But the calculation (I9g) shows
this aggregation rate has

λ = 2πσ2r. (I10c)

Solving the equations gives

ρ1 = θ−1((1 + 2θρ)
1
2 − 1), where θ =

8πσ2r

α
. (I10d)

I11 Example: Extremes for diffusions controlled by potentials.
Consider the setting of Section I3, where µ(x) = −∇H and σ(x) = σ0I.
Suppose H is a smooth convex function attaining its minimum at 0 with
H(0) = 0. Let TR be the first exit time from the ball BR with center 0 and
radius R, where R is sufficiently large that π(Bc

R) is small. Then we can
apply the heuristic to the random set of times t such that Xt ∈ Bc

R (or in a
thin “shell” around BR) to see that TR will in general have approximately
exponential distribution; and in simple cases we can estimate the mean
ETR. There are two qualitatively different situations.

I11.1 Case 1: radially symmetric potentials. In the case H(x) = h(|x|)
with radial symmetry, the radial component |Xt| is a 1-dimensional diffu-
sion, and we can apply our 1-dimensional estimates. Specifically, |Xt| has
drift µ(r) = −h′(r) + 1

2 (d− 1)σ2
0r

−1 and variance σ2
0 , and from (D4e) and

a few lines of calculus we get

ETR ≈ R1−d(h′(R))−1K exp

(
2H(R)

σ2
0

)
, (I11a)

where

K =

∫ ∞

0

rd−1 exp

(−2H(r)

σ2
0

)
dr.
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Of course, we could also implement the heuristic directly with |Xt|, and
obtain (I11a) by considering clumps of time spend in a shell around BR.

We can apply this result to the simple Ornstein-Uhlenbeck process ,
in which σ(x) = σI and µ(x) = −ax for positive scalars a, σ. For here
H(x) = 1

2a
∑
x2

i = 1
2ar

2, and evaluating (I11a) gives

ETR ≈ 1

2
(
1

2
d− 1)! a−1

( a
σ2

)− 1
2
d

R−d exp

(
aR2

σ2

)
. (I11b)

I11.2 Case 2: non-symmetric potentials. An opposite case occurs when
H attains its minimum, over the spherical surface ∂BR, at a unique point
z0. Since the stationary density (Section I3) decreases exponentially fast as
H increases, it seems reasonable to suppose that exits from BR will likely
occur near z0, and then approximate TR by TF , the first hitting time on the
hyperplane F tangent to BR at z0. Let q = z0/|z0| be the unit normal vector
at z0, and let πF be the density of q ·X at q ·z0, where X has the stationary
distribution π. At z0 the drift −∇H is directed radially inward (since H is
minimized on ∂BR at z0), and so q ·Xt behaves like 1-dimensional Brownian
motion with drift −|∇H(z0)| whenXt is near z0. Thus if we consider clumps

FIGURE I11a.

of time spent in a slice G = {x : q · z0 ≤ q · x ≤ q · z0 + δ }, we have mean
clump size EC = δ/|∇H(z0)| by Section C5, and p = π(G) = πF δ. The
fundamental identity gives λ = p/EC and hence

ETR ≈ λ−1 ≈ {πF |∇H(z0)|}−1. (I11c)

To make this more explicit we introduce approximations for the station-
ary distribution π. If f : Rd → R is smooth and has a minimum at x0, then
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we can write

f(x) ≈ f(x0) +
1

2
(x− x0)

TQ(x− x0); Q =
∂2f

∂xi∂xj
(x0)

for x near x0. Using the integration formula (I1d) we can get

∫

Rd
exp(−af(x)) dx ≈

(
2π

a

) 1
2
d

|Q|− 1
2 exp(−af(x0)) (I11d)

for smooth convex f . In particular, we can approximate the normalization
constant c in Section I3 to get

π(x) ≈ (σ2
0π)−

1
2
d|Q| 12 exp(−2σ−2

0 H(x)) (I11e)

when H(0) = 0 is the minimum of H, and Q = ∂2H
∂xi∂xj

(0).

To evaluate (I11c), take coordinates so that z0 = (R, 0, 0, . . . ). By (I11e),

πF ≈ (σ2
0π)−

1
2
d|Q| 12 exp(−2σ−2

0 H(z0))

∫

F

exp(−2σ−2
0 (H(x) −H(z0)) dx.

But we can estimate the integral by using (I11d) for the (d−1)-dimensional
hyperplane F , since H is minimized on F at z0. The integral is approxi-
mately

(σ2
0π)(d−1)/2|Q1|−1/2,

where Q1 is the matrix

∂2H

∂xi∂xj
(z0), i, j ≥ 2.

Finally, ∇H(z0) = − ∂H
∂x1

(z0) and (I11c) gives

ETR ≈ σ0
π

1
2 |Q1|

1
2 |Q|− 1

2

− ∂H
∂x1

(z0)
exp

(
2H(z0)

σ2
0

)
. (I11f)

The simplest concrete example is the Ornstein-Uhlenbeck process (Sec-
tion I5) in which we take σ = σ0I and

A =




ρ1

ρ2

. . .

ρ2


 ; ρ1 < ρ2 < · · · .

This corresponds to the potential function H(x) = 1
2

∑
ρix

2
i . Here H has

two minima on ∂BR, at ±z0 = ±(R, 0, 0, . . . ), and so the mean exit time
is half that of (I11f):

ETR ≈ 1

2
σ0π

1
2

(∏

i≥2

ρi

/∏

i≥1

ρi

) 1
2

ρ−1
1 R−1 exp

(
ρ1R

2

σ2
0

)
(I11g)
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which of course just reduces to the 1-dimensional result. This shows that
our method is rather crude, only picking out the extremes of the process
in the dominant direction.

I12 Example: Escape from potential wells. We continue in the
same general setting: a diffusion Xt with drift µ(x) = −∇H(x) and covari-
ance σ(x) = σ0I. Consider now the case where H has two local minima, at
z0 and z2 say, with a saddle point z1 between. For simplicity, we consider
the 2-dimensional case. The question is: starting in the well near z0, what
is the time T until X escapes over the saddle into the other well? The
heuristic will show that T has approximately exponential distribution, and
estimate its mean.

FIGURE I12a.

Take z0 = (0, 0) and z1 = (z1, 0) and suppose

∂2H

∂xi∂xj
(z0) =

(
a1 0
0 a2

)
∂2H

∂xi∂xj
(z1) =

(
−b1 0
0 b2

)

Let TL be the time to hit the line L = { (z1, y) : −∞ < y < ∞}. The
diffusion will hit L near z1 and, by symmetry, be equally likely to fall into
either well; so ET ≈ 2ETL. To estimate ETL starting from z0, we may take
L to be a reflecting barrier. Apply the heuristic to the random set S of times
t that Xt is in a strip, width δ, bordering L. Near z1 the x1-component of
X behaves like the unstable 1-dimensional Ornstein-Uhlenbeck process, so
by (D24a) the mean clump size is

EC ≈ δπ
1
2 b

− 1
2

1 σ−1
0 .
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And

p = π(strip)

= δ

∫ ∞

−∞

π(z1, y) dy where π(x) = K−1 exp(−2σ−2
0 H(x))

≈ δK−1 exp(−2σ−2
0 H(z1, 0))π

1
2σ0b

− 1
2

2

using integral approximation (I11d); using this approximation again,

K ≈ πσ2
0(a1a2)

− 1
2 exp(−2σ−2

0 H(z0)).

The heuristic says ETL ≈ EC/p, so putting it all together

ET ≈ 2π

√
b2

b1a1a2
· exp(2σ−2

0 (H(z1) −H(z0))). (I12a)

I13 Physical diffusions: Kramers’ equation. Our discussion so far
of diffusions controlled by potentials is physically unrealistic because, re-
calling Newton’s laws of motion, a potential really acts to cause a change
in velocity rather than in position. We now describe a more realistic model,
which has been much studied by mathematical physicists. Let H(x) be a
potential function; we take the 1-dimensional case for simplicity. The po-
sition Xt and velocity Vt of a particle moving under the influence of the
potential H, of friction (or viscosity), and of random perturbations of ve-
locity, can be modeled as

dXt = Vt dt

dVt = −αH ′(Xt) dt− βVt dt+ η dBt.

Here α, β, η are constants and Bt is (mathematical) Brownian motion.
The pair (Xt, Vt) form a (mathematical) 2-dimensional diffusion, albeit a
“degenerate” one. By rescaling space and time, we can reduce the equations
above to a canonical form

dXt = Vt dt
dVt = −H ′(Xt) dt− γVt dt+

√
2γ dBt

(I13a)

where γ is a dimensionless constant: this is Kramers’ equation. It is re-
markable that (Xt, Vt) has a simple stationary distribution

π(x, v) = K exp(−H(x) − 1

2
v2) (I13b)

in which position and velocity are independent; velocity is Normally dis-
tributed; and position is distributed in the same way as in our earlier mod-
els. To understand the role of γ, consider the extreme cases.
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(i) As γ → ∞, the speeded-up processes Xγt converge to the diffusion
with µ(x) = −H ′(x) and σ2(x) = 2. This gives a sense in which our
earlier diffusion models do indeed approximate physically sensible
processes.

(ii) As γ → 0, the motion approximates that of deterministic frictionless
motion under a potential.

Note that in the case H(x) = 1
2ax

2 the deterministic motion is the
“simple harmonic oscillator”.

We now repeat the two previous examples in this context.

I14 Example: Extreme values. Let H be smooth convex, with its
minimum at x0, and consider the time Tb until Xt first exceeds a large
value b. We give separate arguments for large γ and for small γ.

I14.1 Large γ. Define
Zt = Xt + γ−1Vt.

Then equations (I13a) yield

dZt = −γ−1H ′(Xt) dt+

(
2

γ

) 1
2

dBt.

In particular, for X around b we have

dZt ≈ −γ−1H ′(b) +

(
2

γ

) 1
2

dBt. (I14a)

We claim that the first hitting time (on b) of Xt can be approximated by
the first hitting time of Zt. At the exact first time that Z = b, we will have
X < b and V > 0, but by (I14a) Zt is changing slowly (γ is large) and so
at the next time that V = 0 we will have Z ≈ b and hence X ≈ b.

Now by (I14a) and (D4a) the clump rate for hits of Z on b is

λb = fZ(b) · γ−1H ′(b).

From the joint density (I13b) we calculate

fZ(b) ≈ K exp(−H(b) +
1

2
γ−2(H ′(b))2).

Thus the hitting time Tb has approximately exponential distribution with
mean

ETb ≈ λ−1
b ≈ γK−1(H ′(b))−1 exp(H(b) − 1

2
γ−2(H ′(b))2). (I14b)
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We may further approximate K by using the Gaussian approximation
around x0, as at Example D7, to get K ≈ (H ′′(x0)/2π)1/2 exp(H(x0))
and hence

ETb ≈ γ

(
2π

H ′′(x0)

) 1
2

(H ′(b))−1 exp(H(x0) −H(b)) exp(−1

2
γ−2(H ′(b))2).

(I14c)
Note that as γ → ∞, our estimate for ETb/γ tends to the estimate (D7b)

for the mathematical diffusion, as suggested by (I13i).

I14.2 Small γ. Consider first the deterministic case γ = 0. Starting at
x1 > x0 with velocity 0, the particle moves to x̂1 < x0 such that H(x̂1) =
H(x1) and then returns to x1: call this a x1-cycle. “Energy”

Et ≡ H(Xt) +
1

2
V 2

t (I14d)

is conserved, so we can calculate

D(x1) ≡ duration of x1-cycle

= 2

∫ x1

x̂1

(velocity at x)−1 dx

= 2

∫ x1

x̂1

(2(H(x1) −H(x))−
1
2 dx (I14e)

I(x1) ≡
∫
V 2(t) dt over a x1-cycle (I14f)

= 2

∫ x1

x̂1

(2(H(x1) −H(x))
1
2 dx (I14g)

In the stochastic (γ > 0) case we calculate, from (I13a),

dEt = γ(1 − V 2
t ) dt+ (2γ)

1
2Vt dBt (I14h)

Let X̂1, X̂2, X̂3, . . . be the right-most extremes of successive cycles. Inte-
grating (I14h) over a cycle gives

H(X̂n+1) ≈ H(X̂n) + γ(D(X̂n) − I(X̂n)) + Normal(0, 4γI(X̂n)). (I14i)

So for x ≈ b, the process H(X̂) over many cycles can be approximated by
Brownian motion with some variance and with drift −γ(I(b) − D(b)) per
cycle, that is −γ(I(b)/D(b)−1) per unit time. Now the clump rate for hits

of X on b is 1/D(b) times the rate for hits of H(X̂) on H(b), so by the

Brownian approximation for H(X̂) and (D2b)

λb = fH(X)(H(b)) · γ
(
I(b)

D(b)
− 1

)
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= (H ′(b) +H ′(̂b))−1fX(b) · γ
(
I(b)

D(b)
− 1

)
, where H(b̂) = H(b)

= γKX

(
I(b)

D(b)
− 1

)
(H ′(b) +H ′(̂b))−1 exp(−H(b)). (I14j)

and as before KX can be estimated in terms of x0 to give

λb ≈
(
H ′′(x0)

2π

) 1
2

γ

(
I(b)

D(b)
− 1

)
(I14k)

×(H ′(b) +H ′(̂b))−1 exp(H(x0) −H(b)). (I14l)

In the “simple harmonic oscillator” case H(x) = 1
2x

2, we have

D(b) = 2π, I(b) = πb2

and the expression (I14k) becomes

λb ≈
1

4
γbφ(b), b large, (I14m)

where φ as usual is the standard Normal density function.

I15 Example: Escape from potential well. Now consider the case of
a double-welled potential H such that the stationary distribution is mostly
concentrated near the bottoms of the two wells. Kramers’ problem asks:
for the process (Section I13) started in the well near x0, what is the mean
time ET to escape into the other well? We shall consider the case where
γ is not small: we want to ignore the possibility that, after passing over
the hump at x1 moving right (say), the particle will follow approximately
the deterministic trajectory to around z and then return and re-cross the
hump. There is no loss of generality in assuming that H is symmetric about
x1.

Let
a = −H ′′(x1); b = H ′′(x0). (I15a)

To study the motion near the hump x1, set

Zt = Xt − x1 + ρVt

where ρ is a constant to be specified later. Since H ′(x) ≈ −a(x− x1) for x
near x1, we have for Xt near x1

dZt = dXt − ρ dVt = Vt dt+ ρ dVt

dVt ≈ a(Zt − ρVt) − γVt dt+
√

2γ dBt

using the basic equations (I13a). Rearranging,

dZt ≈ ρaZt dt+ ρ
√

2γ dBt + (1 − aρ2 − γρ)Vt dt.
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FIGURE I15a.

Choosing ρ > 0 to make the last term vanish

aρ2 + γρ− 1 = 0 (I15b)

we see that Zt approximates a 1-dimensional unstable Ornstein-Uhlenbeck
process. Essentially, what’s happening is that a particle starting with (x, v)
for x near x1 would, in the absence of random perturbations, fall into one
or other well according to the sign of z = x+ ρv. Thus ET ≈ 2ET̂ , where
T̂ is the time until Z first reaches 0. Applying the heuristic to the clumps
of time that Zt ∈ [0, δ] we get

ET̂ ≈ EC

δfZ(0)
(I15c)

where fZ is the stationary density of Z and the mean clump size is, by
(D24a),

EC =
1

2
π

1
2 (aρ)−

1
2 (ρ
√

2γ)−1δ.

To estimate fZ(0), first note that from (I11d) the normalizing constant
K for the stationary distribution (I13b) has

K−1 ≈ 2(2π)
1
2

(π
b

) 1
2

exp(−H(x0))

where the first 2 arises from symmetry about x1. So for x near x1,

π(x, v) ≈ A exp(
1

2
a(x− x1)

2 − 1

2
v2)
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for A = K−1 exp(H(x1)). Since Z = X − x1 + ρV ,

fZ(0) =

∫ ∞

−∞

π

(
x1 + u,

−u
ρ

)
ρ−1 du

≈ Aρ−1

∫
exp(

1

2
au2 − 1

2
u2ρ−2) du

= Aρ−1(2π)
1
2 (−a+ ρ−2)

1
2

= A(2π)
1
2 γ−

1
2 ρ−

1
2 using the definition (I15b) of ρ.

Putting it all together,

ET ≈ 2π(ab)−
1
2 ρ−1 exp(H(x1) −H(x0)) (I15d)

where ρ−1 is, solving (I15b),

ρ−1 =
1

2
γ +

√
1

2
γ + a.

This is the usual solution to Kramers’ problem. As γ → ∞ it agrees with
the 1-dimensional diffusion solution (D25b), after rescaling time.

As mentioned before, for γ ≈ 0 the behavior of Xt changes, approximat-
ing a deterministic oscillation: this case can be handled by the method of
Example I14.2.

We now turn to rather different examples.

I16 Example: Lower boundaries for transient Brownian motion.
The usual LIL and integral test (D15) extend easily to d-dimensional Brow-
nian motion Bt to give

lim sup
t→∞

|Bt|
(2t log log t)

1
2

= 1 a.s. (I16a)

Bt ≤ t
1
2ψ(t) ultimately iff

∫ ∞

t−1ψd(t) exp(−1

2
ψ2(t)) dt <∞.(I16b)

Now for d ≥ 3 Brownian motion is transient, so we can consider lower
boundaries too. First we consider the d-dimensional Ornstein-Uhlenbeck
process Xt (whose components are independent 1-dimensional standard
Ornstein-Uhlenbeck processes). Let b(t) ↓ 0 smoothly, and apply the heuris-
tic to S = { t : |Xt| ≤ b(t) }. So

p(t) ≡ P (|Xt| ≤ b(t)) ∼ (2π)−
1
2
dvdb

d(t).

We estimate the clump size by approximating the boundary around t by
the level at b(t); then (I7d) gives

EC(t) ≈ 2b2(t)d−1(d− 2)−1.
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So the clump rate is

λ(t) =
p(t)

EC(t)
= adb

d−2(t) for a certain constant ad.

So as at (D15)

Xt ≥ b(t) ultimately iff

∫ ∞

λ(t) dt <∞

iff

∫ ∞

bd−2(t) dt <∞. (I16c)

Now given d-dimensional Brownian motion Bt, then Xt ≡ e−tB(e2t) is the
d-dimensional Ornstein-Uhlenbeck process, and (I16c) translates to

|Bt| ≥ t
1
2 b(t) ultimately iff

∫ ∞

t−1bd−2(t) dt <∞. (I16d)

In particular,

|Bt| ≥ t
1
2 log−α(t) ultimately iff α >

1

d− 2
.

I17 Example: Brownian motion on surface of sphere. For a quite
different type of problem, consider Brownian motion on the surface Sd−1 of
the ball of radius R in d ≥ 4 dimensions. As mentioned at Section I6, the
stationary distribution is uniform. Let B be a “cap” of radius r (r small)
on the surface Sd−1, and let TB be the first hitting time on B. We shall use
the heuristic to show that TB is approximately exponentially distributed
with mean

ETB ≈ π
1
2
((d− 5)/2)!

((d− 2)/2)!
·Rd−1r3−d = t̄(r) say. (I17a)

For consider the clumps of time spent in B. Around B the process behaves
like (d− 1) dimensional Brownian motion, and this local transience makes
the heuristic applicable. By (I7d)

EC ≈ 2(d− 1)−1(d− 3)−1r2.

And

p = π(B) ≈ vd−1r
d−1

sdRd−1
=

1

2
π− 1

2
((d− 2)/2)!

((d− 1)/2)!
· rd−1R1−d

where vd and sd are the volume and surface area (Section I6) of the d-
dimensional unit ball. Then the heuristic estimate ETB ≈ EC/p gives
(I17a).

We can also treat the continuous analogue of the coupon-collector’s prob-
lem of Chapter F. Let Vr be the time taken until the path has passed within
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distance r of every point on the surface Sd−1. We shall use the heuristic to
obtain

Vr ∼ (d− 1)t̄(r) log(1/r) as r → 0. (I17b)

for t̄(r) as at (I17a). The upper estimate is easy. Fix ε > 0. Choose a set A
of points in Sd−1 such that every point in Sd−1 is within εr of some point
of A; we can do this with |A| = O(r1−d). Then Vr is bounded above by the
time V ∗ taken to pass within distance (1− ε)r from each point of A. Then
using (I17a),

P (V ∗ > t) <∼ |A| exp

( −t
t̄((1 − ε)r)

)
.

So as r → 0, V ∗ is bounded by

v = t̄((1 − ε)r) (d− 1) log(1/r) · (1 + η); η > 0 fixed.

Since ε and η are arbitrary, this gives the upper bound in (I17b).
For the lower bound we use a continuous analog of the argument at the

end of Section F12. Fix ε > 0 and let

t = (1 − ε)(d− 1)t̄(r) log(1/r).

We shall apply the heuristic to the random set S of points x ∈ Sd−1 such
that the path up to time t has not passed within distance r of t. Here

p = P (x ∈ S) ≈ exp

( −t
t̄(r)

)
by (I17a)

We shall argue that the clump rate λ̂ for S satisfies

λ̂ ≡ p

EC
→ ∞ as r → 0

implying
P (Vr < t) = P (S empty) → 0 as r → 0,

giving the lower bound in (I17b). Thus what we must prove is

EC = o(p) ≡ o(exp(−t/t̄(r))) as r → 0. (I17c)

Now fix x0 ∈ S. Then, as at Section A6,

EC ≤ EC̃ =

∫

Sd−1

P (x ∈ S | x0 ∈ S) dx

≤
∫ ∞

0

sd−1y
d−2q(y) dy (I17d)

where q(y) = P (x ∈ S | x0 ∈ S) when |x− x0| = y. We shall show

q(y) ≈ exp(−cty/rt̄(r)), y small (I17e)
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where c depends only on the dimension d, and then it is straightforward
to verify (I17c). To establish (I17e), fix x with |x − x0| = y for small y.
Let D be the union of the caps B with radii r centered at x0 and at x.
Then vol(D) ≈ vol(B)(1 + cy/r) for some c depending only on d. Use the
heuristic to compare the first hitting time TD with the first hitting time TB :
the clump sizes are essentially the same, so we get ETB/ETD ≈ 1 + cy/r.
Then

P (TD > t)

P (TB > t)
≈ exp(− t

ETD
+

t

ETB
) ≈ exp(− cyt

rETB
).

and this is (I17e).

Remark: This was fairly easy because we only needed a crude upper bound
on EC above. Finding the exact asymptotics of EC needed for the “conver-
gence in distribution” improvement of (I17b), seems harder: see Section I27.

I18 Rice’s formula for conditionally locally Brownian processes.
The basic type of problem discussed in this chapter concerns the time for a
stationary d-dimensional diffusion Xt to exit a region A ⊂ Rd. Such prob-
lems can usually be viewed in another way, as the time for a 1-dimensional
process Yt = h(Xt) to hit a level b. Of course, one typically loses the Markov
property in passing to 1 dimension. Instead, one gets the following property.
There is a stationary process (Yt, µt, σt) such that

given (Yt, µt, σt), we have Yt+δ ≈ Yt +δµt +σtBδ for small
δ > 0.

(I18a)

Write f(y, µ, σ) for the marginal density of (Yt, µt, σt). Consider excursions
of Yt above level b. If these excursions are brief and rare, and if µ and
σ do not change much during an excursion, then the clump rate λb for
{ t : Yt ≥ b } is

λb ≈ E(µ− | Y = b)fY (b) (I18b)

where fY is the marginal density of Yt and µ− = max(0,−µ). Note the
similarity to Rice’s formula (C12.1) for smooth processes, even though we
are dealing with locally Brownian processes. To argue (I18b), let λµ,σ dµ dσ
be the rate of clumps which start with µt ∈ (µ, µ + dµ), σt ∈ (σ, σ + dσ).
Then as at Section D2,

λµ,σ = −µf(b, µ, σ), µ < 0.

Since λb ≈
∫∫

λµ,σ dµ dσ, we get (I18b).
Of course, one could state this result directly in terms of the original

process X, to get an expression involving the density of X at each point of
the boundary of A and the drift rate in the inward normal direction.
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I19 Example: Rough X 2 processes. For 1 ≤ i ≤ n let Xi(t) be
independent stationary Ornstein-Uhlenbeck processes, covariance

Ri(t) = exp(−θi|t|).

Let Y (t) =
∑n

i=1 aiX
2
i (t), and consider extremes of Yt. In s.d.e. notation,

dXi = −θiXi dt+ (2θi)
1
2 dBt

dX2
i = −2θi(X

2
i − 1) dt+ terms in dBt

and so

dYt = −2
∑

aiθi(X
2
i − 1) dt+ terms in dBt.

Thus the extremal behavior of Yt is given by

P ( sup
0≤s≤t

Ys ≤ b) ≈ exp(−λbt), b large,

where the clump rate λb is, using (I18b),

λb = fY (b)
n∑

i=1

2aiθiE(X2
i − 1 |

∑
aiX

2
i = b) (I19a)

where the Xi have standard Normal distribution.
This can be made explicit in the special case ai ≡ 1, where Y has X 2

distribution and (I19a) becomes

λb = fY (b) · 2
(
b

n
− 1

)∑
θi.

COMMENTARY

I20 General references. I don’t know any good introductory account of
multi-dimensional diffusions — would someone like to write a short monograph
in the spirit of Karlin and Taylor’s (1982) account of the 1-dimensional case?
Theoretical works such as Dynkin (1962), Stroock and Varadhan (1979), are
concerned with questions of existence and uniqueness, of justifications of the
basic equations (Section I1), and these issues are somewhat removed from the
business of doing probability calculations. An applied mathematician’s treat-
ment is given by Schuss (1980). Gardiner (1983) gives the physicist’s approach.
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I21 Calculation of stationary distributions. Durrett (1985) gives a
nice discussion of reversibility. Gardiner (1983) discusses Ornstein-Uhlenbeck
processes.

Another setting where stationary distributions can be found explicitly con-
cerns Brownian motion with particular types of reflecting boundary. Such pro-
cesses occur in the heavy traffic limit of queueing systems — Harrison and
Williams (1987).

I22 Radial part of Brownian motion. For Xt = σ0Bt, the radial part
|Xt| is the 1-dimensional diffusion with

µ(x) =
1

2
(d− 1)x−1 σ(x) = σ0,

called the Bessel(d) process (Karlin and Taylor (1982)). Then the formulas
in Section I7 can be derived from 1-dimensional formulas. Alternatively, (I7b)
holds by optional stopping of the martingale |Xt|2 − dσ2

0t, and (I7c) by direct
calculus.

WhenXt = σBt for a general matrix σ, there must be some explicit formulas
corresponding to those in Section I7, but I don’t know what!

I23 Hitting small balls. Berman (1983b) Section 6 treats a special case
of Example I8; Baxendale (1984) gives the associated integral test. Clifford et
al. (1987) discuss some “near miss” models in the spirit of Example I9 and
give references to the chemistry literature.

I24 Potential wells. Gardiner (1983) and Schuss (1980) give textbook
accounts of our examples. Matkowsky et al. (1982; 1984) describe recent work
on Kramers’ problem. The simple form of the stationary distribution (I13b) in
Kramers’ problem arises from physical reversibility: see Gardiner (1983) p. 155.

One can attempt to combine the “large γ” and “small γ” arguments: this
is done in Matkowsky et al. (1984).

I25 Formalizations of exit problems. Our formulations of exit prob-
lems for diffusions don’t readily lend themselves to formalizations as limit the-
orems. There is an alternative set-up, known as Ventcel-Friedlin theory, where
one considers a diffusion Xε(t) with drift µ(x) and variance εσ(x), and there
is a fixed region A ⊂ Rd. Let Tε be the exit time from A for Xε; then one can
study the asymptotics of Tε as ε→ 0. This is part of large deviation theory —
see Varadhan (1984) for the big picture. Day (1987) is a good survey of rigor-
ous results concerning exit times and places. Day (1983) gives the exponential
limit law for exit times in this setting.

It is important to realize that the Ventcel-Friedlin set-up is not always nat-
ural. Often a 1-parameter family Xε arises from , say, a 3-parameter physical
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problem by rescaling, as in Kramers’ equation (I13a) for Xγ . Though it is
mathematically natural to take limits in ε, the real issue is understanding the
effects of changes in the original physical parameters: such changes affect not
only ε but also the potential function H and the boundary level b.

I26 Boundary layer expansions. Schuss (1980) develops an analytic
technique, describable as “singular perturbations” or “boundary layer expan-
sions”, which is in essence similar to our heuristic but presented in quite a
different way: the approximations are done inside a differential equations set-
ting instead of directly in the probabilistic setting. In principle this is more
general than our heuristic: some of the mathematical physics examples such as
the “phase-locked loops” of Schuss (1980) Chapter 9 genuinely require such
analytic techniques. On the other hand many of the examples, particularly
those in queueing models (Knessl et al. (1985; 1986b; 1986a)) can be done
more simply and directly via our heuristic.

I27 Brownian motion on surface of d-sphere. Matthews (1988a)
gives a rigorous treatment of Example I17. Our argument suggests the clump
size at (I17a) should satisfy

EC ∼ ad(r log(1/r))d−1 as r → 0

for some (unknown) constant ad. If so, the heuristic yields the convergence in
distribution result

P (Vr ≤ t̄(r)((d− 1) log(1/r) − (d− 1) log log(1/r) + w))

→ exp(−sdR
d−1a−1

d e−w) as r → 0. (I27a)

Finding ad explicitly, and justifying (I27a), looks hard.

I28 Rough X 2 processes. More complicated variations of Example I19
involving infinite sums arise in some applications — see Walsh (1981) — but
good estimates are unknown.

I29 Smooth stationary processes. We can also consider exit problems
for stationary non-Markov processes X(t) in Rd. Suppose the process has
smooth paths, so that V (t) = d

dtX(t) exists, and let A ⊂ Rd be a large
region such that P (X(t) 6∈ A) is small. Suppose A has a smooth boundary
∂A. Then we can in principle estimate exit times as in the 1-dimensional case
(Chapter C), using Rice’s upcrossing formula. That is, the exit time TA will
have approximately exponential distribution with rate λA given by

λA =

∫

∂A

ρ(x) dx (I29a)
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where ρ(x) is the “outcrossing rate” at x ∈ ∂A defined by

ρ(x)|dB| dt = P (X crosses from A to AC through dB during [t, t+ dt])

where x ∈ dB ⊂ ∂A and |dB| is the area of the boundary patch dB. Now
Rice’s formula (Section C12) gives

ρ(x) = E(〈ηx, v〉+ | X = x)fX(x) (I29b)

where ηx is the unit vector normal to ∂A at x, and where 〈 , 〉 denotes dot
product.

As a special case, suppose X(t) = (X1(t); 1 ≤ i ≤ d) is Gaussian, mean
zero, with independent components such that EXi(0)Xi(t) ∼ 1 − 1

2θit
2 as

t → 0. Then Vi(t) has Normal(0, θi) distribution, and V (t) is independent of
X(t), so (I29b) becomes

ρ(x) = (2π)−
1
2 < ηx, θ > fX(x) where θ = (θi). (I29c)

Even in this case, explicitly evaluating the integral in (I29a) is hard except in
the simplest cases. For instance, one may be interested in extremes or boundary
crossing for h(X(t)), where h: Rd → R is given, and this involves evaluation
(I29a) for ∂A = {x : h(x) = h0 }. Lindgren (1984a) gives a nice treatment of
this problem.



J Random Fields

In this chapter we look at the topics of chapters C and D — extrema and
boundary crossings – for d-parameter processes instead of 1-parameter pro-
cesses. A random field X(t) or Xt is just a real-valued process parametrized
by t = (t1, . . . , td) in Rd or some subset of Rd. Since this concept may be
less familiar to the reader than earlier types of random process, let us start
by mentioning several contexts where random fields arise.

J1 Spatial processes. Think of t as a point in physical space (d = 2 or
3, say) and think of X(t) as the value of some physical quantity at point
t (pressure, temperature, etc.). These give the most natural examples of
random fields.

J2 In analysis of 1-parameter processes. For ordinary Brownian
motion (Bt : 0 ≤ t <∞) one may be interested in quantities like

sup
0≤t1<t2≤T

t2−t1≥δ

Bt2 −Bt1

(t2 − t1)
1
2

. (J2a)

It is useful to think of this as the supremum of a random field X(t1, t2)
over a certain region: such topics are treated in Chapter K.

J3 Gaussian fields and white noise. As in the 1-parameter setting,
a d-parameter Gaussian process is determined by its mean function (which
we assume to be zero unless otherwise stated) and its covariance func-
tion. But many natural Gaussian processes can be constructed more ex-
plicitly from white noise, as explained below. Let µ be a positive non-
atomic measure on Rd. Associated with µ is the µ-white noise process
(W (A) : A ⊂ Rd, µ(A) <∞) specified by

W (A)
D
= Normal(0, µ(A)) (J3a)

for disjoint (Ai) the W (Ai) are independent (J3b)

W (A ∪B) +W (A ∩B) = W (A) +W (B) a.s. (J3c)
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For µ = Lebesgue measure (“volume”) on Rd, this is white noise. If µ is a
probability measure then we can also define µ−Brownian sheet

Z(A) = W (A) − µ(A)W (Rd) A ⊂ Rd. (J3d)

For µ = Lebesgue measure on [0, 1]d this is Brownian sheet. W and Z are
set-indexed Gaussian processes with mean zero and covariances

EW (A)W (B) = µ(A ∩B) (J3e)

EZ(A)Z(B) = µ(A ∩B) − µ(A)µ(B). (J3f)

It is also useful to note

EZ(A)Z(B) =
1

4
− 1

2
µ(A∆B) if µ(A) =

1

2
. (J3g)

These set-indexed processes can be regarded as point-indexed processes
by restricting attention to a family A of subsets A with finite-dimensional

parametrization. Let (At : t ∈ Rd̂) be a family of subsets of Rd, for example
the family of discs in R2 (where say (t1, t2, t3) indicates the disc centered
at (t1, t2) with radius t3). Then X(t) ≡ W (At) or X(t) ≡ Z(At) defines a

d̂ parameter mean-zero Gaussian random field, whose covariance is given
by (J3e,J3f).

J4 Analogues of the Kolmogorov-Smirnov test. The distribution
of the supremum of a Gaussian random field occurs naturally in connection
with Kolmogorov-Smirnov type tests. Let (ξi) be i.i.d. with distribution µ
and let µN be the empirical distribution of the first N observations:

µN (ω,A) = N−1
N∑

i=1

1(ξi∈A).

Consider the normalized empirical distribution

ZN (A) = N
1
2 (µN (A) − µ(A)). (J4a)

The central limit theorem says that, as N → ∞ for fixed A ⊂ Rd,

ZN (A)
D→ Normal(0, µ(A)(1 − µ(A)))

D
= Z(A), (J4b)

where Z is the µ-Brownian sheet (J3d). Now consider a family (At : t ∈ Rd̂)
of subsets of Rd. Under mild conditions (J4b) extends to

(ZN (At) : t ∈ Rd̂)
D→ (Z(At) : t ∈ Rd̂) (J4c)

in the sense of weak convergence of processes; in particular

sup
t
ZN (At)

D→ sup
t
Z(At). (J4d)
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For an i.i.d. sequence of observations, a natural statistical test of the hy-
pothesis that the distribution is µ is to form the normalized empirical dis-
tribution ZN and compare the observed value of supt Z

N (At), for a suitable
family (At), with its theoretical (“null”) distribution. And (J4d) says that
for large N this null distribution can be approximated by the supremum
of a Gaussian random field.

J5 The heuristic. The basic setting for our heuristic analysis is where
X(t) is a d-dimensional stationary random field without long-range depen-
dence, and where we are interested in the supremum

MA = sup
t∈A

X(t) (J5a)

for some nice subset (cube or sphere, usually) A of Rd. So we fix a high
level b and consider the random set Sb = { t : X(t) ≥ b }. Suppose this
resembles a mosaic process with some clump rate λb, clump shape Cb and
clump volume Cb; then

P (MA ≤ b) ≈ exp(−λb|A|); |A| = volume(A) (J5b)

λb =
P (X(t) ≥ b)

ECb
. (J5c)

This is completely analogous to the 1-parameter case (Section C4). The
practical difficulty is that two of the most useful techniques for calculating
ECb and hence λb are purely 1-parameter: the “renewal-sojourn” method
(Section A8) and the “ergodic-exit” method (Section A9). We do still have
the “harmonic mean” method (Section A6) and the “conditioning on semi-
local maxima” method (Section A7), but it is hard to get explicit constants
that way. Otherwise, known results exploit special tricks.

J6 Discrete processes. In studying the maximum MA of a discrete
process (X(t); t ∈ Zd), some of the ideas in the 1-parameter case extend
unchanged. For instance, the “approximate independence of tail values”
condition (C7a)

P (X(t) ≥ b | X(0) ≥ b) → 0 as b→ ∞; t 6= 0 (J6a)

is essentially enough to ensure that MA behaves as if the X(t) were in-
dependent. And arguments for the behavior of moving average processes
(Section C5) extend fairly easily; for here the maximum is mostly due to a
single large value of the underlying i.i.d. process. Such processes are rather
uninteresting and will not be pursued.
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J7 Example: Smooth Gaussian fields. This is the analogue of Sec-

tion C23. Let X(t) be stationary Gaussian with X(t)
D
= Normal(0, 1) and

with correlation function

R(t) ≡ EX(0)X(t). (J7a)

Suppose R(t) has the form

R(t) = 1 − 1

2
tT Λt+O(|t|2) as t→ 0, (J7b)

in which case Λ is the positive-definite matrix

Λij = −∂
2R(t)

∂ti∂tj
. (J7c)

Let |Λ| = determinant(Λ) and let φ be the Normal(0, 1) density. We shall
show that for b large the clump rate is

λb = (2π)−
1
2
d|Λ| 12 bd−1φ(b) (J7d)

and then (J5b) gives the approximation for maxima MA.
We argue (J7d) by the “conditioning on semi-local maxima” method.

The argument at (C26e), applied to clumps { t : Xt ≥ b } rather than slices
{ t : Xt ∈ (y, y + dy) }, gives

P (X(t) ≥ b) =

∫ ∞

b

L(x)m(x, b) dx (J7e)

where L(x) dx is the rate of local maxima of heights in [x, x+dx], and where
m(x, b) = E volume{ t : Xt ≥ b } in a clump around a local maximum of
height x. The key fact is that, around a high level x, the process X(t) is
almost deterministic;

given X(0) = x and ∂X(t)/∂ti = vi,

X(t) ≈ x+ v · t− 1

2
x(tT Λt) for t small.

(J7f)

This follows from the corresponding 1-parameter result (C25a) by con-
sidering sections. So in particular, if X(0) = x is a local maximum then
X(t) ≈ x− 1

2x(t
T Λt) and so

m(x, b) ≈ volume{ t : tT Λt ≤ (x− b)/(
1

2
x) }; x > b

= vd|Λ|−
1
2

(
2(x− b)

x

) 1
2
d
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where vd is the volume of the unit sphere in d dimensions:

vd =
2π

1
2
d

dΓ( 1
2d)

. (J7g)

Substituting into (J7e) and writing x = b+ u,

P (X(t) ≥ b) ≈ vd|Λ|−
1
2 2

1
2
d

∫ ∞

0

(u
x

) 1
2
d

L(b+ u) du.

We want to solve for L. Anticipating a solution of the form L(x) = g(x)φ(x)
for g varying slowly relative to φ, we have L(b + u) ≈ g(b)φ(b + u) ≈
g(b)φ(b)e−bu and P (X(t) ≥ b) ≈ φ(b)/b, giving

b−1φ(b) ≈ vd|Λ|−
1
2

(
2

b

) 1
2
d

g(b)φ(b)

∫ ∞

0

u
1
2
de−bu du.

This reduces to
g(b) ≈ (2π)−

1
2
d|Λ| 12 bd.

So L(x) ≈ (2π)−d/2|Λ|1/2xdφ(x). But the clump rate λb satisfies

λb =

∫ ∞

b

L(x) dx,

giving (J7d) as the first term.
This technique avoids considering the mean clump size ECb, but it can

now be deduced from (J5c):

ECb = (2π)
1
2
db−d|Λ|− 1

2 . (J7h)

In the case where Λ is diagonal, so that small increments of X(t) in or-
thogonal directions are uncorrelated, we see from (J7h) that ECb is just
the product of the clump sizes of the 1-parameter marginal processes.

Some final remarks will be useful later. For a local maximum Y of height
at least b, the “overshoot” ξ = Y −b will satisfy P (ξ > x) = λb+x/λb ≈ e−bx

for large b. So

ξ
D≈ exponential(b) for b large. (J7i)

This agrees with the 1-parameter case. We can now calculate

EC2
b

(ECb)2
≈
(
d

d/2

)
for b large. (J7j)

For conditional on a local maximum having height b+x, we have the clump
size Cb ≈ axd/2 for a independent of x. So

ECb = a

∫ ∞

0

be−bxx
1
2
d dx = ab

1
2
d(d/2)!

EC2
b = a2

∫ ∞

0

be−bxxd dx = a2bdd!
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J8 Example: 2-dimensional shot noise. Given 0 < ρ < ∞ and a
distribution µ on R+, let (Ti) be the points of a Poisson process in R2 of
rate ρ and associate i.i.d. (µ) variables (ξi) with each Ti. Let h : R+ → R+

be decreasing with h(0) = 1. Under mild conditions we can define the
stationary random field

X(t) =
∑

ξih(|t− Ti|); t ∈ R2. (J8a)

This is partly analogous to Examples C13, C15. One can write down an
expression for the transform of the marginal distribution X̂ = X(0). Let
us consider the special case

ξi has exponential(α) distribution. (J8b)

The Poisson property implies that the distribution X(T ) at a typical point
(T, ξ) of the Poisson process is

X(T )
D
= X̂ + ξ; where (X̂, ξ) are independent. (J8c)

Thus X(T ) has density

fX(T )(x) =

∫ x

0

f
X̂

(y)αe−α(x−y) dy

≈ Aαe−αx for large x, where A = EeαX̂ . (J8d)

Let L(x) dx be the rate of local maxima of X(t) of heights in [x, x+dx]. At
high levels, local maxima of X should occur only at points T of the Poisson
process, so from (J8d)

L(x) = Aαρe−αx for large x.

The heuristic now says that the rate λb of clumps of { t : Xt ≥ b } satisfies

λb =

∫ ∞

b

L(x) dx ≈ Aρe−αb.

As usual, (J5b) gives the heuristic approximation for maxima MA of X.

J9 Uncorrelated orthogonal increments Gaussian processes. Let
X(t), t ∈ Rd be a stationary Gaussian random field. For fixed large b let
λb and ECb be the rate and mean volume of clumps of X above b. Write
(z1, . . . , zd) for the orthogonal unit vectors in Rd and writeXi(s) = X(szi),
s ∈ R, for the marginal processes. Let λi

b, EC
i
b be clump rate and size for

Xi(s). Suppose x has the uncorrelated orthogonal increments property

(X1(s), X2(s), . . . , Xd(s)) become uncorrelated as s→ 0. (J9a)
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It turns out that this implies a product rule for mean clump sizes:

ECb =

d∏

i=1

ECi
b. (J9b)

Then the fundamental identity yields

λb =
P (X(0) > b)
∏d

i=1EC
i
b

=

∏d
i=1 λ

i
b

P d−1(X(0) ≥ b)
; (J9c)

everything reduces to 1-parameter problems.
This product rule is a “folk theorem” for which there seems no general

known proof (Section J32) or even a good general heuristic argument. We
have already remarked, below (J7h), that it holds in the smooth case; let
us now see that it holds in the following fundamental example.

J10 Example: Product Ornstein-Uhlenbeck processes. Consider
a 2-parameter stationary Gaussian random field X(t) with covariance of
the form

R(t) ≡ EX(0)X(t) ≈ 1 − µ1|t1| − µ2|t2| as t→ 0. (J10a)

An explicit example is

X(t) = W (At); where W is 2-parameter white noise (Sec-
tion J3) and At is the unit square with lower-left corner
t.

(J10b)

We want to consider the shape of the clumps Cb where X ≥ b. Fix t0 and
suppose X(t0) = x > b. Consider the increments processes X̂i(s) = X(t0 +
szi)−X(t0), s small. From the white noise representation in (J10b), or by

calculation in (J10a), we see that X̂1(s) and X̂2(s) are almost independent

for s small. The clump Cb is essentially the set { t0 + (s1, s2) : X̂1(s1) +

X̂2(s2) ≥ b−x }. As in Example J7, Cb is not anything simple like a product
set. But this description of Cb suggests looking at sums of independent 1-
parameter processes, which we now do.

Let Y1(t1), Y2(t2) be stationary independent Gaussian 1-parameter pro-
cesses such that

Ri(t) ≡ EYi(0)Yi(t) ≈ 1 − 2µi|t| as t→ 0. (J10c)

Consider
X(t1, t2) = 2−

1
2 (Y1(t1) + Y2(t2)). (J10d)

This is of the required form (J10a). Let Mi = sup0≤t≤1 Yi(t). By (D10e)
the Yi have clump rates

λi
b = 2µibφ(b) (J10e)
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and hence Mi has density of the form

fMi
(x) ∼ 2µix

2φ(x) as x→ ∞. (J10f)

Let us record a straightforward calculus result:

If M1, M2 are independent with densities fMi
(x) ∼

aix
niφ(x) as x → ∞, then 2−1/2(M1 + M2) ≡ M has

density fM (x) ∼ a1a2(x/
√

2)n1+n2φ(x) as x→ ∞.
(J10g)

In the present setting this shows that M = sup0≤t1,t2≤1X(t1, t2) has den-
sity of the form

fM (x) ∼ µ1µ2x
4φ(x) as x→ ∞. (J10h)

The clump rate λb for X is such that P (M ≤ b) ≈ exp(−λb), and so (J10h)
yields

λb ≈ µ1µ2b
3φ(b). (J10i)

Since the extremal behavior of a Gaussian X(t) depends only on the be-
havior of R(t) near t = 0, this conclusion holds for any process of the form
(J10a) (without long-range dependence, as usual), not just those of the
special form (J10d).

By the fundamental identity, the mean clump sizes for X(t) are

ECb = (µ1µ2)
−1b−4. (J10j)

Comparing with (D10f) we see that the product rule (J9b) works in this
example.

This example is fundamental; several subsequent examples are extensions
in different directions. Let us record the obvious d-parameter version:

If R(t) ≈ 1 −
d∏

i=1

µi|ti| as t→ 0 in Rd, then λb =
( d∏

i=1

µi

)
b2d−1φ(b).

(J10k)

J11 An artificial example. A slightly artificial example is to take
X(t1, t2) stationary Gaussian and smooth in one parameter but not in
the other, say

R(t1, t2) ≈ 1 − µ|t1| −
1

2
ρt22 as t→ 0. (J11a)

In this case we can follow the argument above, but with Y2(t2) now a
smooth 1-parameter Gaussian process, and we conclude

λb = (2ρ)−
1
2π

1
2µb2φ(b). (J11b)

Again, the product rule (J9b,J9c) gives the correct answer.

The remaining examples in this chapter concern “locally Brownian”
fields, motivated by the following discussion.
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J12 Maxima of µ-Brownian sheets. For stationary processes X(t),
t ∈ Rd, our approximations

P (MA ≤ b) ≈ exp(−λb|A|)

correspond to the limit assertion

sup
b

|P (MA ≤ b) − exp(−λb|A|)| → 0 as |A| → ∞. (J12a)

Consider now M = suptX(t), where X arises from a µ-Brownian sheet
Z via X(t) = Z(At), as in Section J3. Typically X(t) is a non-stationary
mean zero Gaussian process. We can still use the non-stationary form of the
heuristic. Write Sb for the random set { t : Xt ≥ b } for b large; ECb(t0) for
the mean volume of clumps of S which occur near t0; λb(t0) for the clump
rate at t0; and pb(t0) = P (X(t0) ≥ b). Then the heuristic approximation is

λb(t) =
pb(t)

ECb(t)
(J12b)

P (M ≤ b) ≈ exp(−
∫
λb(t) dt) (J12c)

and so

P (M > b) ≈
∫
λb(t) dt for large b. (J12d)

As discussed in Section A10, in this setting we cannot hope to make (J12c)
into a limit assertion, since we have only one M ; on the other hand (J12d)
corresponds to the limit assertion

P (M > b) ∼
∫
λb(t) dt as b→ ∞; (J12e)

i.e. the asymptotic behavior of the tail of M . Note that in the statistical
application to generalized Kolmogorov-Smirnov tests (Section J4), this tail,
or rather the values of b which make P (M > b) = 0.05 or 0.01, say, are of
natural interest.

Note we distinguish between the 1-sided maximum M = suptX(t) and
the 2-sided maximum M∗ = supt |X(t)|. By symmetry

P (M∗ > b) ≈ 2P (M > b) ≈ 2

∫
λb(t) dt for large b. (J12f)

J13 1-parameter Brownian bridge. Let µ be a continuous distribu-
tion on R1 and let Z be µ-Brownian sheet. Let

X(t) = Z(−∞, t).
M = sup

t
X(t). (J13a)



J. Random Fields 199

The natural space transformation which takes µ to the uniform distribution
on (0, 1) will take X to Brownian bridge; hence M has exactly the same
distribution for general µ as for Brownian bridge. At Example D17 we
gave a heuristic treatment of M for Brownian bridge; it is convenient to
give a more abstract direct treatment of the general case here, to exhibit
some calculations which will extend unchanged to the multiparameter case.
Here and in subsequent examples we make heavy use of the Normal tail
estimates, and Laplace’s method of approximating integrals, discussed at
Section C21.

For a stationary Gaussian process with covariance of the form R(s) =
f0 − g0|s| as s→ 0, we know from (D10f) that the mean clump sizes are

ECb = f2
0 g

−1
0 b−2. (J13b)

Next, consider a 1-parameter non-stationary mean-zero Gaussian process
X(t) satisfying

EX(t)X(t+ s) ≈ f(t) − g(t)|s| as s→ 0; (J13c)

f achieves its maximum at 0; f(t) ≈ 1
4 − αt2 as t→ 0. (J13d)

Write g0 = g(0). Around t = 0 the process is approximately stationary and
so by (J13b)

ECb(t) ≈ 2−4g−1
0 b−2 for t ≈ 0. (J13e)

Next, for t near 0 consider

pb(t) = P (X(t) ≥ b)

= Φ(bf−
1
2 (t))

≈ (2b)−1φ(2b(1 + 2αt2)) using
f−

1
2 (t) ≈ 2(1 + 2αt2)

Φ(x) ≈ φ(x)

x

≈ 2b−1φ(2b) exp(−8b2αt2). (J13f)

Next,

λb(t) =
pb(t)

ECb(t)

≈ 8g0bφ(2b) exp(−8b2αt2)

using (J13f) and (J13e); since p(t) decreases rapidly as |t| increases there
is no harm in replacing EC(t) by its value at 0. Thus

∫
λb(t) dt ≈ 2

g0√
α
e−2b2 . (J13g)
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In the setting (J13a), there is some t0 such that µ(−∞, t0) = 1
2 , and by

translating we may assume t0 = 0. Suppose µ has a density a at 0. Then
for t, s near 0,

EX(t+ s)X(t) ≈ (
1

2
+ at) − (

1

2
+ at)(

1

2
+ at+ as) ≈ 1

4
− a2t2 − 1

2
a|s|.

Thus we are in the setting of (J13c,J13d) with α = a2, g0 = 1
2a, and so

P (M > b) ≈
∫
λb(t) dt by (J12d)

≈ exp(−2b2) by (J13g). (J13h)

This is our heuristic tail estimate for M ; as remarked in Example D17, it
is mere luck that it happens to give the exact non-asymptotic result in this
one example.

J14 Example: Stationary × Brownian bridge processes. Consider
a 2-parameter mean-zero Gaussian process X(t1, t2) which is “stationary in
t1 but Brownian-bridge-like in t2”. More precisely, suppose the covariance
is of the form

EX(t1, t2)X(t1 + s1, t2 + s2)

≈ f(t2) − g1(t2)|s1| − g2(t2)|s2| as |s| → 0; (J14a)

f has its maximum at t2 = 0 and f(t2) ≈ 1
4 − αt22 as

|t2| → 0.
(J14b)

Write
MT = sup

0≤t1≤T
t2

X(t1, t2);

we are supposing X is defined for t2 in some interval around 0, whose exact
length is unimportant. We shall show

P (MT > b) ≈ 32g1(0)g2(0)α
− 1

2Tb2 exp(−2b2) for large b. (J14c)

Concrete examples are in the following sections. To argue (J14c), in the
notation of Section J12

P (MT > b) ≈
∫

pb(t)

ECb(t)
dt

≈
∫ ∫

pb(0, t2)

ECb(0, 0)
dt1 dt2 (J14d)

because pb(t1, t2) does not depend on t1; and also because ECb(t1, t2) =
ECb(0, t2) and this may be approximated by EC(0, 0) because pb(0, t2)
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decreases rapidly as t2 increases away from 0. Around (0, 0), the process X
behaves like the stationary field with covariance

R(s1, s2) ≈
1

4
− g1(0)|s1| − g2(0)|s2| as |s| → 0.

At Sections J9,J10 we saw the product rule for mean clump sizes held in
this setting; so ECb(0, 0) = EC1

bEC
2
b , where ECi

b are the mean clump sizes
for the i-parameter processes with covariances

Ri(si) ≈
1

4
− gi(0)|si| as |si| → 0.

By (J14d),

P (MT > b) ≈ T

EC1
b

∫
pb(0, t2)

EC2
b

dt2

≈ T

EC1
b

2g2(0)α
− 1

2 exp(−2b2)

since this is the same integral evaluated at (J13g). From (J13b) we find
EC1

b = (16g1(0))
−1b−2, and we obtain (J14c).

J15 Example: Range of Brownian bridge. Let B0(t) be Brownian
bridge on [0, 1] and let

X(t1, t2) = B0(t2) −B0(t1), M∗ = sup
0≤t1≤t2

|X(t1, t2)|.

So
M∗ = sup

t
B0(t) − inf

t
B0(t). (J15a)

Also, if Z is µ-Brownian sheet for any continuous 1-parameter µ, then

M∗ D
= sup

t1<t2

|Z(t1, t2)|. (J15b)

We shall argue

P (M∗ > b) ≈ 8b2 exp(−2b2) for b large, (J15c)

which agrees with the exact asymptotics (Section J30.4). Note that, for

M = sup
t1<t2

Z(t1, t2) = sup
t1<t2

(B0(t2) − B0(t1))

we can deduce from (J12f) that,

P (M > b) ≈ 4b2 exp(−2b2) for b large. (J15d)
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Write X̂(t1, t2) = X(t1, t1 ⊕ 1
2 ⊕ t2), where ⊕ is addition modulo 1 and

0 ≤ t1 < 1, − 1
2 ≤ t2 < 1

2 . Then M∗ = supt1,t2 X̂(t1, t2). And X̂ has
covariance

EX̂(t1, t2)X̂(t1 + s1, t2 + s2) =
1

4
− t22 − (

1

2
− t2)|s1| − (

1

2
+ t2)|s2|

after a little algebra. Thus (J14a) holds with α = 1, g1(0) = g2(0) = 1
2 and

then (J14c) gives (J15c).

J16 Example: Multidimensional Kolmogorov-Smirnov. Let µ be
a continuous distribution on R2 and let Z be the µ-Brownian sheet (Sec-
tion J3). For t ∈ R2 let At = (−∞, t1) × (−∞, t2) and let X(t) = Z(At),

M = sup
t
X(t) = sup

t
Z(At). (J16a)

Let L = { t : µ(At) = 1
2 } and L+ = { t : µ(At) >

1
2 }. We shall argue

P (M > b) ≈ 8(
1

2
− µ(L+))b2 exp(−2b2) for large b. (J16b)

In particular, consider the case where µ is uniform on the square [0, 1] ×
[0, 1]. Here L = { (t, 1/(2t)); 1

2 < t < 1 } and then

µ(L+) =

∫ 1

1
2

(
1 − 1

2t

)
dt =

1

2
(1 − log 2),

so the constant in (J16b) becomes 4 log 2. The same holds for any product
measure with continuous marginals, by a scale change. Our argument sup-
poses some smoothness conditions for µ, but the result seems true without
them. Consider the two examples of the uniform distributions on the down-
ward diagonal D1 = { (t1, t2) : t1 + t2 = 1 } and on the upward diagonal
D2 = { (t1, t2) : t1 = t2 } of the unit square. For the downward diagonal
D1 we have µ(L+) = 0 and so the constant in (J16b) is 4. But here M
is exactly the same as M in Example J15, the maximal increment of 1-
parameter Brownian bridge over all intervals, and our result here agrees
with the previous result (J15b). For D2 we have µ(L+) = 1

2 and the con-
stant in (J16b) is 0; and this is correct because in this case M is just the
ordinary maximum of Brownian bridge (Section J13) whose distribution is
given by (J13h).

To argue (J16b), let m1, m2 be the medians of the marginal distribution
of µ. Under smoothness assumptions on µ, L is a curve as shown in the
diagram. For t1 > m1 define L2(t1) by: (t1, L2(t1)) ∈ L. Define L1(t2)
similarly.

Fix b large. In the notation of Section J12,

P (M > b) =

∫ ∫
pb(t1, t2)

ECb(t1, t2)
dt1 dt2. (J16c)
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FIGURE J16a.

For convenience we drop subscripts b. Since pb(t) = P (X(t) > b) and X(t)
has variance µ(At)(1 − µ(At)), the integrand becomes small as t moves
away from L, and we may approximate EC(t1, t2) by EC(t1, L2(t1)). Fix
t1 > m1 and let t̂1 = (t1, L2(t1)) ∈ L. Then

EX(t̂1)X(t̂1 + s) =
1

4
− 1

2
F1(t̂1)|s1| −

1

2
F2(t̂1)|s2| +O(|s|) as |s| → 0,

(J16d)
where Fi(t) = ∂

∂ti
µ(At). Around t̂1 the random field X(t) behaves like

the stationary random field with covariance of the form (J16d). So as in
Sections J9,J10 the mean clump size is the product

EC(t̂1) = EC1(t̂1)EC2(t̂1) (J16e)

of mean clump sizes for the marginal processes Xi(u), u ∈ R, which are
(locally) stationary Gaussian with covariances

EXi(u)Xi(u+ s) =
1

4
− 1

2
Fi(t̂1)|s| as |s| → 0. (J16f)

We can now rewrite (J16c) as

P (M > b) =

∫
1

EC1(t̂1)

(∫
p(t1, t2)

EC2(t1)
dt2

)
dt1. (J16g)

But for each fixed t1 > m1 the inner integral is the integral evaluated
at (J13g,J13h), the process t2 → X(t1, t2) being of the form considered
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in Section J13. Thus the inner integral is approximately exp(−2b2). For
t1 < m1 the inner integral is negligible because the line of integration does
not meet L. Next, by (J16f) and (J13b) we see EC1(t̂1) ≈ (8F1(t̂1))

−1b−2.
So (J16g) becomes

P (M > b) ≈ 8b2 exp(−2b2)

∫ ∞

m1

F1(t̂1) dt1. (J16h)

But this integral is just µ(B), where B is the region below L and to the
right of the median line { t : t1 = m1 }. And µ(B) = 1

2 − µ(L+), giving the
result (J16b).

The same argument works in d dimensions, where At =
∏d

i=1(−∞, ti).
Here we find

P (M > b) ≈ Kµ(b2)d−1 exp(−2b2) (J16i)

for Kµ defined as follows. Write F (t) = µ(At) for the distribution function,
and Fi(t) = ∂F (t)/∂ti. Let S0 be the set of s = (s1, . . . , sd−1) such that
F (s1, . . . , sd−1,∞) > 1

2 ; for s ∈ S0 define ŝ ∈ Rd by ŝ = (s1, . . . , sd−1, sd)
where F (ŝ) = 1

2 . Then

Kµ = 8d−1

∫

S0

F1(ŝ)F2(ŝ) · · ·Fd−1(ŝ) ds. (J16j)

The argument uses smoothness assumptions; it is not clear whether Kµ

simplifies. For a product distribution µ in d = 3 dimensions, we get Kµ =
8 log2(2). In d ≥ 3 it is not clear which µ maximizes Kµ.

J17 Example: Rectangle-indexed sheets. As in the previous exam-
ple let Z be the µ-Brownian sheet associated with a distribution µ on
R2. Instead of considering semi-infinite rectangles (−∞, t1) × (−∞, t2) it
is rather more natural to consider the family A = (At; t ∈ I0) of all finite
rectangles [s1, s2]× [t1, t2], where s1 < s2 and t1 < t2, and where t denotes
a 4-tuple (s1, s2, t1, t2). Let X(t) = Z(At) and

M = sup
A∈A

Z(A) = sup
t
X(t). (J17a)

The argument in Example J16 goes through, under smoothness assump-
tions on µ, to show

P (M > b) ≈ Kµb
6 exp(−2b2) for large b, (J17b)

where Kµ is defined as follows. Let F (t) be the distribution function of µ
and let Fi = ∂F/∂ti. Let I1 be the set of 3-tuples (s1, s2, t1) such that for
some t2 = t2(s1, s2, t1) the rectangle (s1, s2)× (t1, t2) has µ-measure equal
to 1

2 . Then

Kµ = 29

∫ ∫ ∫
(F1(s1, t2) − F1(s1, t1)) (F2(s2, t1) − F2(s1, t1))

× (F1(s2, t2) − F1(s2, t1)) ds1 ds2 dt1 (J17c)
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where t2 = t2(s1, s2, t1). For general µ this expression does not seem to
simplify; for a product measure we find

Kµ = 16(3 − 4 log 2). (J17d)

J18 Isotropic Gaussian processes. The explicit results obtained so
far rely on the product rule (Section J9) for Gaussian processes whose
increments in orthogonal directions are uncorrelated. We now consider a
different but natural class, the isotropic processes.

It is convenient to do this in some generality. Let d ≥ 1 be dimension,
let 0 < α ≤ 2 and 0 < a < ∞ be parameters, and consider a stationary
mean-zero Gaussian random field X(t), t ∈ Rd with covariance of the form

R(s) ≡ EX(t)X(t+ s) ≈ 1 − a|s|α as |s| → 0. (J18a)

We shall see later that for such a process the clump rate is

λb = Kd,αa
d/αb2d/α−1φ(b), for b large, (J18b)

where 0 < Kd,α < ∞ depends only on d and α, and as usual this implies
the approximation for the maximum MA of X over a large set A ⊂ Rd:

P (MA ≤ b) ≈ exp(−λb|A|).

From (J7d), with Λij = 21/2a1(i=j), and from (D10g), we get

Kd,2 = π− 1
2
d, d ≥ 1; K1,1 = 1. (J18c)

These are the only values for which Kd,α is known explicitly. There are
several non-explicit expressions for Kd,α, all of which involve the following
process.

Given d and α, define Z(t), t ∈ Rd, as follows. Z(0) is arbitrary. Given
Z(0) = z0, the process Z is (non-stationary) Gaussian with

EZ(t) = z0 − |t|α (J18d)

cov(Z(s), Z(t)) = |t|α + |s|α − |t− s|α. (J18e)

To understand this definition, fix b large and define a rescaled version of
X:

Y b(t) = b(X(γt) − b); γ = (ab2)−1/α. (J18f)

Note that Y b(0) bounded as b → ∞ implies X(0) − b → 0 as b → ∞. By
computing means and covariances it is not hard to see

dist(Y b(t), t ∈ Rd | Y b(0) = y0)
D→ dist(Z(t), t ∈ Rd | Z(0) = y0) as b→ ∞. (J18g)
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Thus Z approximates a rescaled version of X around height b. This gener-
alizes several previous results.

We can now give the most useful expression for Kd,α. Give Z(0) the
exponential(1) distribution and let

C̃ = { t ∈ Rd : Z(t) ≥ 0 }
C̃ = volume(C̃)

Kd,α = E

(
1

C̃

)
. (J18h)

With this definition of K, the heuristic argument for (J18b) is just the
harmonic mean estimate of clump size (Section A6) together with (J18g).

In detail, write CX
b and C̃X

b for the ordinary and the conditioned clump
sizes of X above b. Then

λb =
P (X(0) > b)

ECX
b

by the fundamental identity

= P (X(0) > b)E

(
1

C̃X
b

)
by the harmonic mean formula

≈ b−1φ(b)E

(
1

C̃X
b

)
by the Normal tail estimate

≈ b−1φ(b)(ab2)d/αE

(
1

C̃Y b

0

)
by the scaling (J18f),

where C̃Y b

0 is the size of clump of { t : Y b(t) > 0 } given Y b(0) > 0. Now

dist(Y b(0) | Y b(0) > 0) = dist(b(X(0)− b) | X(0) > b)
D→ exponential(1)

D
=

dist(Z(0)), and so from (J18g)

C̃Y b

0
D→ C̃ = C̃Z

0 ,

completing the heuristic argument for (J18b).
Alternative expression for Kd,α are given at Section J37. As mentioned

before, exact values are not known except in cases (J18c), so let us consider
bounds.

J19 Slepian’s inequality. Formalizations of our heuristic approxima-
tions as limit theorems lean heavily on the following result (see Leadbetter
et al. (1983) §4.2,7.4).
Lemma J19.1 Let X, Y be Gaussian processes with mean zero and vari-
ance one. Suppose there exists δ > 0 such that EX(t)X(s) ≤ EY (t)Y (s)
for all |t− s| ≤ δ. Then

P (sup
t∈A

X(t) ≥ b) ≥ P (sup
t∈A

Y (t) ≥ b) for all b, and A with diam(A) ≤ δ.
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Note in particular this formalizes the idea that, for a stationary Gaussian
process, the asymptotic behavior of extrema depends only on the behavior
of the covariance function at 0. Note also that in our cruder language, the
conclusion of the lemma implies

λX
b ≥ λY

b .

As an application, fix d and α, let X be the isotropic field (J18a) with
a = 1, and let Ya(t), t ∈ Rd, be the field with covariances

EYa(t)Ya(t+ s) ≈ 1 − a

( d∑

i=1

|si|α
)
.

Assuming the product rule (Section J9) works for general α (we know it for
α = 1 and 2), applying (J18b) to the marginal processes gives the clump
rate for Ya:

λY
b = Kd

1,αa
d/αb2d/α−1φ(b). (J19a)

But it is clear that

EY1(0)Y1(t) ≤ EX(0)X(t) ≤ EYa(0)Ya(t) for small t; where a = d−
1
2 .

Then Slepian’s inequality, together with (J19a) and (J18b), gives

d−
1
2
d/αKd

1,α ≤ Kd,α ≤ Kd
1,α. (J19b)

In particular,
d−

1
2
d ≤ Kd,1 ≤ 1. (J19c)

J20 Bounds from the harmonic mean. We ought to be able to get
better bounds from the explicit expression (J18h) for Kd,α. For C̃ defined
there, we have

Kd,α = E

(
1

C̃

)
≥ 1

EC̃
. (J20a)

We shall show

EC̃ = π
1
2
d (2d/α)!

(d/α)!( 1
2d)!

. (J20b)

These give a lower bound for Kd,α. For α = 1 this is rather worse than the
lower bound of (J19c), but it has the advantage of being explicit for all α.

Fix d and α, take Z(t) as in Section J18 with Z(0)
D
= exponential(1) and

let Z1(t) be the 1-parameter marginal process. Then

EC̃ =

∫

Rd
P (Z(t) ≥ 0) dt

But the integrand is a function of |t| only, so



208 J21. Example: Hemispherical caps.

EC̃ = ad

∫ ∞

0

td−1P (Z1(t) ≥ 0) dt; ad =
2π

1
2
d

( 1
2d− 1)!

.

= ad

∫ ∞

0

∫ ∞

0

td−1e−zP (Z1(t) − Z1(0) ≥ −z) dt dz

= ad

∫ ∞

0

∫ ∞

0

td−1e−zΦ((2tα)−
1
2 (tα − z)) dt dz

= α−1ad

∫ ∞

0

∫ ∞

0

2s−1s2d/αe−zΦ(2−
1
2 s−1(s2 − z)) ds dz (s = t

1
2
α)

= α−1adI

(
2d

α

)
, say. (J20c)

We can avoid evaluating the integral by appealing to what we know in the
case α = 2. For X(t) with covariance EX(0)X(t) ≈ 1 − |t|2 as |t| → 0,
(J7h) gives ECb = πd/2b−d. So in this case, scaling shows the clump sizes

C, C̃ for Y b (which as in Section J18 approximate the clump sizes for Z)
satisfy EC = πd/2. So

EC̃ =
EC2

EC
by (A15b)

= π
1
2
d EC2

(EC)2

= π
1
2
d

(
d

d/2

)
by (J7j), (J20d)

this ratio being unaffected by the scaling which takes X to Y b. Comparing
(J20c) with (J20d) we conclude

1

2
anI(n) = π

1
2
n

(
n

n/2

)
; n ≥ 1 integer.

Substituting the formula for an,

I(n) = (
1

2
n− 1)!

(
n

n/2

)
. (J20e)

Assuming this holds for non-integer values n, (J20c) gives (J20b).

J21 Example: Hemispherical caps. Here is a simple example where
locally isotropic fields arise in the Kolmogorov-Smirnov setting. Let S be
the 2-sphere, that is the surface of the 3-dimensional ball of unit radius.
Let µ be the uniform distribution on S. Let Z(A) be the µ-Brownian sheet.
Let A = {At : t ∈ S } be the set of hemispherical caps, indexed by their
“pole” t, and consider M = supA Z(At). Here µ(At) ≡ 1

2 , and
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FIGURE J21a.

EZ(At)Z(As) =
1

4
− 1

2
µ(At∆As)

≈ 1

4
− 1

2
π−1|t− s| for |t− s| small,

by an easy calculation. Now the scaled form of (J18b) says: if X(t), t ∈ R2,
is stationary with EX(t)X(s) ∼ 1

4 − a|t− s| as |t− s| → 0, then the clump
rate is λb = 128K2,1a

2b3 exp(−2b2). In this example we have a = (2π)−1,
giving

P (M > b) ≈ λb area(S) (J21a)

≈ 128π−1K2,1b
3 exp(−2b2). (J21b)

The reader may like to work through the similar cases where the caps have
some other fixed size, or have arbitrary size.

J22 Example: Half-plane indexed sheets. For our last example of
Kolmogorov-Smirnov type, let µ be a distribution on R2 which is rotation-
ally invariant, so its density is of the form f(x1, x2) = g(r), r2 = x2

1 + x2
2.

Let Z(A) be the µ-Brownian sheet, let A be the family of all half-spaces
and let M = supA Z(A). We shall argue

P (M > b) ∼ Kµb
2e−2b2 as b→ ∞, (J22a)

where Kµ has upper bound 16 and a lower bound depending on µ given at
(J22f).

A directed line in the plane can be parametrized as (d, θ), −∞ < d <∞,
0 ≤ θ ≤ 2π, and a half-space Ad,θ can be associated with each directed
line, as in the diagram.

Write X(d, θ) = Z(Ad,θ). Then X is stationary in θ and Brownian-bridge
like in d. For d ≈ 0 the process X is approximately stationary. Using the
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FIGURE J22a.

fact cov(Z(A), Z(B)) = 1
4 − 1

2µ(A∆B) when µ(A) = 1
2 , we can calculate

the covariance near d = 0:

EX(0, θ0)X(d, θ0 +θ) ≈ 1

4
− 1

2

∫ ∞

−∞

|θr−d|g(r) dr; θ, d small. (J22b)

Write γ for the marginal density at 0:

FIGURE J22b.

γ =

∫ ∞

−∞

f(0, x2) dx2 =

∫ ∞

−∞

g(r) dr.
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Suppose that the covariance in (J22b) worked out to have the form

1

4
− a1|θ| − a2|d|; θ, d small. (J22c)

Then we would be in the setting of Example J14, with α = γ2, and (J14c)
would give

P (M > b) ∼ 32a1a2γ
−1(2π)b2 exp(−2b2). (J22d)

Though the covariance (J22b) is not of form (J22c), we can upper and lower
bound it in this form, and then Slepian’s inequality (Section J19) justifies
bounding by the corresponding quantities (J22d).

The upper bound is easy. By rotational invariance

∫ ∞

−∞

|x|g(x) dx =
1

π
,

and so ∫ ∞

−∞

|θr − d|g(r) dr ≤ π−1|θ| + γ|d|.

Appealing to (J22d), we get

P (M > b) ≤ 16b2 exp(−2b2);

that is, we get the bound Kµ ≤ 16 for (J22a).
For the lower bound, we seek a1, a2 such that

∫
|θr − d|g(r) dr ≥ a1|θ| + a2|d| for all θ, d

and subject to this constraint we wish to maximize a1a2. This is routine
calculus: put

ψ(c) =

∫ c

−∞

g(x) dx−
∫ ∞

c

g(x) dx

and define c∗ > 0 by

2c∗ψ(c∗) =

∫ ∞

−∞

|x− c∗|g(x) dx. (J22e)

Then the maximum product works out to be c∗ψ2(c∗). Plugging into (J22d)
gives the lower bound

Kµ ≥ 16πγ−1c∗ψ2(c∗). (J22f)

In the case where µ is uniform on a centered disc, the lower bound is 4.
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J23 The power formula. The arguments used in the examples may be
repeated to give the following heuristic rule. Let µ be distribution which
is “essentially d1-dimensional”. Let Z be the µ-Brownian sheet. Let A =
{At : t ∈ Rd2 } be a family of subsets with d2-dimensional parametrization.
Let d3 be the dimension of { t : µ(At) = 1

2 }. Then

P (supZ(A) > b) ∼ Kµb
α exp(−2b2) as b→ ∞, (J23a)

where α is given by the power formula

α = d1 + d3 − 1. (J23b)

Note that usually we have d3 = d2 − 1, except where (as in Example J21)
the sets At are especially designed to have µ(At) ≡ 1

2 .

J24 Self-normalized Gaussian fields. The Kolmogorov-Smirnov
type examples involved Gaussian fields Z such that varZ(A) = µ(A)(1 −
µ(A)). We now turn to related examples involving fields which are self-
normalized to have variance 1, as in the basic example (Example J10) of
product Ornstein-Uhlenbeck process. For these examples a slightly different
form of the product-rule heuristic is useful. For t = (t1, t2) let Y (t) be a
stationary Gaussian field with EY (t) = −b and such that, given Y (0, 0) =
y ≈ 0,

Y (t)
D≈ y + σB1(t1) + σB2(t2) − a|t1| − a|t2| for |t| small; (J24a)

where B1, B2 are independent Brownian motions. For small δ consider
the random set { t : Y (t) ∈ [0, δ] } and write δEC for the mean clump
size. Then EC depends only on a and σ. As in Example J10, we can now
calculate EC by considering the special case where Y arises as the sum of
2 independent 1-parameter processes, and we find

EC =
1

2
σ2a−3. (J24b)

J25 Example: Self-normalized Brownian motion increments. Let
Bt be standard Brownian motion. For large T consider

MT = sup
0≤s<t≤T

t−s>1

Bt −Bs

(t− s)
1
2

.

We shall argue

P (MT ≤ b) ≈ exp(−1

4
b3φ(b)T ). (J25a)
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Write X(s, t) = (Bt −B2)/(t− s)1/2. Fix b, and apply the heuristic to the
random set { (s, t) : X(s, t) ∈ [b, b+ δ] }. The heuristic says

P (MT ≤ b) ≈ exp

(
−
∫ ∫

λb(s, t) ds dt

)

≈ exp

(
−
∫ ∫

pb(s, t)

EC(s, t)
ds dt

)

≈ exp

(
−φ(b)

∫ ∫
1

EC(s, t)
ds dt

)
(J25b)

where the integral is over {0 ≤ s < t ≤ T, t − s ≥ 1}. To estimate the
clump sizes, fix t∗1, t

∗
2 and condition on X(t∗1, t

∗
2) = b + y for small y.

Then B(t∗2) − B(t∗1) = b(t∗2 − t∗1)
1/2 + y′ say. Conditionally, B(t) has drift

b/(t∗2 − t∗1)
1/2 on [t∗1, t

∗
2] and drift 0 on [0, t∗1] and on [t∗2, T ]. We can now

compute the conditional drift of X(t∗1 + t1, t
∗
2 + t2) for small, positive and

negative, t1 and t2.

d
dt2
EX(t∗1, t

∗
2 + t2)

∣∣∣∣
0+

= 0 + d
dt2

b(t∗2−t∗1)
1
2

(t∗
2
+t2−t∗

1
)
1
2

∣∣∣∣
0

= −
1
2
b

t∗
2
−t∗

1

d
dt2
EX(t∗1, t

∗
2 + t2)

∣∣∣∣
0−

=
b/(t∗2−t∗1)

1
2

(t∗
2
−t∗

1
)
1
2

+ d
dt2

b(t∗2−t∗1)
1
2

(t∗
2
+t2−t∗

1
)
1
2

∣∣∣∣
0

= +
1
2
b

t∗
2
−t∗

1

and similarly for d/dt1. We conclude that the process

Y (t1, t2) = X(t∗1 + t1, t
∗
2 + t2) − b

is of the form (J24a) with a = 1
2b(t

∗
2 − t∗1)

−1 and σ = (t∗2 − t∗1)
−1/2. So

(J24b) gives the clump size

EC(t∗1, t
∗
2) = 4b−3(t∗2 − t∗1)

2. (J25c)

Thus the integral in (J25b) becomes

1

4
b3
∫ ∫

(t− s)−2 ds dt =
1

4
b3
∫ T

1

(T − u)u−2 du

∼ 1

4
b3T for large T ,

yielding the result in (J25a).

J26 Example: Self-normalized Brownian bridge increments. Let
B0 be standard Brownian bridge. For small δ consider

Mδ = sup
0≤s<t≤1

δ≤t−s≤1−δ

B0(t) −B0(s)

g(t− s)
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where g(u) = s.d.(B0(s+ u) −B0(s)) =
√
u(1 − u). We shall argue

P (Mδ ≤ b) ≈ exp(−1

4
b3φ(b)δ−1). (J26a)

At the heuristic level, this is very similar to the previous example. However,
considering the usual representation of B0 in terms of B, there seems no
exact relationship between theM ’s in the two examples. We writeX(s, t) =
(B0(t) − B0(s))/g(t − s) and apply the heuristic to { (s, t) : X(s, t) ∈
[b, b+ η] }. As in the previous example,

P (Mδ ≤ b) ≈ exp

(
−φ(b)

∫ ∫
1

EC(s, t)
ds dt

)
. (J26b)

Condition on X(t∗1, t
∗
2) = b+ y for small y. We can then calculate

d

dt2
EX(t∗1, t

∗
2 + t2)

∣∣∣∣
0+

= −
1
2b

g2(t∗2 − t∗1)

d

dt2
EX(t∗1, t

∗
2 + t2)

∣∣∣∣
0−

=
1
2b

g2(t∗2 − t∗1)

and similarly for d/dt1. Then the process

Y (t1, t2) = X(t∗1 + t1, t
∗
2 + t2) − b

is of the form (J24a) with a = 1
2b/g

2(t∗2 − t∗1) and σ = 1/g(t∗2 − t∗1). so
(J24b) gives the clump size

EC(t∗1, t
∗
2) = 4b−3g4(t∗2 − t∗1). (J26c)

So the integral in (J26b) becomes

1

4
b3
∫ ∫

1

g4(t− s)
ds dt =

1

4
b3
∫ 1

δ

1 − u

(u(1 − u))2
du

∼ 1

4
b3δ−1 as δ → 0.

yielding the result (J26a).

J27 Example: Upturns in Brownian bridge with drift. LetX(t) =
B0(t) − wt, 0 ≤ t ≤ 1, where B0 is standard Brownian bridge. Equiva-
lently, X is Brownian motion conditioned on X(1) = −w. Consider M =
sup0≤s≤t<1(X(t) −X(s)). We shall argue

P (M > b) ≈ 2(w + 2b)(w + b) exp(−2b(w + b)); (J27a)

provided the right side is small and decreasing in b′ > b. The case w = 0
was given in Example J15.
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Fix b and w. Consider the random set { (t1, t2) : X(t2) −X(t1) ∈ [b, b+
δ] }. The heuristic is

P (M > b) ≈
∫ ∫

0≤t1≤t2≤1

λ(t1, t2) dt1 dt2

≈
∫ ∫

p(t1, t2)

EC(t1, t2)
dt1 dt2. (J27b)

Here

p(t1, t2) = δ−1P (X(t2) −X(t1) ∈ [b, b+ δ])

= (s(1 − s))−
1
2φ((ws+ b)(s(1 − s))−

1
2 ); s = t2 − t1.

Let u = b/(w+2b). Then p(t1, t2) is maximized when s ≡ t2− t1 = u. Thus
we consider clump size EC(t∗1, t

∗
2) for t∗2 − t∗1 = u. Given there is a clump

near t∗ we have X(t∗2) −X(t∗1) = b+ y0 for y0 small. Let

Y (t1, t2) = X(t∗2 + t2) −X(t∗1 + t1) − b.

Then for small t, Y behaves as at (J24a) for a = w + 2b and σ = 1. Thus
(J24a) gives the clump size EC(t∗1, t

∗
2) = 1

2 (w + 2b)−3.
We can now evaluate (J27b), using the fact that the integral is dominated

by contributions from t2 − t1 ≈ u.

P (M > b) ≈ 2(w + 2b)3(u(1 − u))−
1
2

∫ ∫
φ(f(t2 − t1)) dt1 dt2

≈ 2(w + 2b)3(u(1 − u))−
1
2 (1 − u)

∫ 1

0

φ(f(s)) ds

where f(s) = (ws+ b)(s(1− s))−1/2. Evaluating the integral using (C21e),
the result simplifies to (J27a).

J28 Example: 2-parameter LIL. The 2-parameter law of the iterated
logarithm can be derived in the same way as the classical 1-parameter case
treated in (D15). First consider the stationary Gaussian field X(t1, t2) with
covariance of the form

R(t1, t2) = exp(−|t1| − |t2|). (J28a)

Let b(t
˜
) be such that b(t

˜
) → ∞ slowly as t

˜
→ ∞, that is as min(t1, t2) →

∞. We apply the heuristic to the random set { t
˜

: X(t
˜
) ∈ [b(t

˜
), b(t
˜
) +

δ] }. Around a fixed point t
˜
∗ we approximate the sloping boundary b(t

˜
)

by the level boundary b(t
˜
∗), and then (J10i) gives the clump rate λ(t

˜
∗) =

b3(t
˜
∗)φ(b(t

˜
∗)). So the heuristic gives

P (X(t
˜
) ≤ b(t

˜
) for all t

˜
∈ [s0, s1]

2) ≈ exp

(
−
∫ s1

s0

∫ s1

s0

b3(t
˜
)φ(b(t

˜
)) dt
˜

)
.

(J28b)
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This translates to the integral test

P (lim sup
t
˜
→∞

(X(t
˜
) − b(t

˜
)) ≤ 0) =

{
1 if

∫∞

0

∫∞

0
b3(t
˜
)φ(b(t

˜
)) dt
˜
<∞

0 if
∫∞

0

∫∞

0
b3(t
˜
)φ(b(t

˜
)) dt
˜

= ∞ .

If b(t
˜
) is of the form b̂(‖t

˜
‖) where ‖t

˜
‖ is the Euclidean norm, then changing

to polar coordinates the integral becomes
∫ ∞

0

b̂3(r)φ(b̂(r))r dr <∞. (J28c)

Putting b̂(r) = (c log r)1/2, the critical case is c = 4, and so in particular
we have the crude result

lim sup
X(t)

(4 log ‖t‖) 1
2

= 1 a.s. (J28d)

Now let Y (t
˜
) be 2-parameter Brownian motion, in other words Y (t1, t2) =

W ([0, t1] × [0, t2]) for white noise W . Then as in the 1-parameter case,
X(t1, t2) = e−(t1+t2)Y (e2t1 , e2t2) is of form (J28a), and then (J28d) gives

lim sup
t
˜
→∞

Y (t
˜
)

(4t1t2 log log ‖t
˜
‖) 1

2

= 1 a.s. (J28e)

COMMENTARY

J29 General references. The best, and complementary, books on ran-
dom fields are by Adler (1981), who gives a careful theoretical treatment, and
by Vanmarcke (1982),who gives a more informal treatment with many inter-
esting engineering applications.

We have looked only at a rather narrow topic, approximations for max-
ima MA when volume(A) gets large, and tail approximations for fixed MA.
In one direction, the study of Gaussian processes with “infinite-dimensional”
parameter sets, and the related study of convergence of normalized empiri-
cal distributions, has attracted much theoretical attention: see e.g. Gaenssler
(1983). In an opposite direction, non-asymptotic upper and lower bounds for
tails P (MA > x) for fixed A have been studied for 2-parameter Brownian
motion and other special fields: see Abrahams (1984b) for a survey and bibli-
ography. There is a huge literature on maxima of Gaussian fields, much of it
from the Russian school. See Math. Reviews section 60G15 for recent work.

J30 Comments on the examples.
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J30.1 Convergence of empirical distributions (Section J4). See Gaenssler
(1983) p. 132 for technical conditions on (At) under which the convergence
(J4d) holds.

J30.2 Smooth Gaussian fields. See Adler (1981) Chapter 6 for a detailed
treatment.

J30.3 Shot noise. See e.g. Orsinger and Battaglia (1982) for results and
references.

J30.4 Range of Brownian bridge. The M ∗ in Example J15 has exact dis-
tribution

P (M∗ > x) =

∞∑

n=1

(4n2x2 − 1) exp(−2n2x2).

J30.5 Brownian bridge increments. Examples J26 and J27 are discussed in
Siegmund (1988) and Hogan and Siegmund (1986). These papers, and Sieg-
mund (1986), give interesting statistical motivations and more exact second-
order asymptotics for this type of question.

J30.6 d-parameter LIL. Sen and Wichura (1984b; 1984a) give results and
references.

J31 Rice’s formula. It is natural to hope that smooth random fields can
be studied via some d-parameter analogue of Rice’s formula (C12.1). This leads
to some non-trivial integral geometry — see Adler (1981) Chapter 4.

J32 The product rule. This rule (Section J9) is fundamental in the sub-
sequent examples, and deserves more theoretical attention than it has received.
The technique in Example J10 of noting that fields with uncorrelated orthog-
onal increments can be approximated as sums of 1-parameter processes has
been noted by several authors: Abrahams and Montgomery (1985), Siegmund
(1988). Whether there is any analogue for non-Gaussian fields is an interesting
question — nothing seems known

Adler (1981) p. 164 discusses formal limit theorems in the context of Exam-
ple J10, locally product Ornstein-Uhlenbeck processes.

J33 Generalized Kolmogorov-Smirnov: suprema of µ-Brownian
sheets. Example J16 gave the most direct 2-dimensional analog of the clas-
sical 1-dimensional Kolmogorov-Smirnov statistic. From the viewpoint of the
heuristic, deriving our formulas for the tail behavior of the distribution is not
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really hard. However, theoretical progress in this direction has been painfully
slow — in only the simplest case (product measure µ) of this basic Example J16
has the leading constant (4 log 2, here) been determined in the literature: see
Hogan and Siegmund (1986). Similar remarks apply to the power formula (Sec-
tion J23). If the subject had been developed by physicists, I’m sure they would
have started by writing down this formula, but it is hard to extract from the
mathematical literature. Weber (1980) gives bounds applicable to a wide class
of set-indexed Gaussian processes, but when specialized to our setting they do
not give the correct power. Presumably a differential geometric approach will
ultimately lead to general rigorous theorems — the techniques based on metric
entropy in e.g. Adler and Samorodnitsky (1987) seem to be an inefficient way
of exploiting finite-dimensional structure.

Adler and Brown (1986), Adler and Samorodnitsky (1987) give accounts of
the current state of rigorous theory.

From the practical statistical viewpoint, one must worry about the difference
between the true empirical distribution and the Gaussian field approximation;
no useful theory seems known here. An interesting simulation study of the
power of these tests is given in Pyke and Wilbour (1988).

J34 General formalizations of asymptotics. In Section D38 we dis-
cussed Berman’s formalization of the heuristic for sojourn distributions, involv-
ing approximating the distribution (X(t) | X(0) > b) by a limiting process.
The same method works in the d-parameter case: see Berman (1986b) who
treats Gaussian fields and multiparameter stable processes.

An interesting approach to the Poisson point process description (Section C3)
in the multiparameter setting is given by Norberg (1987) using semicontinuous
processes.

J35 Bounds for the complete distribution function. For maxima
of µ-Brownian sheets, our heuristic can only give tail estimates. For the “stan-
dard” 2-parameter bridge, i.e. µ = product measure, some explicit analytic
bounds are known: see Cabana and Wchebor (1982).

Special cases of other Gaussian fields are discussed in Adler (1984), Abra-
hams (1984a), and Orsingher (1987): see Abrahams (1984b) for more refer-
ences.

J36 Lower bounds via the second moment method. For arbitrary
fields Xt, t ∈ Rd, with finite second moments, and arbitrary A ⊂ Rd, we can
obtain lower bounds for the tail of MA ≡ supt∈AXt in an elementary and
rigorous way by using the second moment inequality (Section A15). For any
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density function f ,

P (MA ≥ b) ≥
(∫

A
P (Xt > b)f(t) dt

)2
∫

A

∫
A

P (Xs > b,Xt > b)f(s)f(t) ds dt
. (J36a)

Note this is the opposite of our experience with, say, the classical LIL, where
the upper bounds are easier than the lower bounds.

As at Section A15, the bound (J36a) is typically “off” by a constant as
b→ ∞. In the context of, say, trying to prove the power formula (Section J23)
for Kolmogorov-Smirnov type statistics, this will not matter. Working through
the calculus to compute the bound (J36a) in our examples is a natural thesis
project, being undertaken in Schaper (1988).

J37 The isotropic constant. As discussed in Section J18, the asymp-
totic behavior of isotropic Gaussian fields involves the high-level approximating
process Z(t) and a constant Kd,α. The usual expression for this constant, due
to Qualls and Watanabe (1973), and Bickel and Rosenblatt (1973), is

Kd,α = lim
T→∞

T−d

∫ 0

−∞

P ( sup
t∈[0,T ]d

Z(t) > 0 | Z(0) = z)e−z dz. (J37a)

It is easy to derive this heuristically. We use the notation of Section J18. By
(J18f,J18g), for b large

P ( sup
t∈[0,1]d

X(t) ≥ b | X(0) = b+
b

z
) ≈ P ( sup

t∈[0,a1/αb2/α]d
Z(t) > 0 | Z(0) = z).

(J37b)
Since φ(b+ z/b) ≈ φ(b)e−z,

λb = P ( sup
t∈[0,1]d

X(t) > b)

≈
∫ ∞

−∞

P ( sup
t∈[0,1]d

X(t) > b | X(0) = b+
z

b
)φ(b)e−zb−1 dz

≈ b−1φ(b)

∫ ∞

−∞

P ( sup
t∈[0,a1/αb1/α]d

Z(t) > 0 | Z(0) = z)e−z dz by (J37b)

≈ b−1φ(b)ad/αb2d/αKd,α using definition (J37a) of K.

This is the same formula as was obtained with definition (J18h) of K. Of
course, with either definition one needs to argue that K ∈ (0,∞). But the
“harmonic mean” formula (J18h) is clearly nicer, as it avoids both the limit
and the supremum.



K
Brownian Motion:
Local Distributions

This opaque title means “distributions related to local sample path prop-
erties of Brownian motion”. I have in mind properties such as Lévy’s es-
timate of the modulus of continuity, the corresponding results on small
increments, the paradoxical fact that Brownian motion has local maxima
but not points of increase, and self-intersection properties in d dimensions.
Although these are “0–1” results, they can be regarded as consequences
of stronger “distributional” assertions which can easily be derived via our
heuristic. The topics of this section are more theoretical than were previous
topics, though many are equivalent to more practical-looking problems on
boundary-crossing.
Bt denotes standard 1-dimensional Brownian motion.

K1 Modulus of continuity. For a function f(t), 0 ≤ t ≤ T let

w(δ, T ) = sup
0≤t1<t2≤T

t2−t1≤δ

|f(t2) − f(t1)|.

Then f is continuous iff w(δ, T ) → 0 as δ → 0. LetW (δ, T ) be this (random)
modulus of continuity applied to Brownian motion, considered as a random
function. Path-continuity of Brownian motion is the result that

W (δ, t) → 0 a.s. as δ → 0. (K1a)

and it is natural to ask about the rate of convergence. By scaling,

W (δ, T )
D
= δ

1
2W (1, T/δ), (K1b)

so there is little difference between studying W (δ, 1) as δ ↓ 0 and W (1, T )
as T → ∞. The basic result is

Theorem K1.1 (Lévy’s theorem)

W (δ, 1)

(2δ log(1/δ))
1
2

→ 1 a.s. as δ ↓ 0.

We shall present the heuristic arguments for two refinements of this, as
follows.
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K1.2 (The Chung-Erdos-Sirao Test) Let ψ(δ) → ∞ as δ ↓ 0. Then
W (δ, 1) ≤ δ1/2ψ(δ) for all sufficiently small δ, a.s., iff

∫

0+

u−2ψ3(u)φ(ψ(u)) du <∞.

K1.3 (The Asymptotic Distribution of W .) As δ ↓ 0,

sup
x≥1

|P (W (δ, 1) ≤ δ
1
2x) − exp(−x3φ(x)δ−1)| → 0.

The relationship between these results is closely analogous to that described
in Section D15 between the classical LIL, the associated integral test and
the last crossing distribution; such a triple of increasingly refined results is
associated with many a.s. properties of Brownian motion.

K2 Example: The Chung-Erdos-Sirao test. Set X(t1, t2) =
(B(t2) − B(t1))/(t2 − t1)

1/2. Take ψ as in (K1.2) above and consider the
random set

S = { (t1, t2) : X(t1, t2) ∈ [ψ(t2 − t1), ψ(t2 − t1) + ε] }

We are interested in whether S is bounded away from the diagonal ∆ =
{ (t, t) : 0 ≤ t ≤ 1 }. But we have already considered this process X at
Example J24, and calculated the clump rate at level b to be

λb(t1, t2) =
1

4
b3(t2 − t1)

−2φ(b).

Around a fixed point (t∗1, t
∗
2) we can approximate the (slowly) sloping

boundary b(t1, t2) by the level boundary b(t∗1, t
∗
2), and thus take the clump

rate of S to be

λ(t1, t2) =
1

4
ψ3(t2 − t1) (t2 − t1)

−2φ(ψ(t2 − t1)).

Considering S as a Poisson clump process with this rate λ, the condition
for S to be bounded away from ∆ is

lim
n↓0

∫ ∫
0≤ti≤1
t2>t1+η

λ(t1, t2) dt1 dt2 = 0

and this is equivalent to the integral test at (K1.2) above.

K3 Example: The asymptotic distribution of W . The method
above does not work for estimating the distribution of W (δ, T ) itself. The
difficulty is that we want to study the maximum of a random field X over
a region A, and the variance of X is maximal on the boundary of A, so
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that we cannot safely ignore edge effects as in the usual application of the
heuristic: it could be that many clumps in A overlap its edge. Instead we
use a different form of the heuristic. We shall argue that, for T large,

P (W (1, T ) ≤ b) ≈ exp(−b3φ(b)T ) (K3a)

where as usual (recall Section C24) only the region where b3φ(b) is decreas-
ing is relevant. Scaling gives (K1.3).

Write t
˜

= (t1, t2), where t1 ≤ t2 ≤ t1 + 1. Fix b large and consider the
random set

S = { t
˜

: |Bt2 −Bt1 | ≥ b }.
So p(t

˜
) = P (t

˜
∈ S) = P (|Bt2 −Bt1 | ≥ b) = q(t2 − t1) say, where

q(v) = 2Φ

(
b

v
1
2

)
. (K3b)

For each clump C of S there is some “interior length”

u = min
t∈C

(t2 − t1) ≤ t1.

Let λ(u) du be the (1-dimensional) rate at which clumps occur with interior
length ∈ [u, u+ du]. Then the heuristic says

P (W (1, T ) ≤ b) ≈ exp(−λT ), where λ =

∫ 1

0

λ(u) du. (K3c)

We shall estimate λ using the “marked clumps” variation (Section A20.3)
of the fundamental identity:

q(v) =

∫ v

0

λ(u)ECu,v du (K3d)

where Cu,v is the area of { t
˜

: t2 − t1 ≤ v,Bt2 − Bt1 ≥ b } in a clump with
interior length u. We shall argue later that

ECu,v ≈ 1

4
(v − u)2. (K3e)

Then from (K3b) and (K3d),

∫ v

0

1

2
(v − u)2λ(u) du = 4Φ

(
b

v
1
2

)

and differentiating twice

λ =

∫ 1

0

λ(u) du = 4
d2

dv2
Φ

(
b

v
1
2

) ∣∣∣∣
v=1

≈ b3φ(b), to first order.
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FIGURE K3a.

Thus (K3c) gives (K3a).
To argue (K3e), consider a clump C with interior length u taken at

(t0, t0 + u) say, with Bt0+u − Bt0 = b say. Consider the qualitative be-
havior of the incremental processes

Y +
s = Bt0+s −Bt0 ; Z+

s = Bt0+u+s −Bt0+u

for small s > 0. Since u is the interior length, we must have Y +
s ≥ 0 and

Y +
s ≥ maxs′<s Z

+
s′ , and we can regard Y +, Z+ as Brownian motions con-

ditioned on these events. The first conditioning makes Y + increase rapidly
at 0 (as BES(3) — see Section K14), and then the second conditioning
will have little effect on Z+, which will be roughly like standard Brownian
motion. Similarly for the left-increments Y −, Z−. To estimate Cu,v, we
consider only times of the form t

˜
= (t0−s1, t0 +u+s2) in view of the rapid

increase of Y + and Y −; then

ECu,v ≈
∫ ∫

s1,s2≥0
s1+s2≤v−u

P (Z+
s1
< Z−

s2
) ds1 ds2.

But the integrand is ≈ 1
2 , since Z+ and Z− are roughly like standard

Brownian motions, and this gives (K3e).

Remark: Various other results about large increments of Brownian motion
can be obtained in essentially the same way — see Section K10. Let us
instead look at something slightly different.
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K4 Example: Spikes in Brownian motion. For a function f(t) the
modulus

w∗(δ, T ) = sup
0≤t1<t2<t3≤T

t3−t1≤δ

min(f(t2) − f(t1), f(t2) − f(t3))

represents the height of the largest “spike” of width ≤ δ. We shall study
the random modulus W ∗(δ, T ) for Brownian motion. One would intuitively
expect W ∗(δ, 1) ≈ 1

2W (δ, 1) by reflection at the top of the spike; but such
arguments can be misleading.

Write t
˜

= (t1, t3), where t1 < t3 ≤ t1 + 1. Fix b large and consider the
random set

S = { t
˜

: ∃t2 ∈ (t1, t3) such that Bt2 − Bt1 ≥ b and Bt2 −Bt3 ≥ b }.

Here p(t
˜
) = P (t

˜
∈ S) = q(t3 − t1), where

q(v) = P (B∗
v ≥ b, B∗

v ≥ b+Bv) where B∗
v = max

t≤v
Bt

= 2P (B∗
v ≥ b, Bv < 0)

by a symmetry argument, considering whether
Bv > 0 or Bv < 0,

= 2P (Bv > 2b) by the reflection principle

= 2Φ

(
2b

v
1
2

)
. (K4a)

Each clump C of S has an interior width u = mint∈C(t3 − t1). As in Ex-
ample K3 we consider the area Cu,v of { t

˜
: t3 − t1 ≤ v } ∩ C in a clump C

of interior width u. Consider such a clump. The interior width is taken at
(t0, t0 + u), say, and so Bt0 = Bt0+u and there exists t2 ∈ (t0, t0 + u) such
that Bt2 = maxt0<t<t0+uBt = Bt0 + b; also we must have Bt ≥ Bt0 on
(t0, t0 + u). The situation here is actually much simpler than in Example
K3. For a point t

˜
= (t1, t3) near (t0, t0 + u) can be in S only if t1 ≤ t0 and

t3 ≥ t0 + u. Thus the incremental processes

Z+
s = Bt0+u+s −Bt0+u; Z−

s = Bt0−s −Bt0

which are a priori Brownian motion conditioned so that there is no spike
with width < u; are in fact almost exactly genuine Brownian motions since
the conditioning event is almost certain. So

ECu,v ≈
∫ ∫

s1,s2>0
s1+s2≤v−u

P (Z+
s1

≤ 0, Z−
s2

≤ 0) ds1 ds2

≈ (v − u)2

8
(K4b)

since the integrand ≈ 1
4 .
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FIGURE K4a.

We now repeat the method of Example K3. The heuristic says

P (W ∗(1, T ) < b) ≈ exp(−λT ), where λ =

∫ 1

0

λ(u) du

and where λ(u) du is the rate of clumps with interior width ∈ [u, u + du].
The “marked clumps” formula (A20.3)

q(v) =

∫ v

0

λ(u)ECu,v du

together with the estimates (K4a), (K4b), enable us to solve for λ:

λ = 16b3φ(2b) to first order.

So we obtain the distributional estimate

P (W ∗(1, T ) ≤ b) ≈ exp(−16b3φ(2b)T ). (K4c)

By scaling we can derive the analogue of Lévy’s theorem:

W ∗(δ, 1)√
1
2δ log(1/δ)

→ 1 a.s. as δ → 0. (K4d)

We can also develop the analogue of the Chung-Erdos-Sirao test — exercise!
(see Section K11 for the answer).

K5 Example: Small increments. The quantity

M(δ, T ) = inf
0≤t≤T−δ

sup
t≤u≤v≤t+δ

1

2
|Bv −Bu|
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measures the smallest oscillation of a Brownian path over any interval of
length δ up to time T . (The factor 1

2 is included to facilitate comparison
with alternative definitions of “small increments”). As with the modulus
of continuity, we can use the heuristic to obtain distributional estimates
for M(1, T ) as T → ∞, and derive a.s. limit results and integral tests for
M(δ, 1) as δ → 0.

We need to quote some estimates for Brownian motion. Let

Hb = inf{ t : |Bt| = b }

Rt =
1

2

∣∣sup
u≤t

Bu − inf
u≤t

Bt

∣∣.

Then, for t/b2 → ∞,

P (Hb ≥ t) = P (sup
u≤t

|Bu| ≤ b) ∼ 4π−1 exp

(
−π

2t

8b2

)
(K5a)

P (Rt ≤ b) = P ( sup
u≤v≤t

|Bu −Bv| ≤ 2b) ∼ 2tb−2 exp

(
−π

2t

8b2

)
.(K5b)

These can be derived from the series expansion for the exact distribu-
tion of (maxu≤tBu,minu≤tBu), but are more elegantly obtained using the
eigenvalue method (M7b). We record two immediate consequences: for t/b2

large,

Hb − t,conditional on {Hb > t}, has approximately expo-
nential distribution with mean 8b2/π2.

(K5c)

b − Rt,conditional on {Rt < b}, has approximately expo-
nential distribution with mean 4b3/π2t.

(K5d)

Now fix b > 0, small. We shall apply the heuristic to the random set S
of times t such that supt≤u<v≤t+1

1
2 |Bu −Bv| ≤ b. From (K5b),

p = P (t ∈ S) ≈ 2b−2 exp

(
− π2

8b2

)
. (K5e)

Condition on t0 ∈ S, and consider the size C̃ of the clump C̃ containing t0.
Write C̃ = C̃+ + C̃−, where C̃+ is the size of C̃ ∩ [t0,∞]. Write (y1, y2) =
(mint0≤u≤t0+1Bu,maxt0≤u≤t0+1Bu). Then y2 − y1 = 2b − δ, say, where
δ will be small relative to b. For small u > 0, we have t0 + u ∈ S iff
u ≤ T ∗ = min{ t > 0 : Bt0+1+t = y2 + δ or y1 − δ }, neglecting the small
chance that extreme values y1, y2 of B on [t0, t0+1] are taken in [t0, t0+T ∗].

So C̃+
D≈ T ∗. But since δ is small,

T ∗ D≈ T̂ = min{ t > 0 : Bt0+1+t = y1 or y2 }.
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FIGURE K5a.

Now the distribution of Bt0+1 is like the distribution of Brownian motion at
time 1 when it has been conditioned to stay within [y1, y2] during 0 ≤ u ≤ 1;
hence from (K5c)

C̃+
D≈ T ∗ D≈ exponential, mean

8b2

π2
. (K5f)

Similarly for C̃−, and so as at Section A21 we get EC = 8b2/π2. The
fundamental identity gives

λ =
p

EC
≈ 1

4
π2b−4 exp

(
− π2

8b2

)
,

and the heuristic says

P (M(1, T ) > b) = P (S ∩ [0, T ] empty)

≈ exp(−λT )

≈ exp

(
−1

4
π2b−4T exp

(−π2

8b2

))
. (K5g)

This is the basic distribution approximation. By scaling

P (M(δ, 1) > x) ≈ exp

(
−1

4
π2δx−4 exp

(−π2δ

8x2

))
.

For fixed α > 0 we find

P (M(δ, 1) > α
√
δ/ log(1/δ) ) →

{
0 as δ → 0 (α > π/

√
8)

1 as δ → 0 (α < π/
√

8)
,

exponentially fast in each case, so using monotonicity

M(δ, 1)√
δ/ log(1/δ)

→ π√
8

a.s. as δ → 0. (K5h)
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K6 Example: Integral tests for small increments. In the same set-
ting, we now consider the associated “integral test” problem: what functions
ψ(δ) → 0 as δ → 0 are such that a.s.

M(δ, 1) ≥ δ
1
2ψ(δ) for all sufficiently small δ? (K6a)

Write t
˜

= (t1, t2) for 0 ≤ t1 < t2 ≤ 1. and apply the heuristic to the random
set S of t

˜
such that

sup
t1≤u<v≤t2

1

2
|Bu −Bv| ≤ (t2 − t1)

1
2ψ(t2 − t1).

By (K5b),

p(t
˜
) = P (t

˜
∈ S) ≈ 2ψ−2(t2 − t1) exp

( −π2

8ψ2(t2 − t1)

)
.

We shall show later that

ECt
˜
≈ 64(t2 − t1)

2ψ−4(t2 − t1) (K6b)

Then

λ(t
˜
) =

p(t
˜
)

ECt
˜

=
1

32
(t2 − t1)

−1ψ2(t2 − t1) exp

( −π2

8ψ2(t2 − t1)

)
.

The condition for (K6a) to hold is that S be bounded away from the diag-
onal { t

˜
: t1 = t2 }, and this hold iff

∫ ∫

0≤t1<t2≤1

λ(t
˜
) dt
˜
<∞.

Thus the integral test for (K6a) is

∫

0+

t−1ψ2(t) exp

( −π2

8ψ2(t)

)
dt <∞. (K6c)

To argue (K6b), fix t
˜

= (t1, t2) and condition on t
˜
∈ S. Let

b0 = (t2 − t1)
1
2ψ(t2 − t1)

(y1, y2) = ( min
t1≤u≤t2

Bu, max
t1≤u≤t2

Bu);

then
1

2
(y2 − y1) = b0 − L (K6d)

for some L > 0 which is small relative to b0. For small ui (positive or
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FIGURE K6a.

negative), consider what has to happen to make t′ = (t1 −u1, t2 +u2) ∈ S.
There are two different types of constraint. As in the previous “clump size”
argument, we need

u2 ≤ T2 (say)
D≈ exponential, mean

8b20
π2

, (K6e)

where T2 is the time taken from t2 until the path escapes from the bounds
(y1, y2). Similarly,

u1 ≤ T1 (say), where T1
D
= T2. (K6f)

The second constraint for t′ = (t′1, t
′
2) = (t1 − u1, t2 + u2) to be in S is

that (t′2 − t′1)
1/2ψ(t′2 − t′1) must be ≥ 1

2 (y2 − y1). Using (K6d), this is the
requirement that

(u1 + u2)
d

dt
(t

1
2ψ(t))

∣∣∣∣
t2−t1

≥ −L

which works out as

u1 + u2 ≥ −U ; where U = 2(t2 − t1)
L

b0
. (K6g)

Thus the clump C̃ containing t
˜

= (t1, t2) is approximately the triangular-
shaped region of (t1 − u1, t2 + u2) satisfying (K6e,K6f,K6g), and this has
area

C̃ ≈ 1

2
(T1 + T2 + U)2. (K6h)
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Now L (defined at (K6d)), is distributed as b0 − Rt2−t1 conditioned on
{Rt2−t1 < b0}, so appealing to (K5d) we see

L
D≈ exponential, mean

4b30
π2(t2 − t1)

;

and so

U
D≈ exponential, mean

8b20
π2

.

Thus the sum in (K6h) has approximately a Gamma distribution. Recalling

from Section A6 that the mean clump size EC is the harmonic mean of C̃,
we calculate from (K6h) that

EC ≈
(

8b20
π2

)2

.

This gives the estimate (K6b) asserted earlier.

FIGURE K7a.

K7 Example: Local maxima and points of increase. A function
f(t) has a local maximum at t0 if f(t) ≤ f(t0) in some neighborhood (t0±ε)
of t0; and a point of increase at t0 if f(t) ≤ f(t0) on (t0 − ε, t0) but f(t) ≥
f(t0) on (t0, t0 + ε). A paradoxical property of Brownian motion is that
its sample paths have local maxima but not points of increase: paradoxical
because “by symmetry” one would expect the two phenomena to be equally
likely. There are slick modern proofs of this result (Section K13), but to
my mind they do not make visible the essential difference between the two
cases. The heuristic, in the spirit of the original study by Dvoretzky et al.
(1961), does.

Fix δ > 0 small. Let Si
δ [resp. Sm

δ ] be the random set of t such that

max
t−1≤u≤t

Bu ≤ Bt+δ and min
t≤u≤t+1

Bu > Bt−δ [resp. max
t≤u≤t+1

Bu ≤ Bt+δ].

For each random set,

p = P (t ∈ Sδ) = P 2(max
u≤1

Bu ≤ δ) ≈ 2π−1δ2 as δ → 0. (K7a)



K. Brownian Motion: Local Distributions 231

For each random set write S0 =
⋂

δ>0 Sδ. Then Si
0 [Sm

0 ] is the set of points
of increase [local maxima] of Brownian motion. In the language of our
heuristic, the random sets Sδ will have some clump rates λi

δ, [λm
δ ]. So the

result we are trying to explain (that S i
0 is empty while Sm

0 is not) is the
result

λi
δ → 0 but λm

δ 6→ 0 as δ ↓ 0.

By (K7a) and the fundamental identity p = λ/EC, we see that the
“paradoxical result” is equivalent to the assertion that the clump sizes Cδ

satisfy
ECm

δ = O(δ2) but ECi
δ 6= O(δ2). (K7b)

We shall now sketch arguments for this assertion.
In each case, fix t0 and condition on t0 ∈ Sδ. Consider the processes

Z−
u = Bt0 + δ −Bt0−u;

Z+
u = Bt0+u −Bt0 + δ [resp. Z+

u = Bt0 + δ −Bt0+u].

Conditioning on t0 ∈ Sδ is precisely the same as conditioning on the pro-
cesses Z+

u and Z−
u being non-negative on [0, 1]. By Section K14 these pro-

cesses behave, for small u, like independent BES(3) processes started with
Z0 = δ. In each case we shall estimate

EC̃ =

∫

|t|small
P (t0 + t ∈ C̃) dt, (K7c)

where C̃ is the clump containing t0. We consider first the case of near-

FIGURE K7b.

local-maxima. Let M = min0≤u≤1 Z
+
u . Then M is approximately uniform

on [0, δ], since δ−M is distributed as maxu≤1Bu conditioned on this max
being ≤ δ. Now in order that t0−u be in Sδ it is necessary that Z−

u ≤M+δ.
By (K7c) and symmetry we get a bound

EC̃ ≤ 2Es(M + δ) (K7d)
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where s(y) is the mean sojourn time of Z− in [0, y]. Since Z− is approx-
imately BES(3), we can quote the mean sojourn time (Section K14) for
BES(3) as an approximation: s(y) ≈ y2 − δ2/3. Evaluating (K7d),

EC̃ ≤ 4δ2.

Since EC ≤ EC̃ (Section A6), we have verified the first part of (K7b).

FIGURE K7c.

We now look at the case of near-points-of-increase. Recall we are con-
ditioning on t0 ∈ Sδ. Consider t > 0 small: what is a sufficient condition
for t0 + t to be in Sδ? From the picture, it is sufficient that Z+

t > δ, that

maxu≤t Z
+
u ≤ Z+

t + δ, and that mint≤u<1+t Z
+
u > Zt − δ. By (K7c), EC̃ ≥

the mean duration of time t that the conditions above are satisfied:

EC̃ ≥ E

∫ o(1)

0

1(Z+

t >δ)1(supu≤t Z+
u ≤Z+

t +δ)1(infu≥t Z+
u >Z+

t −δ) dt.

Approximating Z+ as BES(3) it is remarkably easy to evaluate this. First
condition on Z+

t , and then consider occupation densities: we get

EC̃ ≥
∫ o(1)

δ

g∗(y)Py(Ty−δ = ∞) dy

where Tb is first hitting time on b, and g∗(y) is mean occupation density at
height y where we allow only times t for which maxu≤t Z

+
u ≤ y + δ. Now a

visit to y is “counted” in g∗(y) if the process does not subsequently make
a downcrossing from y + δ to y. Hence g∗(y) = g(y)Py+δ(Ty = ∞), where
g(y) is the unrestricted mean occupation density at y. So

EC̃ ≥
∫ o(1)

δ

g(y)Py+δ(Ty = ∞)Py(Ty−δ = ∞) dy.
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But the terms in the integrand are given by basic 1-dimensional diffusion
theory (Section D3):

g(y) = 2y; Py+δ(Ty = ∞) =
δ

y + δ
; Py(Ty−δ = ∞) =

δ

y
.

Evaluating the integral,

EC̃ ≥ 2δ2 log(1/(2δ)).

Optimistically supposing that EC is of the same order as EC̃, we have
verified the second part of (K7b).

Finally, if it is indeed true that EC ∼ aδ2 log(1/δ), we can use the
heuristic to give a quantitative form of the non-existence of points of in-
crease. For then the clump rate λi

δ ∼ â/ log(1/δ) and so P (Si
δ ∩ [0, T ]

empty) ≈ exp(−λi
dT ). Writing

IT = inf
1≤t≤T−1

sup
0≤u≤1

max(Bt−u − Bt, Bt −Bt+u),

we have {IT > δ} = {Si
δ ∩ [0, T ] empty}, and a little algebra gives the limit

assertion
T−1 log(1/IT )

D→ c

V
as T → ∞, (K7e)

where V has exponential(1) distribution and c is a constant.

Remark: Merely assuming that EC and EC̃ have the same order — as
we did above and will do in the next example — is clearly unsatisfactory
and potentially erroneous. We haven’t done it in any other examples.

K8 Example: Self-intersections of d-dimensional Brownian mo-
tion. Let Bt be Brownian motion in dimension d ≥ 4. Then it is well
known that Bt has no self-intersections: here is a (rather rough) heuristic
argument. Let I = { (s, t) : 0 ≤ s < t ≤ L, t − s ≥ 1 }, for fixed L. For
δ > 0 consider the random sets Sδ = { (s, t) ∈ I : |Bt − Bs| ≤ δ } as
approximately mosaic processes (which is not very realistic). We want to
show that the clump rate λδ(s, t) → 0 as δ → 0.

Since P (|B1| ≤ x) ∼ cdx
d as x→ 0, we have by scaling

pδ(s, t) ≡ P (|Bt −Bs| ≤ δ) ∼ cd|t− s|− 1
2
dδd. (K8a)

Let B1, B2 be independent copies of B and for ε in Rd define

D(ε) = area( (t1, t2) : ti > 0, t1 + t2 ≤ 1, |B1
t1 −B2

t2 − ε| ≤ δ ).

Let U be uniform on the unit ball. Fix (s, t) and condition on (s, t) ∈ Sδ:

then conditionally (Bt − Bs)
D≈ Uδ and the clump distribution C̃(s, t)

D≈
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D(Uδ). In particular

EC(s, t) ≤ EC̃(s, t) ≈ ED(Uδ) ≤ ED(0). (K8b)

Now we can compute

ED(0) =

∫ 1

0

sP (|Bs| ≤ δ) ds

∼ δ4ad as δ → 0 (d ≥ 5)

∼ δ4 log(1/δ)ad as δ → 0 (d = 4),

where ad does not depend on δ. Assuming the inequalities in (K8b) are
equalities up to constant multiples, we get clump rates

λδ(s, t) =
p(s, t)

EC(s, t)
∼
{

(t− s)−
1
2
dδd−4a′d (d ≥ 5)

(t− s)−2/ log(1/δ)a′4 (d = 4)
.

As required, these rates → 0 as δ → 0.

COMMENTARY

K9 General references. Chapter 1 of Csorgo and Revesz (1981) contains
many results related to our first examples; looking systematically at these
results from the viewpoint of our heuristic would be an interesting project.

K10 Modulus of continuity and large increments. Presumably our
distributional approximations such as Example K3 can be justified as limit
theorems; but I don’t know explicit references. The Chung-Erdos-Sirao test
is in Chung et al. (1959). Csorgo and Revesz (1981) discuss results of the
following type (their Theorem 1.2.1) for the modulus w(δ, T ) of Brownian
motion. Let aT ↗ ∞ and T/aT ↘ 0 as T → ∞. Then

lim sup
T→∞

βTw(aT , T ) = 1 a.s.,

where β−2
T = 2aT {log(T/aT )+log log T}. Similar results are given by Hanson

and Russo (1983b; 1983a). These results can be derived from the heuristic,
using the ideas of this chapter.

K11 Spikes. I don’t know any discussion of “spikes” (Example K4) in the
literature. A rigorous argument can be obtained by considering local maxima
of fixed width, which form a tractable point process which has been studied
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by Pitman (unpublished). The integral test is: w∗(δ, 1) ≤ δ1/2ψ(δ) for all
sufficiently small δ iff

∫

0+

u−2ψ3(u) exp(−2u2) du <∞.

K12 Small increments. In place of our M(δ, T ) at Example K5, it is
customary to consider

m(δ, T ) = inf
0≤t≤T−δ

sup
0≤u≤δ

|Bt+u − Bt|.

Csorgo and Revesz (1981) give results of the type (their 1.7.1):

if aT ↗ ∞ and T/aT ↘ ∞ as T → ∞ then

lim inf
T→∞

γTm(aT , T ) = 1 a.s.,

where

γ2
T = 8π−2a−1

T (log(T/aT ) + log log T ).

We have the relation
M(δ, T ) ≤ m(δ, T )

The quantity M is slightly easier to handle using the heuristic. The basic a.s.
limit theorems seem the same for m and M ; I don’t know if this remains true
for the integral test (Example K6).

Ortega and Wschebor (1984) give a range of integral test results for both
small and large increment problems. Csaki and Foldes (1984) treat the analo-
gous question for random walk: the heuristic arguments are similar.

K13 Local maxima and points of increase. A continuous function
either has a local maximum or minimum on an interval, or else it is monotone
on that interval. It is easy to show Brownian motion is not monotone on any
interval, and hence to deduce the existence of local maxima. There is a slick
argument for non-existence of points of increase which uses the joint continuity
properties of local time — see Geman and Horowitz (1980), Karatzas and
Shreve (1987) Sec. 6.4.

The original paper showing non-existence of points of increase, Dvoretzky-
Erdos-Kakutani (1961), is essentially a formalization of the heuristic argument
we sketched; it is generally regarded as a hard to read paper! A simpler direct
argument is given in Adelman (1985). None of these methods gives quantitative
information: proving our limit assertion (K7e) is an interesting open problem
(see also Section K15).
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K14 Conditioned Brownian motion is BES(3). The concept of
“standard Brownian motion on the space interval [0,∞) conditioned never to
hit 0” may be formalized via a limit procedure in several ways: each gives the
same result, the BES(3) process Xt, that is the diffusion with drift µ(x) = 1/x
and variance σ2(x) ≡ 1. Recall from Section I22 that BES(3) is also the
radial part of 3-dimensional Brownian motion. The standard calculations of
Section D3 give some facts used in Example K7:

Py(XT hits x) =
x

y
, 0 < x < y (K14a)

Ex(sojourn time in [0, y]) = y2 − x2

3
, 0 < x < y. (K14b)

K15 The second-moment method. As discussed at Section A15, us-
ing the bound EC ≤ EC̃ in the heuristic is essentially equivalent to using the
second moment method. We estimated EC̃ in the “point-of-increase” Exam-
ple K7 and the self-intersection example (Example K8). So in these examples
the second-moment method should give rigorous one-sided bounds. That is,
one should get an upper bound for IT in (K7e) of the right order of magnitude,
and similarly in Example K8 get an upper bound for

inf
0≤s<t<T

t−s≥1

|Bt −Bs|

in d ≥ 4 dimensions. The former is in Schaper (1988) and the latter in Aizen-
mann (1985).

K16 Other “a.s.” properties. It would be interesting to use the heuris-
tic to study the “slow points” problems in Davis and Perkins (1985).

A modern account of self-intersections is given in Dynkin (1988).

K17 d dimensions. Versions of the “modulus of continuity” and “small
increments” results for d-dimensional Brownian motion are given by Ugbebor
(1980). The a.s. limit results are fairly simple, but the “integral test” results
involve some extra complications: it would be interesting to apply the heuristic
here.
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Most of these examples are similar in spirit to those considered earlier, but
did not fit in conveniently. We will give references as we go.

In Chapter B we often used simple random walk as a local approximation
to Markov processes on the integers. Here is another simple application in
a different setting. The fact we need is that for simple random walk in
continuous time with rates a, b, started at 0, the number Z of sojourns at
0 has geometric distribution with parameter θ = |b− a|/(b+ a):

P (Z = n) = θ(1 − θ)n−1; n ≥ 1. (L0a)

L1 Example: Meetings of empirical distribution functions. Let
F , G be distribution functions with continuous densities f , g. Let J be an
interval such that F (t) = G(t) for a unique t ∈ J , and suppose f(t) 6= g(t).
Let FN , GN be the empirical distribution functions of independent samples
of size N from each distribution. The 2N sample values divide the line into
2N +1 intervals; let ZN (J) be the number of these intervals in J on which
FN = GN . For N large, the heuristic says

P (ZN (J) = n) ≈ θJ (1 − θJ )n−1, n ≥ 1; where θJ =
|f(t) − g(t)|
f(t) + g(t)

.

(L1a)
To argue this, observe that the empirical distribution function evolves lo-
cally like the non-homogeneous Poisson process of rate Nf(t). Let T be
the first point in J where FN = GN . For N large, T will be near t and
the subsequent difference process X(u) = FN (T + u) − GN (T + u) will
evolve like the simple random walk with transition rates Nf(t) and Ng(t).
So (L1a) follows from the corresponding fact (L0a) for random walk.

By considering different points where F = G, one can see that the total
number ZN of intervals where FN = GN will be approximately distributed
as a sum of independent geometrics. Nair et al. (1986) give details of this
and related crossing statistics.

For our next example, take a sample of size n from the uniform distribu-
tion on [0, 1] and let Un,1, . . . , Un,n be the order statistics. There is a large
literature on asymptotics of various quantities derived from the U ’s; see
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Shorack and Wellner (1986) for an encyclopedic account. Problems related
to extremal properties can be handled via the heuristic, and on the heuris-
tic level are very similar to examples we have already seen. We illustrate
with one result.

L2 Example: Maximal k-spacing. Given n and k, let

M = max
1≤i≤n−k−1

(Un,i+k+1 − Un,i).

We study M in the case n→ ∞, k = k(n) → ∞, k = o(log n).
Fix n. The Un,i behave approximately like the Poisson process of rate

n. In particular, the k-spacings Un,i+k+1 − Un,i have approximately the
distribution n−1Gk, where Gk has Gamma density

fk(x) = e−xx
k

k!
.

Note the tail estimate

P (Gk > x) ∼ fk(x) as
x

k
→ ∞. (L2a)

This leads to the estimate

P

(
Un,i+k+1 − Un,i >

log n+ c

n

)
≈ fk(log n+ c)

≈ n−1e−c (log n+ c)k

k!
. (L2b)

Now the process (Un,i+k+1−Un,i) as i varies is essentially a moving average
process, and as at Example C6 its maximum M will behave as if the terms
were i.i.d. So we get

− log P (nM ≤ log n+ c) ≈ nP (Un,i+k+1 − Un,i >
log n+ c

n
).

Taking logs again,

log(− log P (nM ≤ log n+ c)) ≈ −c+k log(c+logn)−k(log k−1). (L2c)

Now, put c = ak log(ek−1 log n) for fixed a. Then the right side of (L2c)
becomes

k(1 − a)(log log n− log k + 1) + o(k) →
{∞ for a < 1
−∞ for a > 1

.

This gives
nM − log n

k log(ek−1 log n)
→ 1 in probability. (L2d)
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See Deheuvels and Devroye (1984) for extensions to LIL-type results.
Note the argument above used only estimates for fixed n. A more sophisti-
cated use of the heuristic is to consider the random subset of {1, 2, 3, . . . }×
{0, 1} consisting of those (n, x) such that the interval [x, x+ (c+ log n)/n]
contains less than k of the order statistics (Un,i; 1 ≤ i ≤ n). This enables
the strong laws and LILs to be obtained heuristically.

Here is a simple combinatorial example.

L3 Example: Increasing runs in i.i.d. sequences. Let (Xi; i ≥ 1) be
i.i.d. real-valued with some continuous distribution. Let LN be the length
of the longest increasing run in (X1, . . . , XN ):

LN = max{ k : Xn > Xn−1 > · · · > Xn−k+1 for some n ≤ N }.

We can approximate the distribution of LN as follows. Fix k. Let S be the
random set of n such that (n − k + 1, . . . , n) is an increasing run. Then
p = P (n ∈ S) = 1/k! Given n ∈ S, the chance that n+ 1 ∈ S equals

P ((n− k + 1, . . . , n+ 1) is an increasing run)

P ((n− k + 1, . . . , n) is a run)
=

1/(k + 1)!

1/k!

=
1

k + 1.

In the notation of (A9g) we have f+(0) = k/(k + 1), since the clump
containing n ends at n iff Xn+1 < Xn, that is iff n + 1 ∈ S. Applying
(A9g),

P (LN < k) = P (S ∩ [1, N ] empty)

≈ exp(−λN)

≈ exp(−pf+(0)N)

≈ exp

(
− N

(k + 1)(k − 1)!

)
. (L3a)

Revesz (1983) gives the asymptotics.

The next example is mathematically interesting because it combines a
“stochastic geometry coverage” problem treated in Chapter H with a “max-
imum of process whose variance has a maximum” problem in the style of
Chapter D. The model arose as a (much simplified) model of DNA splitting;
result (L4c) is discussed in Shepp and Vanderbei (1987).

L4 Example: Growing arcs on a circle. Consider a circle of circum-
ference L. Suppose points are created on the circumference according to a
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Poisson process in time and space of rate a; and each point grows into an
interval, each end of which grows deterministically at rate 1

2 . Consider

T = time until circle is covered by the growing intervals

Nt = number of components of the uncovered part of the circle at time t

M = sup
t
Nt.

For the heuristic analysis, let St be the uncovered set at time t. Then

p(t) ≡ P (x uncovered at time t) for specified x

= exp(−a
∫ t

0

(t− s) ds) since a point created at time s has
grown an interval of length (t − s) by
time t

= exp(−1

2
at2).

At time t, the clockwise endpoints of growing intervals form a Poisson
process of rate at, and so the clump length Ct for St has exponential(at)
distribution, and so the clump rate is

λ(t) =
p(t)

ECt
= at exp(−1

2
at2). (L4a)

Thus Nt satisfies

Nt
D≈ Poisson(µ(t)), for µ(t) = Lλ(t) = Lat exp(−1

2
at2); (L4b)

the implicit conditions being that aL and at2 are large. In particular,

P (T ≤ t) = P (Nt = 0) ≈ exp(−µ(t)) for t large (L4c)

(This is actually a special case of (H12a), covering a circle with randomly-
sized intervals.)

To analyze M , observe first that µ(t) has maximum value µ∗ = L(a/e)1/2

attained at t∗ = a−1/2. Consider b > µ∗ such that P (Nt∗ > b) is small. We

want to apply the heuristic to Ŝt = { t : Nt = b }. So

p(t, b) ≡ P (Nt = b)

≡ (µ∗)−
1
2φ

(
b− µ(t)√

µ∗

)
for t ≈ t∗,

by the Normal approximation to Poisson (φ denotes standard Normal den-
sity). Evaluating the integral as at (C21e) gives

∫
p(t, b) dt ≈ (b− µ∗)−

1
2 (2La

3
2 e−

1
2 )−

1
2 exp

(−(b− µ∗)2

µ∗

)
. (L4d)
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Now for t ≈ t∗ the process Nt behaves like the M/M/∞ queue; the arrival
rate α being the rate at which new points are created in the uncovered
region, so

α = a× length of uncovered region

≈ aLp(t∗) = aL exp(−1

2
at∗2) = aLe−

1
2 .

Since Nt∗ has Poisson(µ∗) distribution, the “departure rate per customer”
β in the M/M/∞ approximation must be β = α/µ∗. So using the local

random walk approximation as at Example B4, the mean clump size for Ŝt

at t ≈ t∗ is
EC ≈ (βb− α)−1 = a−

1
2 (b− µ∗)−1.

Writing λb(t) for the clump rate of Ŝt, the heuristic gives

P (M ≤ b) ≈ exp(−λb); (L4e)

where

λb =

∫
λb(t) dt =

∫
p(t, b)

EC
dt

= (b− µ∗)
1
2 (2La

1
2 e−

1
2 )−

1
2 exp

(−(b− µ∗)2

µ∗

)
using (L4d).

L5 Example: The LIL for symmetric stable processes. Write Z(t)
for the symmetric stable process of exponent 0 < α < 2:

E exp(iθZ(t)) = exp(−t|θ|α).

Chover (1966) gave the “law of the iterated logarithm”

lim sup
t→∞

|t1/αZ(t)|1/ log log t = e1/α a.s. (L5a)

We shall give a heuristic derivation of this and a stronger result, (L5c)
below.

Put X(t) = e−t/αZ(et). Then

dX(t) = e−t/α(et)1/α dZ(t) − α−1e−t/αZ(et) dt

= dZ(t) − α−1X(t) dt.

Thus X is the stationary autoregressive process of Section C19, whose
clump rate for { t : Xt ≥ b } was calculated to be

λb ≈ Kb−α; b large.
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Let b(t) → ∞ be a smooth boundary. Then

P (X(t) ≤ b(t) ultimately) = 1

{
iff
∫∞

λb(t) dt <∞
iff
∫∞

b−α(t) dt <∞ .

Putting bc(t) = tc, we get

P (X(t) ≤ bc(t) ultimately) = 1 iff c >
1

α
. (L5b)

But this is equivalent to

lim sup
t→∞

logX(t)

log t
=

1

α
a.s.

and this in turn is equivalent to

lim sup
t→∞

log(t−1/αZ(t))

log log t
=

1

α
a.s.,

which is (L5a).
We could instead consider bc(t) = (t logc(t))1/α, and get

P (X(t) ≤ bc(t) ultimately) = 1 iff c > 1.

This translates to

lim sup
t→∞

log(t−1/αZ(t)) − log(2) t

log(3) t
=

1

α
a.s., (L5c)

where log(3) ≡ log log log.

L6 Example: Min-max of process. Here is a type of problem where
the heuristic provides the natural approach: I do not know any treatment
in the literature. Let X(t1, t2) be a 2-parameter process and consider

MT = min
0≤t1≤T

max
0≤t2≤T

X(t1, t2), T large.

Fix b large, let S = { (t1, t2) : X(t1, t2) ≥ b } and suppose we can approxi-
mate S as a mosaic process of rate λ and clump distribution C. Then

S1 = { t1 : max
0≤t2≤T

X(t1, t2) ≥ b }

is the projection of S onto the t1-axis. So S1 is approximately a mosaic
process with rate λT and clump distribution C1, where C1 is the projection
of C. And

P (MT ≥ b) = P (St covers [0, T ]).
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For b in the range of interest, S will be a sparse mosaic and S1 will be a
high-intensity mosaic. We can use the heuristic to estimate the covering
probability above. Let us treat the simplest setting, where C1 consists of a
single interval of (random) length C1. Then (H12a) gives

P (MT > b) ≈ exp(−λT 2 exp(−λTEC1)). (L6a)

As a specific example, consider the stationary smooth Gaussian field (Ex-
ample J7) with

EX(0, 0)X(t1, t2) ∼ 1 − 1

2
(θ1t

2
1 + θ2t

2
2) as t→ 0.

Then (J7d) gives

λ = (2π)−1(θ1θ2)
1
2 bφ(b). (L6b)

The arguments in Example J7 lead to

C1
D≈ b−1

(
2ξ

θ1

) 1
2

; ξ
D
= exponential(1)

EC1 ≈ b−1

(
π

2θ1

) 1
2

. (L6c)

Substituting (L6b) and (L6c) into (L6a) gives our approximation for the
min-max MT .

L7 2-dimensional random walk In Chapter B we used the heuristic
to estimate hitting times for Markov chains, in settings where the target set
was small and the chain had a “local transience” property: see Section B2.
In particular, this was used for chains which behaved locally like random
walks in d ≥ 3 dimensions (Example B7): but fails completely for processes
behaving like simple symmetric walk in 1 dimension (Section B11). What
about 2 dimensions? Of course simple random walk on the 2-dimensional
lattice is recurrent, but “only just” recurrent. For continuous-time simple
symmetric random walk Xt on the 2-dimensional lattice, we have

P (Xt = 0) ∼ 1

πt
as t→ ∞

and hence
E(# visits to 0 before time t) ∼ π−1 log t; (L7a)

this holds in discrete time too. See e.g. Spitzer (1964). It turns out that, in
examples where we can apply the heuristic to processes resembling d ≥ 3
dimensional random walk or Brownian motion, we can also handle the
2-dimensional case by a simple modification. Here is the fundamental ex-
ample.
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L8 Example: Random walk on Z2 modulo N . This is the analog
of Example B7. For N large and states i, j not close, we get

EiTj ≈ 2π−1N2 logN. (L8a)

and the distribution is approximately exponential. To see this, recall from
Section B24.3 the “mixing” formalization of the heuristic. In this example,
the time τ for the continuous-time walk to approach stationarity is order
N2. The clumps of “nearby” visits to j are taken to be sets of visits within
time τ of an initial visit. So by (L7a) the mean clump size is

EC ≈ π−1 log τ ≈ 2π−1 logN.

Then the familiar estimate (B4b) ET ≈ EC/µ(j), where µ is the stationary
(uniform) distribution, gives (L8a). See Cox (1988) for a rigorous argument.

Recall that in dimensions d ≥ 3 the analogous result (Example B8) was

EiTj ≈ RdN
d

where Rd is the mean total number of visits to 0 of simple symmetric r.w.
started at 0 on the infinite lattice. This suggests that results for d ≥ 3
involving Rd extend to 2 dimensions by putting R2 = 2π−1 logN . This
works in the “random trapping” example (Example B8): the traps have
small density q, and the mean time until trapping in d ≥ 3 dimensions was

ET ≈ Rdq
−1. (L8b)

In 2 dimensions we get

ET ≈ π−1q−1 log(1/q). (L8c)

The idea is that, for periodic traps with density q, the problem is iden-
tical to the previous example with qN 2 = 1; thus in (L8b) we put R2 =
2π−1 logN = π−1 log(1/q).

L9 Example: Covering problems for 2-dimensional walks. The
study of 2-dimensional walks starts to get hard when we consider covering
problems. As at Example F13, consider the time VN for simple symmetric
random walk on Zd modulo N to visit all states. For d ≥ 3 we found

VN ∼ RdN
d log(Nd) in probability as N → ∞

and a stronger, convergence in distribution, result. One might expect in
d = 2 to have

VN ∼ vN = (2π−1N2 logN) logN2 = 4π−1N2 log2N. (L9a)
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It is easy to see that vN is an asymptotic upper bound for VN : use the
formula (L8a) for mean hitting times, the exponential approximation for
their distribution, and Boole’s inequality. It is not clear how to argue a
lower bound: for w near vN the events {Tj > w} each have probability
around 1/N but are locally very dependent.

A related example concerns simple symmetric random walk on the infi-
nite 2-dimensional lattice: what is the time WN taken to visit every state
of a N × N square, say S = {1, 2, . . . , N − 1} × {0, 1, . . . , N − 1}? Write
aN (t) for the time spent in S up to time t. It is known that

aN (t)

N2 log t

D→ ξ as t→ ∞ (L9b)

where ξ has an exponential distribution. Let VN be the time spent in S
until time WN ; then (L9b) suggests

VN

N2 logWN

D≈ ξ. (L9c)

Now the random walk, observed only on S, behaves like simple symmetric
random walk on the interior of S, with some more complicated boundary
behavior; this process differs from random walk on Z2 modulo N only
in the boundary behavior (both have uniform stationary distribution), so
the behavior of the covering time V should be similar. Applying the upper
bound VN of (L9a), we see from (L9c) that logWN should be asymptotically
bounded by ξ−1 × 4π−2 log2N . In particular,

logWN

log2N
is tight as N → ∞. (L9d)

Kesten has unpublished work proving (L9d), the bound for unrestricted
random walk covering the N ×N square.
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M1 Introduction. Consider a stationary process (Xt : t > 0) and a
first hitting time T = min{ t : Xt ∈ B }. Under many circumstances one
can show that T must have an exponential tail:

P (T > t) ∼ A exp(−λt) as t→ ∞

and give an eigenvalue interpretation to λ. (In discrete time, “exponential”
becomes “geometric”, of course.) In the simplest example of finite Markov
chains this is a consequence of Perron-Frobenius theory reviewed below.
See Seneta (1981) and Asmussen (1987) for more details.

Proposition M1.1 Let P̂ be a finite substochastic matrix which is irre-
ducible and aperiodic. Then P̂ n(i, j) ∼ θnβiαj as n→ ∞, where

θ is the eigenvalue of P̂ for which |θ| is largest;

θ is real; θ = 1 if P̂ is stochastic, 0 < θ < 1 otherwise;

α and β are the corresponding eigenvectors αP̂ = θα, P̂β = θβ,
normalized so that

∑
αi = 1 and

∑
αiβi = 1.

Here “substochastic” means P̂ (i, j) ≥ 0,
∑

j P̂ (i, j) ≤ 1, and “irreducible,
aperiodic” is analogous to the usual Markov (= “stochastic”) sense. In the
Markov case, θ = 1, β = 1

˜
, α = π, the stationary distribution, so we get

the usual theorem about convergence to the stationary distribution.
Now consider a discrete-time Markov chain with state space J and tran-

sition matrix P . Let A ⊂ J and suppose Ac is finite. Let P̂ be P restricted
to Ac. Then

P̂ n(i, j) = Pi(Xn = j, TA > n).

So Proposition M1.1 tells us that, provided P̂ is irreducible aperiodic,

Pi(Xn = j, TA > n) ∼ θnβiαj as n→ ∞, (M1a)

where θ, α, β are the eigenvectors and eigenvalues of P̂ as in Proposition
M1.1. Let me spell out some consequences of this fact.

For any initial distribution, the distribution of TA has a
geometric tail: P (TA > n) ∼ cθn as n→ ∞.

(M1b)
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For any initial distribution, dist(Xn | TA > n)
D→ α as

n→ ∞.
(M1c)

If X0 has distribution α then dist(Xn | TA > n) = α for
all n, so TA has exactly geometric distribution:

Pα(TA = i) = (1 − θ)θi−1; EαT = 1/(1 − θ)

.

(M1d)

Because of (M1d), α is called the quasi-stationary distribution.
There is an obvious analogue of (M1a) for continuous-time chains. There

are analogues for continuous-space processes which we will see later.
It is important to emphasize that the “exponential tail” property for a

hitting time T is much more prevalent than the “approximately exponential
distribution” property of T . In Section B24 we discussed settings where T
should have approximately exponential distribution: in such settings, the
eigenvalue method provides an alternative (to our clumping methods) way
to estimate the exponential parameter, i.e. to estimate ET . This is what I
shall call a “level-1” use of the eigenvalue technique. It is hard to exhibit
a convincing example in the context of Markov chains: in examples where
one can calculate λ fairly easily it usually turns out that (a) one can do the
clumping calculation more easily, and (b) for the same amount of analysis
one can find a transform of T , which yields more information.

Instead, we shall mostly discuss “level-2” uses, as follows. The Poisson
clumping method in this book treats families (Ai) of rare events. Mostly
it is easy to calculate the P (Ai) and the issue is understanding the depen-
dence between the events. Occasionally we need the eigenvalue method to
calculate the P (Ai) themselves: this is a “level-2” application. We can then
usually rely on

M2 The asymptotic geometric clump principle. Suppose (Xn) is
stationary and has no long-range dependence. Suppose we have a notion of
“special” strings such that

(x1, x2, . . . , xn) special implies (x1, x2, . . . , xn−1) special; (M2a)

P ((X1, X2, . . . , Xn) special) ∼ cθn as n→ ∞. (M2b)

Let LK be the length of the longest special string (Xi, Xi+1, . . . , Xi+LK−1)
contained in (X1, . . . , XK). Then

P (LK ≤ l) ≈ exp(−c(1 − θ)θl+1K) for K large. (M2c)

This corresponds to the limit behavior for maxima of i.i.d sequences with
geometric tails. More crudely, we have

LK

logK
→ 1

log(1/θ)
a.s. as K → ∞. (M2d)
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To argue (M2c), fix l and let S be the random set of times n such that
(Xn, Xn+1, . . . , Xn+l) is special. Applying the clumping heuristic to S, we
have p = P (n ∈ S) ≈ cθl+1. And P (n + 1 6∈ S | n ∈ S) ≈ 1 − θ by
(M1b) and (M1c), so (M2c) follows from the ergodic-exit form (A9h) of
the heuristic.

Here is the fundamental example.

M3 Example: Runs in subsets of Markov chains. Let Xn be a
discrete-time stationary chain with transition matrix P and stationary dis-
tribution π. Let B be a finite subset of states. Let P ′ be P restricted to B.
Suppose P ′ is irreducible aperiodic. Then Proposition M1.1 applies, and P ′

has leading eigenvalue θ and eigenvectors α, β, say. Let LK be the longest
run of (X1, . . . , XK) in B. Then by (M1a)

P (X1, X2, . . . , Xn all in B) ∼ cθn−1, where c =
∑

i∈B

πiβi.

So our principle (Section M2) yields (replacing c by c/θ)

P (LK ≤ l) ≈ exp(−c(1 − θ)θlK) for K large (M3a)

or more crudely LK/ logK → 1/ log(1/θ).
This example covers some situations which are at first sight different.

M4 Example: Coincident Markov chains. Let P X , P Y be tran-
sition matrices for independent stationary Markov chains (Xn), (Yn) on
the same state space. Let LK be the length of the longest coincident run
Xi = Yi, Xi+1 = Yi+1, . . ., Xi+LK−1 = Yi+LK−1 up to time K. This
example is contained in the previous example by considering the product
chain Zn = (Xn, Yn) and taking B to be the diagonal; the matrix P ′ in
Example M3 can be identified with the matrix

P ′(s, t) = P X(s, t)P Y (s, t) (elementwise multiplication).

So (M3a) holds, for θ and c derived from P ′ as before.
At Example F9 we saw an extension of this example to block matching.

Other extensions, to semi-Markov processes, are given in Fousler and Karlin
(1987).

M5 Example: Alternating runs in i.i.d. sequences. Let (Xn) be
an i.i.d. sequence with some continuous distribution. Call x1, . . . , xn alter-
nating if x1 < x2 > x3 < x4 > · · ·. Let LK be the length of the longest
alternating string in (X1, . . . , XK). We shall show that

P (X1, X2, . . . , Xn alternating) ∼ 2

(
2

π

)n−1

as n→ ∞; (M5a)
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and then the geometric clump principle (Section M2) gives

P (LK ≤ l) ≈ exp

(
−2

(
1 − 2

π

)(
2

π

)l

K

)
for K large. (M5b)

To show (M5a), note first that the distribution of X is irrelevant, so we
may take it to be uniform on [0, 1]. Write

Yn =

{
Xn n odd
1 −Xn n even

Zn = Yn + Yn+1

Then

X1, X2, . . . , Xn alternating iff Z1 < 1, Z2 < 1, . . . , Zn < 1. (M5c)

Consider the process X killed when it first is not alternating. Then Y
evolves as the Markov process on [0, 1] with transition density P ′(y1, y2) =
1(y1+y2<1). For the continuous-space analogue of Proposition M1.1 we seek
an eigenvalue θ and normalized eigenfunctions α(x), β(y) such that

∫ 1

0

α(x)P ′(x, y) dx = θα(y)

∫ 1

0

P ′(x, y)β(y) dy = θβ(x).

It is easy to obtain the solution

θ =
2

π

α(y) =
2

π
cos(πy/2)

β(x) = π cos(πx/2).

The continuous-space analogue of Proposition M1.1 gives

P ′n(x, (0, 1)) ∼ β(x)θn as n→ ∞.

Using (M5c) we have

P (X1, X2, . . . , Xn alternating) =

∫ 1

0

P ′(n−1)(x, (0, 1)) dx

∼ θn−1

∫ 1

0

β(x) dx,

and this gives (M5a).
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Recall that at Example L3 we discussed increasing runs; they behave
differently because clump lengths are not geometric.

Another instance of a continuous-space version of Proposition M1.1 is
related to our discussion of “additive Markov processes” at Section C11.
Let ξ have density f , Eξ < 0, E exp(θξ) = 1. Consider the random walk X
with steps ξ, killed on entering (−∞, 0]. This has transition density

P ′(x, y) = f(y − x); x, y > 0.

Now θ can be regarded as an eigenvalue of P ′ and, under technical con-
ditions analogous to positive-recurrence, there exist normalized eigenfunc-
tions α(x), β(x) such that

∫
α(x)P ′(x, y) dx = θα(y)∫
P ′(x, y)β(y) dy = θβ(x)

Px(Xn ∈ dy) ∼ β(x)α(y)θn dy as n→ ∞.
(M5d)

Here is an integer-valued example.

M6 Example: Longest busy period in M/G/1 queue. Let Xn be
the number of customers when the n’th customer begins service. During a
busy period,X evolves as the random walk with step distribution ξ = A−1,
where A is the number of arrivals during a service. Let θ, β be the eigenvalue
and eigenfunction of (M5d). Then

P (at least n customers served in busy periodX0 = x)

= P ′(n−1)(x, [1,∞))

∼ β(x)θn−1 as n→ ∞

So

P (at least n customers served in busy period)

∼ cθn−1.

where c =
∑
π(x)β(x) and where π is the stationary distribution. Let LK

be the largest number of customers served during busy period, amongst
the first K customers. Then the geometric clump principle (Section M2)
gives

P (LK ≤ l) ≈ exp(−c(1 − θ)θlK) for large K. (M6a)

We do not want to go into details about continuous time-and-space mod-
els, but let us just sketch the simplest examples.

M7 Example: Longest interior sojourn of a diffusion. Let Xt be
a 1-dimensional diffusion, restricted to [a, b] by reflecting boundaries, with
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stationary density π. Let T be the first hitting time on {a, b}. Then we
expect

Px(T > t) ∼ β(x) exp(−θt)
P (Xt ∈ dy | T > t) → α(y) dy

(M7a)

where θ, α, β, are the leading eigenvalue and associated eigenfunctions of
the generator of the diffusion killed at {a, b}. In particular, for the station-
ary process

P (T > t) ∼ c exp(−θt); c =

∫
β(x)π(x) dx.

Let Lt be the longest time interval in [0, t] during which the boundary is
not hit. The continuous-time analogue of the principle (Section M2) now
yields

P (Lt < l) ≈ exp(−cθe−θlt); t large.

Naturally Lt can be rescaled to yield the usual extreme-value limit distri-
bution.

As a particular case of (M7a), consider Brownian motion on [−b, b]. Then
it is easy to calculate

θ = π2

8b2

α(x) = π
4b cos

(
πx
2b

)

β(x) = 4
π cos

(
πx
2b

)
.

(M7b)

These were used at Example K5 to study small increments of Brownian
motion.

M8 Example: Boundary crossing for diffusions. For a stationary
diffusion X on the real line, we expect the first hitting time T on b to have
the form

P (T > t) ∼ c exp(−λ(b)t) as t→ ∞
P (T < t+ δ | T > t) ∼ λ(b)δ as t→ ∞,

where λ(b) is the leading eigenvalue associated with the diffusion killed at b.
If instead we are interested in the first crossing time T of a moving barrier
b(t) → ∞ slowly, then similarly we expect

P (T < t+ δ | T > t) ∼ λ(b(t))δ as t→ ∞,

and hence

P (T > t) ∼ c′ exp
(
−
∫ t

0
λ(b(s)) ds

)
as t→ ∞.

Bass and Erickson (1983) give formalizations of this idea. Of course the
arguments at Section D13, where applicable, give stronger and more explicit
information about the non-asymptotic distribution of T .



Postscript

The examples were collected haphazardly over the period 1983–1987. Cur-
rent issues of the probability journals usually have one or two papers deal-
ing with problems related to our heuristic, so it is hard to know when to
stop adding examples. There are a few areas which, given unlimited time, I
would have like to go into more deeply. My scattered examples on queueing
are fairly trite; it would be interesting to study hard examples. The area of
physics illustrated by Kramer’s problem (Example I14) seems a rich source
of potential examples. There is a huge area of “data-snooping statistics”
where you have a family of test statistics T (a) whose null distribution is
known for fixed a, but where you use the test statistic T = T (a) for some
a chosen using the data. Here one can hope to estimate the tail of the
null distribution of T , similar to the Kolmogorov-Smirnov type statistics
of Chapter J.

In this book I have tried to explain the heuristics and direct the reader
to what has been proved, in various special areas. I will be well-satisfied
if applied researchers are convinced to add the heuristic as one more little
tool in their large toolkit. For theoreticians, I have already made some
remarks on the relationship between heuristics and theory: let me end with
one more. A mathematical area develops best when it faces hard concrete
problems which are not in the “domain of attraction” of existing proof
techniques. An area develops worst along the “lines of least resistance” in
which existing results are slightly generalized or abstracted. I hope this
book will discourage theoreticians from the pursuit of minor variations of
the known and the formalization of the heuristically obvious, and encourage
instead the pursuit of the unknown and the unobvious.
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