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This thesis deals with lower bounds for the minimax risk in general decision-theoretic

problems. Such bounds are useful for assessing the quality of decision rules. After

providing a unified treatment of existing techniques, we prove new lower bounds

which involve f -divergences, a general class of dissimilarity measures between proba-

bility measures. The proofs of our bounds rely on elementary convexity facts and are

extremely simple. Special cases and straightforward corollaries of our results include

many well-known lower bounds. As applications, we study a covariance matrix esti-

mation problem and the problem of estimation of convex bodies from noisy support

function measurements.
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Chapter 1

Introduction

In statistical decision theory, a widespread way of assessing the quality of a given

decision rule is to compare its maximum possible risk to the minimax risk of the

problem. One uses the maximum risk of the decision rule as opposed to working with

its risk directly because the risk typically depends on the unknown parameter. It

is however typically impossible (especially in nonparametric problems) to determine

the minimax risk exactly. Consequently, one attempts to obtain good lower bounds

on the minimax risk and the maximum risk of a given decision rule is then compared

to these lower bounds. Lower bounds on the minimax risk are the subject of this

thesis.

Chapter 2 provides a unified view of the techniques commonly used in the lit-

erature to establish minimax bounds. We explain why techniques due to Le Cam,

Assouad and Fano are all simple consequences of a well known expression for the

Bayes risk in general decision-theoretic problems.

In Chapter 3, we prove a class of lower bounds for the minimax risk (one for each

convex function f) using f -divergences between the underlying probability measures.

The f -divergences are a general class of measures of dissimilarity between probability
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measures. Kullback-Leibler divergence, chi-squared divergence, total variation dis-

tance distance and Hellinger distance are all special cases of f -divergences. The proof

of our bound is extremely simple: it is based on an elementary pointwise inequality

and a couple of applications of Jensen’s inequality. Special cases and straightfor-

ward corollaries of our bound include well-known minimax lower bounds like Fano’s

inequality and Pinsker’s inequality.

We also generalize a technique of Yang and Barron (1999) for obtaining minimax

lower bounds using covering and packing numbers of the whole parameter space. The

results in Yang and Barron (1999), which are based on Kullback-Leibler divergences,

have been successfully applied to several nonparametric problems with very large

(infinite-dimensional) parameter spaces. On the other hand, for finite dimensional

problems, their results usually produce sub-optimal rates, which lends support to the

statistical folklore that global covering and packing numbers alone are not enough to

recover classical parametric rates of convergence. As Chapter 3 shows, the folklore

is wrong as far as lower bounds are concerned: with a different f -divergence (chi-

squared), the analogue of the results of Yang and Barron (1999) does give the correct

rate for several finite dimensional problems.

Remark 1.0.1. After the paper Guntuboyina (2011), on which Chapter 3 is based,

was accepted, Professor Alexander Gushchin pointed out to me that one of the main

theorems of Chapter 3 appears in his paper, Gushchin (2003). The details of the

overlap with Gushchin’s paper are described in Section 3.4 of Chapter 3.

In Chapter 4, we illustrate the use of the bounds from Chapter 3 by means of an

application to a covariance matrix estimation problem, which was recently studied

by Cai, Zhang, and Zhou (2010).

Chapter 5 presents another illustration of our bounds. We study the problem of
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estimating a compact, convex set from noisy support function measurements. We

improve results due to Gardner, Kiderlen, and Milanfar (2006) by identifying the

correct (achievable) minimax rate for the problem.
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Chapter 2

Standard Minimax lower bounds

2.1 Introduction

This chapter reviews commonly used methods for bounding the minimax risk from

below in statistical problems. We work in the standard decision-theoretic setting

(see Ferguson, 1967, Chapter 1). Let Θ and A denote the parameter space and

action space respectively with the (non-negative) loss function denoted by L(θ, a).

We observe X whose distribution Pθ depends on the unknown parameter value. It

is assumed that Pθ is a probability measure on a space X having a density pθ with

respect to a common dominating sigma finite measure µ. (Nonrandomized) Decision

rules are functions mapping X to A. The risk of a decision rule d is defined by

EθL(θ, d(X)), where Eθ denotes expectation taken under the assumption that X is

distributed according to Pθ. The minimax risk for this problem is defined by

Rminimax := inf
d

sup
θ∈Θ

EθL(θ, d(X))

We first prove a general minimax lower bound that is based on a classically known

exact expression for the Bayes risk in decision-theoretic problems. We then demon-
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strate that standard lower bound techniques due to Le Cam, Assouad and Fano can

all be viewed as simple corollaries of this general bound. Previously (see, for ex-

ample, Yu, 1997 and Tsybakov, 2009, Chapter 2), these three techniques have been

treated separately.

2.2 General Minimax Lower Bound

The minimax risk Rminimax is bounded from below by the Bayes risk with respect

to every proper prior. Let w be a probability measure on Θ. The Bayes risk with

respect to w is defined by

RBayes(w) := inf
d

∫
Θ

EθL(θ, d(X))w(dθ).

The inequality Rminimax ≥ RBayes(w) holds for every w. The decision rule d for which

RBayes(w) is minimized can be determined as a posterior expected loss given the

data (Lehmann and Casella, 1998, page 228), which results in an exact expression

for RBayes(w). Indeed, for every d, assuming conditions for interchanging the order

of integration, we have

∫
Θ

EθL(θ, d(X))w(dθ) =

∫
X

∫
Θ

L(θ, d(x))pθ(x)w(dθ)µ(dx) ≥
∫
X
Bw,L(x)µ(dx)

where Bw,L(x) := infa∈AB
a
w,L(x) and Ba

w,L(x) :=
∫

Θ
L(θ, a)pθ(x)w(dθ). Morever,

equality is achieved for d(x) := argmina∈ABw,L(x, a). Thus RBayes(w) is equal to∫
X Bw,L(x)µ(dx) and we have the following minimax lower bound:

Rminimax ≥
∫
X
Bw,L(x)µ(dx) for every w. (2.1)

6



2.3 Review of Standard Techniques

Standard lower bound techniques including those of Assouad, Le Cam and Fano

are reviewed here. These bounds are well-known but we shall provide simple proofs

using the general bound (2.1). Our main point is that each of these bounds is a

special case of (2.1) for a particular choice of the prior w. In fact, all minimax lower

bound techniques that I know are based on bounding from below the Bayes risk with

respect to a prior w. Since the right hand side of (2.1) is exactly equal to the Bayes

risk under w, other minimax lower bound techniques that we do not discuss in this

chapter (e.g., Massart, 2007, Corollary 2.18 and Cai and Low, 2011, Corollary 1) can

also be derived from (2.1).

In the sequel, the following notions are often used:

1. d(θ1, θ2) := inf{L(θ1, a) + L(θ2, a) : a ∈ A} for θ1, θ2 ∈ Θ.

2. d(Θ1,Θ2) := inf {d(θ1, θ2) : θ1 ∈ Θ1, θ2 ∈ Θ2} for subsets Θ1 and Θ2 of Θ.

3. We say that a finite subset F of Θ is η-separated if d(θ1, θ2) ≥ η for all θ1, θ2 ∈ F

with θ1 6= θ2.

4. For finitely many probability measures P1, . . . , PN on X and weights ρi ≥

0,
∑N

i=1 ρi = 1, we define

r̄ρ(P1, . . . , PN) := 1−
∫
X

max
1≤i≤N

[ρipi(x)]µ(dx) where pi := dPi/dµ.

When the probability measures P1, . . . , PN are clear from the context, we just

write r̄ρ. Also, when ρi = 1/N , we simply write r̄(P1, . . . , PN) or r̄.

5. Hamming distance on the hypercube {0, 1}m: Υ(τ, τ ′) =
∑m

i=1 {τi 6= τ ′i}.
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6. The total variation distance ||P − Q||TV between two probability measures P

and Q is defined as 1
2

∫
X |p− q|dµ where p and q denote the densities of P and

Q with respect to µ.

7. Testing affinity ||P ∧Q||1 :=
∫

(p ∧ q)dµ = 2r̄(P,Q) = 1− ||P −Q||TV .

8. Kullback-Leibler divergence, D1(P ||Q) =
∫
p log(p/q)dµ. We use D1 for the

Kullback-Leibler divergence because it is a member (for α = 1) of a family of

divergences Dα introduced in the next chapter.

Example 2.3.1 (Multiple Hypothesis Testing). Suppose that Θ = A = {1, . . . , N}

and L(θ, a) = {θ 6= a}. Then,

Rminimax ≥ r̄ρ(P1, . . . , PN) for every ρi ≥ 0,
N∑
i=1

ρi = 1. (2.2)

This is a direct consequence of (2.1). Indeed, for every a ∈ A and x ∈ X , we can

write

Ba
ρ,L(x) =

N∑
i=1

{a 6= i} pi(x)ρi =
N∑
i=1

pi(x)ρi − pa(x)ρa

It follows therefore that infa∈AB
a
ρ,L(x) =

∑
i pi(x)ρi−maxi[pi(x)ρi] from which (2.2)

immediately follows.

The bound (2.1), with a multiplicative factor, can be obtained for Rminimax even in

general decision-theoretic problems, as explained in the following example.

Example 2.3.2. [General Testing Bound] For every η-separated finite subset F of

Θ, we have

Rminimax ≥
η

2
r̄ρ(Pθ, θ ∈ F ) for all ρθ ≥ 0, θ ∈ F with

∑
θ∈F

ρθ = 1. (2.3)
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This can be proved from (2.1) by choosing w to be the discrete probability measure

on F with w{θ} = ρθ, θ ∈ F . Indeed, for this prior w, we use the inequality

L(θ, a) ≥ (η/2) {L(θ, a) ≥ η/2} to write

Ba
w,L(x) ≥ η

2

(∑
θ∈F

ρθpθ(x)−
∑
θ∈F

ρθpθ(x) {L(θ, a) < η/2}

)

for every a ∈ A and x ∈ X . Because F is η-separated, for every action a, the loss

L(θ, a) is strictly smaller than η/2 for at most θ ∈ F . It follows therefore that

Bw,L(x) ≥ η

2

(∑
θ∈F

ρθpθ(x)−max
θ∈F

[ρθpθ(x)]

)

which implies (2.1).

Example 2.3.3 (Assouad). Suppose that Θ and A denote the hypercube {0, 1}m

with the loss function L(θ, a) = Υ(θ, a) =
∑m

i=1 {θi 6= ai}. Then

Rminimax ≥
m

2
min

Υ(θ,θ′)=1
||Pθ ∧ Pθ′||1. (2.4)

We shall prove this using (2.1) by taking w to be the uniform probability measure

on Θ. For every a ∈ A and x ∈ X ,

Ba
w,Υ(x) = 2−m

m∑
i=1

∑
θ∈{0,1}m

{θi 6= ai} pθ(x)

and consequently

Bw,Υ(x) =
1

2

m∑
i=1

min

(∑
θ:θi=0 pθ(x)

2m−1
,

∑
θ:θi=1 pθ(x)

2m−1

)
.
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Thus by (2.1),

Rminimax ≥
1

2

m∑
i=1

∣∣∣∣∣
∣∣∣∣∣
(

2−(m−1)
∑
θ:θi=0

Pθ

)
∧

(
2−(m−1)

∑
θ:θi=1

Pθ

)∣∣∣∣∣
∣∣∣∣∣
1

Each of the terms in the above summation can be seen to be bounded from below

by minΥ(θ,θ′)=1 ||Pθ ∧ Pθ′ ||1 which gives (2.4).

Assouad’s method also applies to general problems as explained below.

Example 2.3.4 (General Assouad). Consider a map ψ : {0, 1}m → Θ and suppose

that ζ is a positive real number such that d(ψ(τ), ψ(τ ′)) ≥ ζΥ(τ, τ ′) for every pair

τ, τ ′ ∈ {0, 1}m. Then

Rminimax ≥
mζ

4
min

Υ(τ,τ ′)=1
||Pψ(τ) ∧ Pψ(τ ′)||1. (2.5)

In order to prove this, for a ∈ A, we define τa ∈ {0, 1}m by τa := argminτ L(ψ(τ), a).

Then

L(ψ(τ), a) ≥ L(ψ(τ), a) + L(ψ(τa), a)

2
≥ ζ

2
Υ(τ, τa).

Thus by choosing w to be the image of the uniform probability measure on {0, 1}m

under the map ψ, we get

Ba
w,L(x) ≥ ζ

2

1

2m

∑
τ∈{0,1}m

Υ(τ, τa)pψ(τ)(x)

for every x ∈ X and a ∈ A. From here, we proceed as in the previous example to

obtain (2.5).

Example 2.3.5 (Le Cam). Let w1 and w2 be two probability measures that are
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supported on subsets Θ1 and Θ2 of the parameter space respectively. Also let m1

and m2 denote the marginal densities of X with respect to w1 and w2 respectively i.e.,

mi(x) :=
∫

Θi
pθ(x)wi(dθ) for i = 1, 2. Le Cam (1973) proved the following inequality

Rminimax ≥
1

2
d (Θ1,Θ2) ||m1 ∧m2||1 . (2.6)

For its proof, we use (2.1) with the mixture prior w = (w1 +w2)/2. For every x ∈ X

and a ∈ A,

Ba
w,L(x) =

1

2
Ba
w1,L

(x) +
1

2
Ba
w2,L

(x)

≥ 1

2
m1(x) inf

θ1∈Θ1

L(θ1, a) +
1

2
m2(x) inf

θ2∈Θ2

L(θ2, a)

≥ 1

2
min (m1(x),m2(x)) d (Θ1,Θ2) ,

which, at once, implies (2.6).

Example 2.3.6 (Fano). Fano’s inequality states that for every finite η-separated

subset of Θ with cardinality denoted by N , we have

Rminimax ≥
η

2

(
1−

log 2 + 1
N

∑
θ∈F D1(Pθ||P̄ )

logN

)
, (2.7)

where P̄ :=
∑

θ∈F Pθ/N . The quantity J1 :=
∑

θ∈F D1(Pθ||P̄ )/N is known as the

Jensen-Shannon divergence. It is also Shannon’s mutual information (Cover and

Thomas, 2006, Page 19) between the random parameter θ distributed according to

the uniform distribution on F and the observation X whose conditional distribution

given θ equals Pθ.

The general testing bound: Rminimax ≥ (η/2)r̄(Pθ, θ ∈ F ) is the first step in the

11



proof of (2.7). The next step is to prove that

r̄(Pθ, θ ∈ F ) ≥ 1−
log 2 + 1

N

∑
θ∈F D1(Pθ||P̄ )

logN
. (2.8)

Kemperman (1969, Page 135) provided a simple proof of (2.8) using the following

elementary inequality: For nonnegative numbers a1, . . . , aN ,

(logN) max
1≤i≤N

ai ≤
N∑
i=1

ai log

(
2ai
ā

)
where ā := (a1 + · · ·+ aN)/N. (2.9)

For a proof of (2.9), assume, without loss of generality, that
∑

i ai = 1 and a1 =

max1≤i≤N ai. Then (2.9) is equivalent to the inequality
∑

i ai log(bi/ai) ≤ 0 where

b1 = 1/2 and bi = 1/(2N), i = 2, . . . , N and this latter inequality is just a consequence

of Jensen’s inequality (using the convexity of x 7→ log x and
∑

i ai = 1 ≥
∑

i bi).

Kemperman proved (2.8) by applying (2.9) to the nonnegative numbers pθ(x), θ ∈

F for a fixed x ∈ X and integrating both sides of the resulting inequality with respect

to µ.

The inequality (2.7) has been extensively used in the nonparametric statistics

literature for obtaining minimax lower bounds, important works being Ibragimov

and Has’minskii (1977, 1980, 1981); Has’minskii (1978); Birgé (1983, 1986); Yang

and Barron (1999).
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Chapter 3

Bounds via f-divergences

3.1 f-divergences: What are they?

In this chapter, we shall prove minimax lower bounds using f -divergences.

Let f : (0,∞) → R be a convex function with f(1) = 0. The limits f(0) :=

limx↓0 f(x) and f ′(∞) := limx↑∞ f(x)/x exist by convexity although they can be

+∞.

For two probability measures P and Q having densities p and q with respect to

µ, Ali and Silvey (1966) defined the f -divergence Df (P ||Q) between P and Q by

Df (P ||Q) := Qf(p/q) + f ′(∞)P{q = 0}. (3.1)

This notion was also independently introduced by Csisźar (1963).

Df (P ||Q) can be viewed as a measure of distance between P and Q. It is usually

not a metric however with the exception of the total variation distance ||P −Q||TV ,

which corresponds to f(x) = |x−1|/2 (an interesting fact, whose proof can be found

in Vajda, 2009, is that Df is a metric if and only if it equals, up to a constant, the

total variation distance).
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When P is absolutely continuous with respect to Q, the second term in the right

hand side of (3.1) equals zero (note the convention∞×0 = 0) and thus the definition

reduces to Qf(p/q). When f(x) = |x−1|/2, the second term is necessary in order to

ensure that (3.1) agrees with the usual definition for total variation distance in the

case when Q does not dominate P . For convex functions f with f ′(∞) = ∞ (such

as x log x or x2− 1), Df (P ||Q) equals +∞ when P is not absolutely continuous with

respect to Q.

It is easily checked that the right hand side above is unchanged if f(x) is replaced

by f(x)+c(x−1) for any constant c. With an appropriate choice of c, we can always

arrange for f to be minimized at x = 1 which, because f(1) = 0, ensures that f is

nonnegative.

Df (P ||Q) is convex in each argument; convexity in P is obvious while convexity

in Q follows from Df (P ||Q) = Df∗(Q||P ) for f ∗(x) = xf(1/x).

The power divergences constitute an important subfamily of the f -divergences.

They correspond to the convex functions fα, α ∈ R defined by

fα(x) =



xα − 1 for α /∈ [0, 1]

1− xα for α ∈ (0, 1)

x log x for α = 1

− log x for α = 0

For simplicity, we shall denote the divergence Dfα by Dα. One has the identity

Dα(P ||Q) = D1−α(Q||P ). Some examples of power divergences are:

1. Kullback-Leibler divergence: α = 1; D1(P ||Q) =
∫
p log(p/q)dµ.

2. Chi-squared divergence: α = 2; D2(P ||Q) =
∫

(p2/q)dµ.

3. Square of the Hellinger distance: α = 1/2; D1/2(P ||Q) = 1−
∫ √

pqdµ.
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The total variation distance ||P −Q||TV is an f -divergence (with f(x) = |x− 1|/2)

but not a power divergence.

The power divergences are particularly handy in applications where the under-

lying probabilities are product measures, for which the calculation of power diver-

gences reduces to calculations on the marginal distributions. Indeed, it can be readily

checked that

Dα (P1 × · · · × Pn||Q1 × · · · ×Qn) =


∏n

i=1 (Dα(Pi||Qi) + 1)− 1 for α /∈ [0, 1]

1−
∏n

i=1 (1−Dα(Pi||Qi)) for α ∈ (0, 1)∑n
i=1Dα(Pi||Qi) for α ∈ {0, 1}

3.2 Main Result

Consider the quantity r̄ = r̄(P1, . . . , PN) = 1 − 1
N

∫
maxi pidµ for probability mea-

sures P1, . . . , PN having densities p1, . . . , pN with respect to µ. As explained in Chap-

ter 2, the quantity r̄(P1, . . . , PN) appears in almost all the standard minimax lower

bound techniques. For example, the general testing bound uses r̄(P1, . . . , PN) directly

and the methods of Assouad and Le Cam use the affinity term ||P1∧P2|| = 2r̄(P1, P2).

The following theorem provides a lower bound for r̄ in terms of f -divergences. As

we shall demonstrate in the rest of this chapter, it implies a number of very useful

lower bounds for the minimax risk in general decision-theoretic problems.

Theorem 3.2.1. Consider probability measures P1, . . . , PN on a space X and a con-

vex function f on (0,∞) with f(1) = 0. For every probability measure Q on X , we

have
∑N

i=1Df (Pi||Q) ≥ g(r̄) where r̄ = r̄(P1, . . . , PN) and

g(a) := f (N(1− a)) + (N − 1)f

(
Na

N − 1

)
. (3.2)
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Proof. To make the basic idea clearer, we assume that P1, . . . , PN are all dominated

by Q and write pi for the density of Pi with respect to Q. For the undominated case,

see the proof of Theorem 3.3.1. We start with the following simple inequality for

nonnegative numbers a1, . . . , aN

N∑
i=1

f(ai) ≥ f(max
i
ai) + (N − 1)f

(∑N
i=1 ai −maxi ai

N − 1

)
. (3.3)

To see this, assume without loss of generality that a1 = maxi ai, rewrite the sum∑
i f(ai) as f(a1) + (N −1)

∑
i≥2(f(ai)/(N −1)) and use convexity on the final sum.

We now fix x ∈ X and apply (3.3) with ai := pi(x) to obtain

N∑
i=1

f (pi(x)) ≥ f(max
i
pi(x)) + (N − 1)f

(∑N
i=1 pi(x)−maxi pi(x)

(N − 1)

)
.

The required inequality
∑

iDf (Pi||Q) ≥ g(r̄) is now deduced by integrating both

sides of the above pointwise inequality with respect toQ and using Jensen’s inequality

on the right hand side.

Remark 3.2.1. As already mentioned in Remark 1.0.1, after the journal acceptance

of the paper Guntuboyina (2011), on which the present chapter is based, Professor

Alexander Gushchin brought to my notice the fact that the above theorem appears

in Gushchin (2003). The extent of the overlap with Gushchin’s paper and the differ-

ences between our’s and Gushchin’s proof of the theorem are described in Section 3.4

of Chapter 3.

Remark 3.2.2. The special case of Theorem 3.2.1 for the Kullback-Leibler divergence

(f(x) = x log x) has appeared in the literature previously: implicitly in Han and Verdú

(1994, Proof of Theorem 1) and explicitly, without proof, in Birgé (2005, Theorem

3). The proof in Han and Verdú (1994) is based on information-theoretic arguments.
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The following argument shows that Theorem 3.2.1 provides a lower bound for r̄.

Note that r̄ is at most 1−1/N (which directly follows from the definition of r̄) and g

is non-increasing on [0, 1−1/N ]. To see this, observe that for every a ∈ (0, 1−1/N ],

we have

g′L(a)

N
= f ′L

(
Na

N − 1

)
− f ′R(N(1− a)),

where g′L and f ′L represent left derivatives and f ′R represents right derivative (note

that f ′L and f ′R exist because of the convexity of f). Because Na/(N−1) ≤ N(1−a)

for every a ∈ [0, 1 − 1/N ] and f is convex, we see that g′L(a) ≤ 0 for every a ∈

(0, 1− 1/N ] which implies that g is non-increasing on [0, 1− 1/N ].

We also note that the convexity of f implies that g is convex as well. The following

techniques are useful for converting the inequality given in Theorem 3.2.1 into an

explicit lower bound for r̄:

1. Explicit inversion of g: For certain functions f , the function g given by (3.2)

can be explicitly inverted. Examples are given below.

(a) (Chi-squared divergence) For f(x) = f2(x) = x2 − 1,

g(r̄) =
N3

N − 1

(
1− 1

N
− r̄
)2

≥ N2

(
1− 1

N
− r̄
)2

.

Because r̄ ≤ 1− 1/N , the inequality
∑

iD2(Pi||Q) ≥ g(r̄) can be inverted

to yield

r̄(P1, . . . , PN) ≥ 1− 1

N
− 1√

N

√∑N
i=1D2(Pi||Q)

N
for every Q. (3.4)

(b) (Total variation distance) For f(x) = |x − 1|/2, because r̄ ≤ 1 − 1/N ,

it can be checked that g(r̄) = N − 1 − Nr̄. We, thus, have the explicit
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inequality:

r̄ ≥ 1− 1

N
−
∑N

i=1 ||Pi −Q||TV
N

for every Q.

2. Lower bounds for g: Lower bounds for g can often lead to useful inequalities.

For example, if f(x) = fα(x) = xα− 1 with α > 1, then the function g has the

simple lower bound:

g(r̄) = Nα(1− r̄)α −N + (N − 1)

(
Nr̄

N − 1

)α
≥ Nα(1− r̄)α −N.

This results in the following explicit bound for r̄:

r̄ ≥ 1−

(
1

Nα−1
+

∑N
i=1 Dα(P1||Q)

Nα

)1/α

for every Q and α > 1. (3.5)

When α = 2, the above inequality is weaker than (3.4) but for large N , the

two bounds are almost the same.

3. Linear approximation for g: We have a seemingly crude method that works

for every f . Because the function g is convex and non-increasing, for every a

in (0, 1− 1/N ], the left derivative g′L(a) is less than or equal to 0 and g(r̄) is at

least g(a) + g′L(a)(r̄ − a). Theorem 3.2.1 implies therefore that
∑

iDf (Pi||Q)

is at least g(a) + g′L(a)(r̄ − a) which, when rearranged, results in

r̄ ≥ a+

∑N
i=1Df (Pi||Q)− g(a)

g′L(a)
(3.6)

for every Q and a ∈ (0, 1− 1/N ] with g′L(a) < 0. As explained in Section 3.6,

this crude result is strong enough for Theorem 3.2.1 to yield Fano’s inequality.
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3.3 A more general result

In this section, we show that the method of proof used for Theorem 3.2.1 also gives an

inequality for r̄w = r̄w(P1, . . . , PN) = 1−
∫

maxi(wipi)dµ for general weights wi ≥ 0

with
∑

iwi = 1. This result has been included here just for completeness and will

not be used in the sequel. Theorem 3.2.1 is a special case of the following theorem

obtained by taking wi = 1/N . Moreover, in the proof of the following theorem, we

do not necessarily assume that P1, . . . , PN are dominated by Q.

Theorem 3.3.1. For every f : (0,∞)→ R and every probability measure Q,

N∑
i=1

wiDf (Pi||Q) ≥ Wf

(
1− r̄w
W

)
+ (1−W )f

(
r̄w

1−W

)
, (3.7)

where W :=
∫
X wT (x)Q(dx) with T (x) := argmax1≤i≤N(wipi(x)).

Proof. We assume, without loss of generality, that all the weights w1, . . . , wN are

strictly positive. Suppose dPi/dµ = pi, i = 1, . . . , N and dQ/dµ = q. Consider

the following pointwise inequality: For nonnegative numbers a1, . . . , aN and every

1 ≤ τ ≤ N ,

N∑
i=1

wif(ai) ≥ wτf(aτ ) + (1− wτ )f

(∑N
i=1wiai − wτaτ

1− wτ

)
.

Applying this inequality to ai = pi(x)/q(x) and τ := T (x) = argmaxi(wipi(x)) for a

fixed x with q(x) > 0, we obtain

N∑
i=1

wif

(
pi(x)

q(x)

)
≥ wT (x)f

(
pT (x)(x)

q(x)

)
+(1−wT (x))f

(∑
iwipi(x)− wT (x)pT (x)(x)

(1− wT (x))q(x)

)
.

Integrating both sides with respect to Q, we obtain that
∑

iwiQf(pi/q) is greater
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than or equal to

W

∫
f

(
pT (x)(x)

q(x)

)
Q′(dx) + (1−W )

∫
f

(∑
iwipi(x)− wT (x)pT (x)

(1− wT (x))q(x)

)
Q′′(dx), (3.8)

where W =
∫
wT (x)Q(dx) and

Q′(dx) :=
wT (x)

W
Q(dx) and Q′′(dx) :=

1− wT (x)

1−W
Q(dx).

By the application of Jensen’s inequality to each of the terms in (3.8), we deduce

that
∑

iwiQf(pi/q) is greater than or equal to

Wf

(∫
{q>0}

maxi(wipi)

W
dµ

)
+ (1−W )f

(∫
{q>0}

∑
iwipi −maxi(wipi)

1−W
dµ

)
.

Also note that
∑

iwiPi{q = 0} equals

W

∫
{q=0}

maxi(wipi)

W
dµ+ (1−W )

∫
{q=0}

∑
iwipi −maxi(wipi)

1−W
dµ.

By the definition of Df (Pi||Q), we deduce that
∑

iwiDf (Pi||Q) is bounded from

below by WT1 + (1−W )T2 where T1 and T2 equal

f

(∫
{q>0}

maxi(wipi)

W
dµ

)
+ f ′(∞)

∫
{q=0}

maxi(wipi)

W
dµ

and

f

(∫
{q>0}

∑
iwipi −maxi(wipi)

1−W
dµ

)
+ f ′(∞)

∫
{q=0}

∑
iwipi −maxi(wipi)

1−W
dµ

respectively. Now by the convexity of f , the inequality f(y0) + (y− y0)f ′(∞) ≥ f(y)

holds for every 0 ≤ y0 ≤ y. Using this with y0 :=
∫
{q>0}maxi(wipi)dµ/W and
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y =
∫

maxi(wipi)dµ/W , we obtain that T1 ≥ f((1 − r̄w)/W ). It is similarly shown

that T2 ≥ f(r̄w/(1−W ) which implies that WT1 + (1−W )T2 is larger than or equal

to the right hand side of (3.7).

3.4 Overlap with Gushchin (2003)

As mentioned in Remark 3.2.1, Professor Alexander Gushchin pointed out to me

(after the acceptance of Guntuboyina, 2011) that Theorem 3.2.1 and its non-uniform

prior version, Theorem 3.3.1, appear in his paper Gushchin (2003). Specifically,

in a different notation, Theorem 3.2.1 appears as Theorem 1 and inequality (3.7)

appears in Section 4.3 in Gushchin (2003). Except for these two theorems and the

observation that Fano’s inequality is a special case of Theorem 3.2.1 (which we make

in Section 3.6), there is no other overlap between this thesis and Gushchin (2003).

Also, the proof of Theorem 3.2.1 (and Theorem 3.3.1) given in Gushchin (2003)

is different from our proof. In order to make this transparent, we shall sketch

Gushchin’s proof of Theorem 3.2.1 here:

1. The proof starts with the observation that
∑

iDf (Pi||Q)/N equals Df (P̃ ||Q̃)

where P̃ and Q̃ denote probability measures on X × {1, . . . , N} defined by

P̃ (B × {i}) = Pi(B)/N and Q̃(B × {i}) = Q(B)/N for B ⊆ X .

2. Let A1, . . . , AN denote a partition of X such that pi(x) equals maxi pi(x) for

x ∈ Ai. Consider the test function φ on X × {1, . . . , N} defined by φ(x, i) =

{x /∈ Ai}. It can be checked that P̃ φ = r̄ and Q̃(1− φ) = 1/N .

3. Gushchin (2003) then invokes a general result (Liese and Vajda, 1987, Theorem

1.24) relating f -divergences to the type I and type II errors of tests to deduce

Theorem (3.2.1).
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Our proof, which is based on the elementary pointwise inequality (3.3) and two

applications of Jensen’s inequality, is clearly simpler.

3.5 Special Case: N = 2

For N = 2, Theorem 3.2.1 gives

Df (P1||Q) +Df (P2||Q) ≥ f(2(1− r̄)) + f(2r̄).

The quantity r̄(P1, P2) is related to the total variation distance V between P1 and

P2 via V = 1 − 2r̄(P1, P2). Thus the above inequality can be rewritten in terms of

total variation distance as follows:

Df (P1||Q) +Df (P2||Q) ≥ f(1 + V ) + f(1− V ) for every Q. (3.9)

We have singled out this special case of Theorem 3.2.1 because

1. It adds to the many inequalities that exist in the literature which relate the

f -divergence between two probability measures to their total variation distance.

2. As may be recalled from the previous chapter, lower bounds for r̄(P1, P2), which

also equals one-half the affinity ||P1 ∧ P2||1, for two probability measures P1

and P2 are necessary for the application of the bounds of Assouad and Le Cam.

Inequality (3.9) is new although its special case for f(x) = x log x has been

obtained by Topsøe (2000, Equation (24)). Topsøe (2000) also explained how to use

this inequality to deduce Pinsker’s inequality with sharp constant: D1(P1||P2) ≥ 2V 2.
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3.6 Fano’s inequality

Fano’s inequality, which is commonly used in nonparametric statistics, bounds r̄

from below using the Kullback-Leibler divergence between the Pi’s and their average,

P̄ := (P1 + · · ·+ PN)/N :

r̄ ≥ 1−
log 2 + 1

N

∑N
i=1 D1(Pi||P̄ )

logN
. (3.10)

It is a consequence of (3.6) for f(x) = x log x, Q = P̄ and a = (N − 1)/(2N − 1).

Indeed, with these choices, (3.6) gives

r̄ ≥ 1−
log((2N − 1)/N) + 1

N

∑N
i=1D1(Pi||P̄ )

logN
.

which clearly implies (3.10) because log((2N − 1)/N) ≤ log 2. It may be helpful

to note here that for the Kullback-Leibler divergence D1, the probability measure

Q which minimizes
∑

iD1(Pi||Q) equals P̄ and this follows from the following well-

known identity (sometimes referred to as the compensation identity, see for exam-

ple Topsøe, 2000, Page 1603):

N∑
i=1

D1(Pi||Q) =
N∑
i=1

D1(Pi||P̄ ) +ND1(P̄ ||Q) for every Q.

Remark 3.6.1. Our proof of Theorem 3.2.1 is similar in spirit to Kemperman’s

proof of Fano’s inequality described in the last chapter (see Example 2.3.6). The

starting point in both proofs is a pointwise inequality involving the maximum of a

finite number of nonnegative numbers. Kemperman’s proof starts with the pointwise
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inequality:

m logN ≤
N∑
i=1

ai log

(
2ai
ā

)
for ai ≥ 0 with m := max

1≤i≤N
ai. (3.11)

By homogeneity, we may assume that
∑

i ai = 1. The inequality is then equivalent

to ∑
i

ai log ai ≥ − log 2− (1−m) logN. (3.12)

Our proof of Theorem 3.2.1 starts with (3.3) which, for f(x) = x log x and
∑

i ai = 1

becomes

N∑
i=1

ai log ai ≥ m logm+ (1−m) log(1−m)− (1−m) log(N − 1). (3.13)

This inequality is stronger than Kemperman’s inequality (3.12) because of the ele-

mentary inequality: m logm+ (1−m) log(1−m) ≥ − log 2 for all m ∈ [0, 1].

3.7 Upper bounds for infQ
∑

iDf(Pi||Q)

For successful application of Theorem 3.2.1, one needs useful upper bounds for the

quantity Jf := infQ
∑N

i=1Df (Pi||Q)/N . When f = fα, we write Jα for Jf . Such

bounds are provided in this section.

For f(x) = x log x, the following inequality has been frequently used in the liter-

ature (see, for example, Birgé, 1983 and Nemirovski, 2000):

J1 ≤
1

N

N∑
i=1

D1(Pi||P̄ ) ≤ 1

N2

∑
i,j

D1(Pi||Pj) ≤ max
i,j

D1(Pi||Pj).

This is just a consequence of the convexity of D1(P ||Q) in Q and, for the same reason,

holds for all f -divergences. The inequality is analogous to using max(ai − aj)
2 as
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an upper bound for infc
∑N

i=1(ai− c)2/N and, quite often, maxi,j Df (Pi||Pj) is not a

good upper bound for Jf .

Yang and Barron (1999, Page 1571) improved the upper bound in the case of the

Kullback-Leibler divergence. Specifically, they showed that for every set of probabil-

ity measures Q1, . . . , QM ,

inf
Q

1

N

N∑
i=1

D1(Pi||Q) ≤ logM + max
1≤i≤N

min
1≤j≤M

D1(Pi||Qj). (3.14)

The M probability measures Q1, . . . , QM can be viewed as an approximation of the

N probability measures P1, . . . , PN . The term maxi minj D1(Pi||Qj) then denotes

the approximation error, measured via the Kullback-Leibler divergence. The right

hand side of inequality (3.14) can therefore be made small if it is possible to choose

not too many probability measures Q1, . . . , QM which well approximate the given set

of probability measures P1, . . . , PN .

Inequality (3.14) can be rewritten using covering numbers. For ε > 0, let M1(ε)

denote the smallest number M for which there exist probability measures Q1, . . . , QM

that form an ε2-cover for P1, . . . , PN in the Kullback-Leibler divergence i.e.,

min
1≤j≤M

D1(Pi||Qj) ≤ ε2 for every 1 ≤ i ≤ N.

Then (3.14) is equivalent to

inf
Q

1

N

N∑
i=1

D1(Pi||Q) ≤ inf
ε>0

(
logM1(ε) + ε2

)
. (3.15)

Note that logM1(ε) is a decreasing function of ε. The right hand side of the above in-

equality involves the usual increasing versus decreasing trade-off. The next Theorem

generalizes the bound (3.14) to arbitrary f -divergences.
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Theorem 3.7.1. Let Q1, . . . , QM be probability measures having densities q1, . . . , qM

respectively with respect to µ. Let us denote their average by Q̄ = (Q1 + · · ·+QM)/M

with q̄ = (q1+· · ·+qM)/M . Then for every convex function f on (0,∞) with f(1) = 0,

we have

Jf ≤
1

N

N∑
i=1

min
1≤j≤M

∫
X

qj
M
f

(
Mpi
qj

)
dµ+

(
1− 1

M

)
f(0) + f ′(∞)P̄ {q̄ = 0} . (3.16)

Proof. We assume, without loss of generality, that f(0) < ∞. Clearly for each

i ∈ {1, . . . , N},

Df (Pi||Q̄) =

∫
X
q̄

[
f

(
pθ
q̄

)
− f(0)

]
+ f(0) + f ′(∞)Pi {q̄ = 0} .

The convexity of f implies that the map y 7→ y[f(a/y)− f(0)] is non-increasing for

every nonnegative a. Using this and the fact that q̄ ≥ qj/M for every j, we get that

for every i ∈ {1, . . . , N},

Df (Pi||Q̄) ≤ min
1≤j≤M

∫
X

qj
M

[
f

(
Mpi
qj

)
− f(0)

]
dµ+ f(0) + f ′(∞)Pi {q̄ = 0} .

Inequality (3.16) is deduced by averaging these inequalities over 1 ≤ i ≤ N .

For f(x) = x log x, the inequality (3.16) gives

J1 ≤ logM +
1

N

N∑
i=1

min
j
D1(Pi||Qj) +∞ · P̄ {q̄ = 0} .

This clearly implies (3.14) (note that the ∞ · P̄{q̄ = 0} term is redundant because

if P̄ is not absolutely continuous with respect to Q̄, then minj D1(Pi||Qj) would be

+∞ for some i).

Power divergences (f(x) = fα(x), α > 0) are considered in the examples below.
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Theorem 3.7.1 gives meaningful conclusions for power divergences only when α > 0

because fα(0) equals +∞ when α ≤ 0.

Analogous to M1(ε), let us define Mα(ε) as the smallest number of probability

measures needed to form an ε2-cover of P1, . . . , PN in the Dα divergence.

Example 3.7.2. Let f(x) = xα − 1 with α > 1. Applying inequality (3.16), we get

that

Jα ≤Mα−1

(
1

N

N∑
i=1

min
1≤j≤M

Dα(Pi||Qj) + 1

)
− 1 +∞ · P̄ {q̄ = 0} .

As a consequence, we obtain (note that the ∞ · P̄{q̄ = 0} term is again redundant)

Jα ≤Mα−1

(
max

1≤i≤N
min

1≤j≤M
Dα(Pi||Qj) + 1

)
− 1. (3.17)

Rewriting in terms of the cover numbers Mα(ε), we get

Jα ≤ inf
ε>0

(
1 + ε2

)
Mα(ε)α−1 − 1. (3.18)

Note that Mα(ε) is a decreasing function of ε.

Example 3.7.3. Let f(x) = 1−xα for 0 < α < 1. The inequality (3.16) gives (note

that f ′α(∞) = 0)

Jα ≤ 1− 1

M1−α

(
1− 1

N

N∑
i=1

min
1≤j≤M

Dα(Pi||Qj)

)
.

and thus

Jα ≤ 1− 1

M1−α

(
1− max

1≤i≤N
min

1≤j≤M
Dα(Pi, Qj)

)
.
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In terms of Mα(ε), we have

Jα ≤ 1− sup
ε>0

(1− ε2)Mα(ε)α−1.

Once again, the usual increasing versus decreasing trade-off is involved.

3.8 General Bounds

By combining Theorem 3.2.1: Jf = infQ
∑N

i=1 Df (Pi||Q)/N ≥ g(r̄)/N with the upper

bound for Jf given in Theorem 3.7.1, we get lower bounds for r̄ in terms of covering

numbers of {P1, . . . , PN} measured in terms of the divergence Df . For example, in

the case of the convex function fα(x) = xα − 1, α > 1 for which the inequality given

by Theorem 3.2.1 can be approximately inverted to yield (3.5), combining (3.18)

with (3.5) results in

r̄(P1, . . . , PN) ≥ 1−
(

1

Nα−1
+

(1 + ε2)Mα(ε)α−1

Nα−1

)1/α

for every ε > 0 and α > 1.

When α = 2, we can use (3.4) instead of (3.5) to get

r̄(P1, . . . , PN) ≥ 1− 1

N
−
√

(1 + ε2)M2(ε)

N
for every ε > 0.

One more special case is when α = 1 (Kullback-Leibler divergence). Here we com-

bine (3.10) with (3.15) to deduce

r̄(P1, . . . , PN) ≥ 1− log 2 + logM1(ε) + ε2

logN
for every ε > 0.
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If we employ the general testing bound (Chapter 2), then the above inequalities can

be converted to produce inequalities for the minimax risk in general decision-theoretic

problems. The general testing bound asserts that

Rminimax ≥ (η/2)r̄(Pθ, θ ∈ F ) for every η-separated finite subset F of Θ.

Let us recall that a finite subset F of Θ is η-separated if L(θ1, a) + L(θ2, a) ≥ η for

every a ∈ A and θ1, θ2 ∈ F with θ1 6= θ2.

The testing lower bound, therefore, implies that for every η > 0 and every finite

η-separated subset F of Θ, the right hand side of each of the above three inequalities

multiplied by η/2 would be a lower bound for Rminimax. This leads to the following

three inequalities (the first inequality holds for every α > 1)

Rminimax ≥
η

2

(
1−

(
1

Nα−1
+

(1 + ε2)Mα(ε;F )α−1

Nα−1

)1/α
)

(3.19)

Rminimax ≥
η

2

(
1− 1

N
−
√

(1 + ε2)M2(ε;F )

N

)
, (3.20)

Rminimax ≥
η

2

(
1− log 2 + logM1(ε;F ) + ε2

logN

)
, (3.21)

where N is the cardinality of F and we have written Mα(ε;F ) in place of Mα(ε)

to stress that the covering number corresponds to Pθ, θ ∈ F . Inequality (3.21) is

essentially due to Yang and Barron (1999) although they state their result for the

estimation problem from n independent and identically distributed observations.

The first step in the application of these inequalities to a specific problem is the

choice of η and the η-separated finite subset F ⊆ Θ. This is usually quite involved

and problem-specific. For example, refer to Chapter 4, where an application of these

inequalities to a covariance matrix estimation problem is provided.
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Yang and Barron (1999) suggested a clever way of applying (3.21) which does

not require explicit construction of an η-separated subset F . Their first suggestion is

to take F to be a maximal (as opposed to arbitrary) η-separated subset of Θ. Here

maximal means that F is η-separated and no F ′ ⊇ F is η-separated. For this F , they

recommend the trivial bound M1(ε;F ) ≤ M1(ε; Θ). Here, the quantity M1(ε; Θ), or

more generally, Mα(ε; Θ) is the covering number: smallest M for which there exist

probability measures Q1, . . . , QM such that

min
1≤j≤M

Dα(Pθ||Qj) ≤ ε2 for every θ ∈ Θ.

These ideas lead to the following lower bound:

Rminimax ≥ sup
η>0,ε>0

η

2

(
1− log 2 + logM1(ε; Θ) + ε2

logN(η)

)
(3.22)

where N(η) denotes the size of a maximal η-separated subset of Θ.

Exactly parallel treatment of (3.19) and (3.21) leads to the following two bounds:

Rminimax ≥ sup
η>0,ε>0,α>1

η

2

(
1−

(
1

N(η)α−1
+

(1 + ε2)Mα(ε; Θ)α−1

N(η)α−1

)1/α
)

(3.23)

and

Rminimax ≥ sup
η>0,ε>0

η

2

(
1− 1

N(η)
−

√
(1 + ε2)M2(ε; Θ)

N(η)

)
. (3.24)

The application of these inequalities just requires a lower bound on N(η) and an

upper bound on Mα(ε; Θ). Unlike the previous inequalities, these bounds do not

involve an explicit η-separated subset of the parameter space.

The quantity N(η) only depends on the structure of the parameter space Θ with

respect to the loss function. It has no relation to the observational distributions
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Pθ, θ ∈ Θ. On the other hand, the quantity Mα(ε; Θ) depends only on these proba-

bility distributions and has no connection to the loss function. Both these quantities

capture the global structure of the problem and thus, each of the above three in-

equalities can be termed as a global minimax lower bound.

Yang and Barron (1999) successfully applied inequality (3.22) to obtain optimal

rate minimax lower bounds for standard nonparametric density estimation and re-

gression problems where N(η) and M1(ε; Θ) can be deduced from available results

in approximation theory (for the performance of (3.22) on parametric estimation

problems, see Section 3.9). In Chapter 5, we shall present a new application of these

global bounds. Specifically, we shall employ the inequality (3.24) to prove a minimax

lower bound having the optimal rate for the problem of estimating a convex set from

noisy measurements of its support function.

We would like to remark, however, that these global bounds are not useful in ap-

plications where the quantities N(η) and Mα(ε; Θ) are infinite or difficult to bound.

This is the case, for example, in the covariance matrix estimation problem considered

in Chapter 4, where it is problematic to apply the global bounds. In such situations,

as we show for the covariance matrix estimation problem in Chapter 4, the inequal-

ities (3.19), (3.20), (3.21) can still be effectively employed to result in optimal lower

bounds.

3.9 Differences between the Global Bounds

In this section, we shall present examples of estimation problems where the global

lower bound (3.22) yields results that are quite different in character from those given

by inequalities (3.23) and (3.24). Specifically, we shall consider standard parametric

estimation problems. In these problems, it has been observed by Yang and Barron
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(1999, Page 1574) that (3.22) only results in sub-optimal lower bounds for the mini-

max risk. We show, on the other hand, that (3.24) (and (3.23)) produce rate-optimal

lower bounds.

According to statistical folklore, one needs more than global covering number

bounds (also known as global metric entropy bounds) to capture the usual mini-

max rate (under squared error loss) for classical parametric estimation problems.

Indeed, Yang and Barron (1999, Page 1574-1575) were quite explicit on this point:

For smooth finite-dimensional models, the minimax risk can be solved

using some traditional statistical methods (such as Bayes procedures,

Cramér-Rao inequality, Van Tree’s inequality, etc.), but these techniques

require more than the entropy condition. If local entropy conditions are

used instead of those on global entropy, results can be obtained suitable

for both parametric and nonparametric families of densities.

Nevertheless, as shown by the following examples, inequalities (3.24) and (3.23), that

are based on divergences Dα with respect to α > 1 as opposed to α = 1, can derive

lower bounds with optimal rates of convergence from global bounds.

We would like to stress here that these examples are presented merely as toy ex-

amples to note a difference between the two global bounds (3.22) and (3.24) (which

provides a justification for using divergences other than the Kullback-Leibler diver-

gence for minimax lower bounds) and also to emphasize the fact that global char-

acteristics are enough to obtain minimax lower bounds even in finite dimensional

problems. In each of the following examples, obtaining the optimal minimax lower

bound is actually quite simple using other techniques.

In the first three examples, we take the parameter space Θ to be a bounded

interval of the real line and we consider the problem of estimating a parameter
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θ ∈ Θ from n independent observations distrbuted according to mθ, where mθ is a

probability measure on the real line. The probability measure Pθ accordingly equals

the n-fold product of mθ.

We work with the usual squared error loss L(θ, a) = (θ−a)2. Because d(θ1, θ2) =

infa∈R(L(θ1, a)+L(θ2, a)) ≥ (θ1−θ2)2/2, the quantityN(η) appearing in (3.22), (3.24)

and (3.23), which is the size of a maximal η-separated subset of Θ, is larger than

c1η
−1/2 for η ≤ η0 where c1 and η0 are positive constants depending on the bounded

parameter space alone. We encounter more positive constants c, c2, c3, c4, c5, ε0 and

ε1 in the examples all of which depend possibly on the parameter space alone and

thus, independent of n.

In the following, we focus on the performance of inequality (3.24). The behavior

of (3.23) for l > 1 is similar to the l = 2 case.

Example 3.9.1. Suppose that mθ equals the normal distribution with mean θ and

variance 1. The chi-squared divergence D2(Pθ||Pθ′) equals exp (n|θ − θ′|2)− 1 which

implies that D2(Pθ||Pθ′) ≤ ε2 if and only if |θ − θ′| ≤
√

log(1 + ε2)/
√
n. Thus

M2(ε; Θ) ≤ c2

√
n/
√

log(1 + ε2) for ε ≤ ε0 and consequently, from (3.24),

Rn ≥ sup
η≤η0,ε≤ε0

η

2

(
1−
√
η

c1

− (ηn)1/4

√
c2(1 + ε2)

c1

√
log(1 + ε2)

)
.

Taking ε = ε0 and η = c3/n, we get

Rn ≥
c3

2n

(
1−

√
c3

c1

√
n
− c1/4

3 c4

)
, (3.25)

where c4 depends only on c1, c2 and ε0. Hence by choosing c3 small, we get that

Rn ≥ c/n for all large n.
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The next two examples consider standard irregular parametric estimation prob-

lems.

Example 3.9.2. Suppose that Θ is a compact interval of the positive real line that

is bounded away from zero and suppose that mθ denotes the uniform distribution

on [0, θ]. The chi-squared divergence, D2(Pθ||Pθ′), equals (θ′/θ)n − 1 if θ ≤ θ′ and

∞ otherwise. It follows accordingly that D2(Pθ||Pθ′) ≤ ε2 provided 0 ≤ n(θ′ − θ) ≤

θ log(1 + ε2). Because Θ is compact and bounded away from zero, M2(ε; Θ) ≤

c2n/ log(1 + ε2) for ε ≤ ε0. Applying (3.24), we obtain

Rn ≥ sup
η≤η0,ε≤ε0

η

2

(
1−
√
η

c1

−
√
n
√
η

√
c2(1 + ε2)

c1 log(1 + ε2)

)
.

Taking ε = ε0 and η = c3/n
2, we get that

Rn ≥
c3

2n2

(
1−
√
c3

nc1

− c1/4
3 c4

)
,

where c4 depends only on c1, c2 and ε0. Hence by choosing c3 sufficiently small, we

get that Rn ≥ c/n2 for all large n. This is the optimal minimax rate for this problem

as can be seen by estimating θ by the maximum of the observations.

Example 3.9.3. Suppose that mθ denotes the uniform distribution on the interval

[θ, θ + 1]. We argue that M2(ε; Θ) ≤ c2/
(
(1 + ε2)1/n − 1

)
for ε ≤ ε0. To see this,

let us define ε′ so that 2ε′ := (1 + ε2)1/n − 1 and let G denote an ε′-grid of points in

the interval Θ; G would contain at most c2/ε
′ points when ε ≤ ε0. For a point α in

the grid, let Qα denote the n-fold product of the uniform distribution on the interval

[α, α + 1 + 2ε′]. Now, for a fixed θ ∈ Θ, let α denote the point in the grid such that

α ≤ θ ≤ α + ε′. It can then be checked that the chi-squared divergence between Pθ
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and Qα is equal to (1+2ε′)n−1 = ε2. Hence M2(ε,Θ) can be taken to be the number

of probability measures Qα, which is the same as the number of points in G. This

proves the claimed upper bound on M2(ε; Θ).

It can be checked by elementary calculus (Taylor expansion, for example) that

the inequality

(1 + ε2)1/n − 1 ≥ ε2

n
− 1

2n

(
1− 1

n

)
ε4

holds for ε ≤
√

2 (in fact for all ε, but for ε >
√

2, the right hand side above may be

negative). Therefore for ε ≤ min(ε0,
√

2), we get that

M2(ε; Θ) ≤ 2nc2

2ε2 − (1− 1/n)ε4
.

From inequality (3.24), we get that for every η ≤ η0 and ε ≤ min(ε0,
√

2),

Rn ≥
η

2

(
1−
√
η

c1

−
√
n
√
η

√
2(1 + ε2)c2

c1 (2ε2 − (1− 1/n)ε4)

)
.

If we now take ε = min(ε0, 1) and η = c3/n
2, we see that the quantity inside the

parantheses converges (as n → ∞) to 1 − c
1/4
3 c4 where c4 depends only on c1, c2

and ε0. Therefore by choosing c3 sufficiently small, we get that Rn ≥ c/n2. This is

the optimal minimax rate for this problem as can be seen by estimating θ by the

minimum of the observations.

Next, we consider a d-dimensional normal mean estimation problem and show

that the bound given by (3.24) has the correct dependence on the dimension d.

Example 3.9.4. Let Θ denote the ball in Rd of radius Γ centered at the origin.

Let us consider the problem of estimating θ ∈ Θ from an observation X distributed

according to the normal distribution with mean θ and variance covariance matrix

37



σ2Id, where Id denotes the identity matrix of order d. Thus Pθ denotes the N(θ, σ2Id)

distribution. We assume squared error loss: L(θ, a) = ||θ − a||2.

We use inequality (3.24) to show that the minimax risk R for this problem is

larger than or equal to a constant multiple of dσ2 when Γ ≥ σ
√
d.

The first step is to note that by standard volumetric arguments, we can take

N(η) =

(
Γ√
2η

)d
,M2(ε,Θ) =

(
3Γ

σ
√

log(1 + ε2)

)d

(3.26)

whenever σ
√

log(1 + ε2) ≤ Γ.

Applying inequality (3.24) with (3.26), we get that, for every η > 0 and ε > 0

such that σ
√

log(1 + ε2) ≤ Γ, we have

R ≥ η

2

(
1−

(√
2η

Γ

)d
−
(

3
√

2η

σ

)d/2 √
1 + ε2

(log(1 + ε2))d/4

)
.

Now by elementary calculus, it can be checked that the function ε 7→
√

1 + ε2/(log(1+

ε2))d/4 is minimized (subject to σ
√

log(1 + ε2) ≤ Γ) when 1 + ε2 = ed/2. We then get

that

R ≥ sup
η>0

η

2

(
1−

(√
2η

Γ

)d
−
(

36eη

σ2d

)d/4)
.

We now take η = c1dσ
2 and since Γ ≥ σ

√
d, we obtain

R ≥ c1σ
2d

2

(
1− (2c1)d/2 − (36ec1)d/4

)
.

We can therefore choose c1 small enough to obtain that R ≥ cdσ2 for a constant

c that is independent of d. Up to constants independent of d, this lower bound is

optimal for the minimax risk R because EθL(X, θ) = dσ2.
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Chapter 4

Covariance Matrix Estimation

4.1 Introduction

In this chapter we illustrate the use of the methods from the previous two chap-

ters to reprove a recent minimax lower bound due to Cai, Zhang, and Zhou (2010),

henceforth referred to as CZZ, for the following covariance matrix estimation prob-

lem. Let X1, . . . , Xn be independent p×1 random vectors each distributed according

to Np(0,Σ), the p-variate normal distribution with mean zero and covariance ma-

trix Σ, where Σ ∈ M(α) for some α > 0. The set M(α) is defined to be the set

of all p × p covariance matrices (σij) for which |σij| ≤ |i − j|−α−1 for i 6= j and

whose eigenvalues all lie in [0, 2]. The goal is to estimate Σ ∈ M(α) under the loss

function L(Σ1,Σ2) := ||Σ1 − Σ2||2, where || · || denotes spectral (or operator) norm:

||A|| := max{||Ax|| : ||x|| ≤ 1}.

Amongst other results, CZZ showed that

Rn(α) := inf
Σ̂

sup
Σ∈M(α)

EΣL(Σ, Σ̂) ≥ c1 n
−α/(2α+1) if p ≥ c2n

1/(2α+1) (4.1)

where c1 and c2 are positive constants depending on α alone.
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CZZ proved this inequality by constructing a map ψ : {0, 1}m → M(α) and

applying Assouad’s inequality,

Rn(α) ≥ mζ

4
min

Υ(τ,τ ′)=1
||Pψ(τ) ∧ Pψ(τ ′)||1. (4.2)

where ζ satisfies d(ψ(τ), ψ(τ ′)) ≥ ζ
∑m

i=1{τi 6= τ ′i} for all τ, τ ∈ {0, 1}m. Here

d(Σ1,Σ2) := infΣ (L(Σ1,Σ) + L(Σ2,Σ)), the infimum being over all covariance ma-

trices Σ. Also, for Σ ∈M(α), PΣ denotes the probability measure ⊗ni=1N(0,Σ).

CZZ’s proof is described in the next section. The covariance matrices ψ(τ) in

CZZ’s construction can be viewed as perturbations of the identity matrix, which is an

interior element of the parameter space M(α). We show, in Section 4.4, that (4.1)

can also be proved by the use of Assouad’s inequality with another construction φ(τ)

whose members are perturbations of a matrix T which can be considered to be near

the boundary (as opposed to the interior) ofM(α). Specifically, we use (4.2) with the

map φ : {0, 1}m →M(α) where each φ(τ) is a perturbation of the matrix T = (tij)

with tii = 1 and tij = γ|i− j|−α−1, for some small, positive constant γ.

In Section 4.5, we show how the inequalities from Chapter 3, can also be used to

prove (4.1). Recall the following minimax lower bounds from Chapter 3,

Rn(α) ≥ η

2

(
1− log 2 + logM1(ε;F ) + ε2

logN

)
, (4.3)

and

Rn(α) ≥ η

2

(
1− 1

N
−
√

(1 + ε2)M2(ε;F )

N

)
. (4.4)

Here F ⊂M(α) is η-separated i.e., it satisfies d(A1, A2) ≥ η for all A1, A2 ∈ F with

A1 6= A2. Also N denotes the cardinality of F , and M1(ε;F ) and M2(ε;F ) denote

the smallest number of probability measures needed to cover {PA : A ∈ F} up to
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ε2 in the Kullback-Leibler divergence and the chi-squared divergence respectively.

In Section 4.5, we prove (4.1) by applying these inequalities with F chosen to be a

well-separated subset of perturbations of T .

The inequality (4.3), due to Yang and Barron (1999), was intended by them to be

used in situations where the (global) covering numbers of the entire parameter space

are available. For this covariance matrix estimation problem however, the covering

numbers of the parameter space M(α) are unknown and hence, can not be used to

bound the local covering number M1(ε;F ). Instead, we bound M1(ε;F ) and M2(ε;F )

from above directly without recourse to global covering bounds. This use of (4.3) in

a situation where the global covering numbers are unknown is new.

Before proceeding, we put this problem in the decision theoretic setting considered

in Chapter 2 by taking Θ = M(α), the action space to consist of all covariance

matrices and the loss function, L(Σ1,Σ2) = ||Σ1 − Σ2||2. The distance function

d(Σ1,Σ2) has, by triangle inequality, the following simple lower bound:

d(Σ1,Σ2) ≥ 1

2
inf
Σ

(||Σ1 − Σ||+ ||Σ2 − Σ||)2 ≥ 1

2
||Σ1 − Σ2||2. (4.5)

Throughout this chapter, we shall use c to denote a positive constant that depends

on α alone (and hence has no relation to n or p) and whose specific value may change

from place to place.
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4.2 The proof of CZZ

Working with the assumption p ≥ 2n1/(2α+1), CZZ applied (4.2) to m = n1/(2α+1)

and ψ : {0, 1}m →M(α) defined by

ψ(τ) := Ip×p + c m−(α+1)

m∑
k=1

τkB(k,m), (4.6)

where B(k,m) := (bij) with bij taking the value 1 if either (i = k, k + 1 ≤ j ≤ 2m)

or (j = k, k + 1 ≤ i ≤ 2m) and the value 0 otherwise and c is a constant (depending

on α alone) that is small enough so that ψ(τ) ∈M(α) for every τ ∈ {0, 1}m.

To control each of the terms appearing in right hand side of (4.2), CZZ proved

the following pair of inequalities:

d (ψ(τ), ψ(τ ′)) ≥ cΥ(τ, τ ′)m−2α−1 and min
Υ(τ,τ ′)=1

||Pψ(τ) ∧ Pψ(τ ′)||1 ≥ c

The required inequality (4.1) is a direct consequence of the application of Assouad’s

inequality (4.2) with the above pair of inequalities.

4.3 Finite Parameter Subset Construction

In this section, a finite subset of matrices inM(α) are described whose elements are

perturbations of the matrix T defined by tii = 1 and tij = γ|i− j|−α−1 where γ is a

positive real number to be specified shortly. In subsequent sections, different proofs

of (4.1) based on this construction are provided.

Fix a positive integer k ≤ p/2 and partition T as

T =

 T11 T12

T T12 T22

 ,
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where T11 is k × k and T22 is (p − k) × (p − k). For each τ ∈ {0, 1}k, consider the

following matrix

T (τ) :=

 T11 S(τ)T12

T T12S(τ) T22

 , where S(τ) := diag(τ1, . . . , τk).

Lemma 4.3.1. If 0 < γ
∑

l≥1 l
−α−1 < 1/6, then the eigenvalues of T (τ) lie in the

interval (2/3, 4/3) for every τ ∈ {0, 1}k.

Proof. Fix τ ∈ {0, 1}k. The assumption on γ ensures that T (τ) is diagonally dom-

inated. We shall denote the (i, j)th entry of T (τ) by tij(τ). Let λ be an eigenvalue

of T (τ) and assume that x 6= 0 satisfies T (τ)x = λx. This can be rewritten as

(λ − tii(τ))xi =
∑

j:j 6=i tij(τ)xj for every i. Using this for the index i0 for which

|xi0| = maxj |xj| (note that this implies that xi0 6= 0 because x 6= 0) and noting that

tii(τ) = 1 for all i, we get

|λ− 1||xi0| ≤
∑
j:j 6=i0

|tij(τ)||xj| ≤ |xi0|2γ
∑
l≥1

l−α−1.

Thus if γ is chosen as in the statement of the lemma, we would obtain that |λ− 1| <

1/3 or λ ∈ (2/3, 4/3).

For use in the subsequent sections, we need the following two results which provide

lower bounds for d(T (τ), T (τ ′)) and upper bounds for divergences between PT (τ) and

PT (τ ′) respectively.

Lemma 4.3.2. For every τ, τ ′ ∈ {0, 1}k, we have

d(T (τ), T (τ ′)) ≥ c k−2α−1Υ(τ, τ ′) with Υ(τ, τ ′) =
k∑
i=1

{τi 6= τ ′i}. (4.7)
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Proof. Fix τ, τ ′ ∈ {0, 1}k with τ 6= τ ′. According to inequality (4.5), d(T (τ), T (τ ′)) ≥

||T (τ) − T (τ ′)||2/2. To bound the spectral norm of T (τ) − T (τ ′) from below, let v

denote the p × 1 vector (0k, 1k, 0p−2k)
T , where 0k and 0p−2k denote the k × 1 and

(2p− k)× 1 vectors of zeros respectively and 1k denotes the vector of ones. Clearly

||v||2 = k and (T (τ)− T (τ ′))v is of the form (u, 0)T with u = (u1, . . . , uk)
T given by

ur = (τr − τ ′r)
∑k

s=1 tr,k+s. Thus

|ur| = {τr 6= τ ′r}
k∑
s=1

γ|r − k − s|−α−1

≥ {τr 6= τ ′r}
2k−1∑
i=k

γi−α−1 ≥ cγk−α{τr 6= τ ′r}.

Therefore,

|| (T (τ)− T (τ ′)) v||2 ≥
k∑
r=1

u2
r ≥ c2γ2k−2αΥ(τ, τ ′).

Using a new constant c for c2γ2 and noting that ||v||2 = k, we obtain the required

inequality (4.7).

The Frobenius norm of a matrix A is defined by ||A||F :=
√∑

i,j a
2
ij. The follow-

ing result gives an upper bound for divergences (chi-squared, Kullback-Leibler and

total variation) between PT (τ) and PT (τ ′) in terms of the Frobenius norm of the dif-

ference T (τ)−T (τ ′). It is based on a more general result, Theorem 4.6.1 (stated and

proved in the Appendix), that relates the chi-squared divergence between two zero

mean normal distrbutions to the Frobenius norm of the difference of their covariance

matrices.

Lemma 4.3.3. For every τ, τ ′ ∈ {0, 1}k, the following inequalities hold, provided
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||T (τ)− T (τ ′)||2F ≤ 2/9,

D2(PT (τ)||PT (τ ′)) ≤ exp

(
3n

2
||T (τ)− T (τ ′)||2F

)
− 1, (4.8)

D1(PT (τ)||PT (τ ′)) ≤
3n

2
||T (τ)− T (τ ′)||2F (4.9)

and ∣∣∣∣PT (τ) ∧ PT (τ)

∣∣∣∣
1
≥ 1−

√
3n

4
||T (τ)− T (τ ′)||F . (4.10)

Moreover, the Frobenius norm ||T (τ)− T (τ)||F has the following bound:

||T (τ)− T (τ ′)||2F ≤
22α+3γ

2α + 1

k∑
i=1

{τi 6= τ ′i} (k − i+ 1)−2α−1 . (4.11)

Proof. Fix τ, τ ′ ∈ {0, 1}k with τ 6= τ ′. The proof of (4.8) is provided below. Inequal-

ities (4.9) and (4.10) follow from (4.8) because

D1(PT (τ)||PT (τ ′)) ≤ log
(
1 +D2(PT (τ)||PT (τ ′))

)
,

which is a consequence of Jensen’s inequality and

∣∣∣∣PT (τ) ∧ PT (τ ′)

∣∣∣∣
1
≥ 1−

√
D1(PT (τ)||PT (τ ′))

2
,

which is a consequence of Pinsker’s inequality. Let χ2 denote the chi-squared diver-

gence between two zero mean normal distributions with covariance matrices T (τ)

and T (τ ′) respectively. Because PT (τ) is the n-fold product of the p-variate normal

distribution with mean zero and covariance matrix T (τ), it follows from the formula
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for D2 in terms of the marginal chi-squared divergences that

D2(PT (τ)||PT (τ ′)) = (1 + χ2)n − 1.

From inequality (4.16) in Theorem (4.6.1), we have

χ2 ≤ exp

(
||T (τ)− T (τ ′)||2F
λ2

min(T (τ ′))

)
− 1

provided ||T (τ) − T (τ ′)||2F ≤ 2/9. The following conditions that were required in

Theorem 4.6.1 for (4.16) to hold:

2Σ−1
1 > Σ−1

2 and 2||Σ1 − Σ2||2F ≤ λ2
min(Σ2)

are satisfied for Σ1 = T (τ) and Σ2 = T (τ ′), provided ||T (τ) − T (τ ′)||2F ≤ 2/9,

because all the eigenvalues of T (τ) and T (τ ′) lie in (2/3, 4/3). This proves inequali-

ties (4.8), (4.9) and (4.10).

For (4.11), note that, by definition of Frobenius norm,

||T (τ)− T (τ ′)||2F ≤ 2
k∑
i=1

{τi 6= τ ′i}
p∑

j=k+1

t2ij ≤ 2γ
k∑
i=1

{τi 6= τ ′i}
∑

j≥k−i+1

j−2α−2.

Now, by the elementary inequality j−2α−2 ≤
∫ j+1

j
(x/2)−2α−2dx for j ≥ 1, we obtain

∑
j≥k−i+1

j−2α−2 ≤ 22α+2

∫ ∞
k−i+1

x−2α−2dx =
22α+2

2α + 1
(k − i+ 1)−2α−1.

The preceding two inequalities imply (4.11) and the proof is complete.
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Remark 4.3.1. From the bound (4.11), it follows that

||T (τ)− T (τ ′)||2F ≤
22α+3γ

2α + 1

∑
j≥1

j−2α+1.

We shall assume for the remainder of this chapter that the constant γ satisfies the

condition in Lemma 4.3.1 and is chosen small enough so that ||T (τ)−T (τ ′)||2F ≤ 2/9

so that all the three inequalities (4.8), (4.9) and (4.10) hold for every τ, τ ′ ∈ {0, 1}k.

4.4 Proof by Assouad’s inequality

In this section, (4.1) is proved by the application of Assouad’s inequality (4.2) to the

matrices T (τ), τ ∈ {0, 1}k described in the previous section.

It might seem natural to apply Assouad’s inequality to m = k and φ(τ) = T (τ).

But this would not yield (4.1). The reason is that the matrices T ((0, . . . , 0, 0)) and

T ((0, . . . , 0, 1)) are quite far away from each other which leads to the affinity term

minΥ(τ,τ ′)=1

∣∣∣∣PT (τ) ∧ PT (τ ′)

∣∣∣∣
1

being rather small.

The bound (4.1) can be proved by taking m = k/2 and applying Assouad’s in-

equality to φ(θ) = T ((θ1, . . . , θm, 0, . . . , 0)), θ ∈ {0, 1}m. The right hand side of (4.2)

can then be bounded from below by the following inequalities:

d(φ(θ), φ(θ′)) ≥ cΥ(θ, θ′)k−2α−1 and min
Υ(θ,θ′)=1

||Pφ(θ) ∧ Pφ(θ′)||1 ≥ 1−
√

n

ck2α+1
.

The first inequality above directly follows from Lemma 4.3.2. The second inequality

is a consequence of inequalities (4.10) and (4.11) in Lemma 4.3.3. Indeed, (4.10)

bounds the affinity in terms of the Frobenius norm ||φ(θ)−φ(θ′)||F and, using (4.11),

this Frobenius norm can be bounded, for θ, θ′ ∈ {0, 1}m with Υ(θ, θ′) = 1, in the
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following way (note that m = k/2)

||φ(θ)−φ(θ′)||2F ≤
22α+3γ

2α + 1

m∑
i=1

{θi 6= θ′i}(k−i+1)−2α−1 ≤ 1

c
(k−m+1)−2α−1 ≤ k−2α−1

c
.

Assouad’s inequality (4.2) with the above pair of inequalities gives

Rn(α) ≥ ck−2α

(
1−

√
n

ck2α+1

)
for every k with 1 ≤ k ≤ p/2.

By choosing k = (2n/c)1/(2α+1) (note that this choice of k would require the assump-

tion p ≥ c2n
1/(2α+1) for a constant c2), we obtain (4.1).

4.5 Proofs using Inequalities (4.3) and (4.4)

We provide proofs of (4.1) using the inequalities (4.3) and (4.4). The set F will be

chosen to be a sufficiently well-separated subset of {T (τ) : τ ∈ {0, 1}k}. By the

Varshamov-Gilbert lemma (see for example Massart, 2007, Lemma 4.7), there exists

a subset W of {0, 1}k with |W | ≥ exp(k/8) such that Υ(τ, τ ′) =
∑

i{τi 6= τ ′i} ≥ k/4

for all τ, τ ′ ∈ W with τ 6= τ ′. We take F := {T (τ) : τ ∈ W} so that, by construction,

N = |F | = |W | ≥ exp(k/8).

According to Lemma 4.3.2, d(T (τ), T (τ ′)) ≥ ck−2α whenever Υ(τ, τ ′) ≥ k/4

which implies that F is an η-separated subset of M(α) with η := ck−2α.

To bound the covering numbers of PA, A ∈ F , let us fix 1 ≤ l < k and define, for

each u ∈ {0, 1}k−l+1,

S(u) := T (0, . . . , 0, u1, . . . , uk−l+1) and Qu := PS(u).
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The inequality (4.11) gives

||T (τ)− S(τl, . . . , τk)||2F ≤
1

c

l∑
i=1

(k − i+ 1)−2α−1 ≤ 1

c
(k − l)−2α (4.12)

and thus, by (4.9), the following inequalities hold if u = (τ1, . . . , τk):

D1

(
PT (τ)||Qu

)
≤ n

c
(k − l)−2α and D2

(
PT (τ)||Qu

)
≤ exp

(n
c

(k − l)−2α
)
− 1

It follows therefore that Qu, u ∈ {0, 1}k−l+1 covers PA, A ∈ F up to ε21 in Kullback-

Leibler divergence and up to ε22 in chi-squared divergence where ε21 := n(k − l)−2α/c

and ε22 := exp (n(k − l)−2α/c)− 1. As a direct consequence, M1(ε1;F ) ≤ 2k−l+1 and

M2(ε2;F ) ≤ 2k−l+1. Therefore, from (4.3),

Rn(α) ≥ ck−2α

[
1− 1

ck

(
k − l +

n

(k − l)2α

)]
(4.13)

and from (4.4),

Rn(α) ≥ ck−2α

[
1− exp

(
−k
8

)
− exp

(
1

c

(
n

(k − l)2α
+ (k − l)

)
− k

16

)]
(4.14)

for every k ≤ p/2 and 1 ≤ l < k.

Each of the above two inequalities imply (4.1). Indeed, taking k − l = n1/(2α+1)

and k = 4n1/(2α+1)/c in (4.13) implies (4.1).

Also, by taking k − l = n1/(2α+1) and k = (32/c)(1 + B)n1/(2α+1) for B ≥ 0

in (4.14), we get

Rn(α) ≥ ck−2α

[
1− 2 exp

(
−2B

c
n1/(2α+1)

)]
≥ ck−2α

[
1− 2 exp

(
−2B

c

)]
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from which (4.1) is obtained by taking B = (c log 4)/2.

Note that the choice of k necessitates that p ≥ c2n
1/(2α+1) for a large enough

constant c2.

4.6 Appendix: Divergences between Gaussians

In this section, we shall prove a bound on the chi-squared divergence (which, in turn,

implies bounds on the Kullback-Leibler divergence and testing affinity) between two

zero mean gaussians by the Frobenius norm of the difference of their covariance

matrices. The Frobenius norm of a matrix A is defined as

||A||F :=

√∑
i,j

a2
ij =

√
tr(AAT ) =

√
tr(ATA).

Two immediate consequences of the above definition are:

1. ||A||F = ||UA||F = ||AU ||F for every orthogonal matrix U .

2. ||A||2F mini d
2
i ≤ ||DA||2F ≤ ||A||2F maxi d

2
i for every diagonal matrix D with

diagonal entries di. Exactly the same relation holds if DA is replaced by AD.

Theorem 4.6.1. The chi-squared divergence χ2 between two normal distributions

with mean 0 and covariance matrices Σ1 and Σ2 satisfies

χ2 ≤
(

1− ||∆||2F
λ2

min(Σ2)

)−1/2

+

− 1 provided 2Σ−1
1 > Σ−1

2 . (4.15)

where ∆ := Σ1 − Σ2 and || · ||F denotes the Frobenius norm. Moreover, if 2||∆||2F ≤

λ2
min(Σ2), then

χ2 ≤ exp

(
||∆||2F
λ2

min(Σ2)

)
− 1. (4.16)
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Proof. When 2Σ−1
1 > Σ−1

2 , it can checked by a routine calculation that

χ2 =

∣∣∣∣I − (Σ
−1/2
2 ∆Σ

−1/2
2

)2
∣∣∣∣−1/2

− 1

where ∆ = Σ1 − Σ2 and | · | denotes determinant. Let λ1, . . . , λp be the eigenvalues

of the symmetric matrix Σ
−1/2
2 ∆Σ

−1/2
2 . Then χ2 = [(1− λ2

1) . . . (1− λ2
p)]
−1/2 − 1 and

consequently, by an elementary inequality, χ2 ≤ (1−
∑

i λ
2
i )
−1/2

+ − 1. Observe that∑
i λ

2
i =

∣∣∣∣∣∣Σ−1/2
2 ∆Σ

−1/2
2

∣∣∣∣∣∣2
F

. Suppose that Σ2 = UΛUT for an orthogonal matrix U

and a positive definite diagonal matrix Λ. Then Σ
−1/2
2 = UΛ−1/2UT and by properties

of the Frobenius norm, we have

p∑
i=1

λ2
i =

∣∣∣∣∣∣Σ−1/2
2 ∆Σ

−1/2
2

∣∣∣∣∣∣2
F

=
∣∣∣∣Λ−1/2UT∆UΛ−1/2

∣∣∣∣2
F
≤ ||U

T∆U ||2F
λ2

min(Σ2)
=
||∆||2F
λ2

min(Σ2)
.

This completes the proof of (4.15). The inequality (4.16) is a consequence of the

elementary inequality 1− x ≥ e−2x for 0 ≤ x ≤ 1/2.
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Chapter 5

Estimation of Convex Sets

5.1 Introduction

In this chapter, we study the problem of estimating a compact, convex set from noisy

support function measurements. We use techniques described in Chapter 3 to prove

a minimax lower bound. We also construct an estimator that achieves the lower

bound up to multiplicative constants.

The support function hK of a compact, convex subset K of Rd (d ≥ 2) is defined

for u in the unit sphere, Sd−1 := {x :
∑

i x
2
i = 1} by hK(u) := supx∈K 〈x, u〉,

where 〈x, u〉 =
∑

i xiui. The support function is a fundamental quantity in convex

geometry and a key fact (Schneider, 1993, Section 1.7 or Rockafellar, 1970, Section

13) is that K = ∩u∈Sd−1

{
x ∈ Rd : 〈x, u〉 ≤ hK(u)

}
which, in particular, implies that

K is uniquely determined by hK .

We consider the problem of estimatingK based on observations (u1, Y1), . . . , (un, Yn)

under the following three assumptions:

1. Yi = hK(ui) + ξi where ξ1, . . . , ξn are independent normal random variables

with mean zero and known variance σ2,
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2. u1, . . . , un are independently distributed according to the uniform distribution

on Sd−1,

3. u1, . . . , un are independent of ξ1, . . . , ξn.

We summarize the history of this problem and provide motivation for its study

in the next section.

We prove upper and lower bounds for the minimax risk

R(n) = R(n;σ,Γ) := inf
K̂

sup
K∈Kd(Γ)

EK`
2(K, K̂)

with

`2(K,K ′) :=

∫
Sd−1

(hK(u)− hK′(u))2dν(u),

where Kd(Γ) denotes the set of all compact, convex sets contained in the ball of

radius Γ centered at the origin, and ν denotes the uniform probability measure on

Sd−1. We assume that σ and Γ are known so that estimators in the definition of

R(n) are allowed to depend on them.

Specifically, we show that, in every dimension d ≥ 2, the minimax risk R(n) is

bounded from above and below by constant multiples (which depend on d, σ and

Γ) of n−4/(d+3). The lower bound is proved in Section 5.3 using an inequality from

Chapter 3, and the upper bound is proved in Section 5.4.

A word on notation: In this chapter, by a constant, we mean a positive quantity

that depends on the dimension d alone. We shall denote such constants by c, C, c1, c
′

etc. and by δ0 and ε0. We are never explicit about the precise value of these constants

and their value may change with every occurence.
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5.2 Background

In two and three dimensions, the problem of recovering a compact, convex set from

noisy support function measurements was studied in the context of certain engineer-

ing applications. For example, Prince and Willsky (1990), who were the first to

propose the regression model Yi = hK(ui) + ξi for this problem, were motivated by

application to Computed Tomography. Lele, Kulkarni, and Willsky (1992) showed

how solutions to this problem can be applied to target reconstruction from resolved

laser-radar measurements in the presence of registration errors. Gregor and Rannou

(2002) considered applications to Projection Magnetic Resonance Imaging.

Additional motivation for studying this problem comes from the fact that it has

a similar flavour to well-studied regression problems. For example,

1. It is essentially a nonparametric function estimation problem where the true

function is assumed to be the support function of a compact, convex set i.e.,

there is an implicit convexity-based constraint on the true regression function.

Regression and density esimation problems with explicit such constraints e.g.,

log-concave density estimation and convex regression have received much at-

tention.

2. The model Yi = maxx∈K 〈x, u〉 + ξi can also be viewed as a variant of the

usual linear regression model where the dependent variable is modeled as the

maximum of linear combinations of the explanatory variables over a set of

parameter values and the interest lies in estimating the convex hull of the set

of parameters. While we do not know if this maximum regression model has

been used outside the context of convex set estimation, the idea of combining

linear functions of independent variables into nonlinear algorithmic prediction

models for the response variable is familiar (as in neural networks).
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The least squares estimator has been the most commonly used estimator for this

problem. It is defined as

K̂ls := argmin
L

n∑
i=1

(Yi − hL(ui))
2 , (5.1)

where the minimum is taken over all compact, convex subsets L. The minimizer

here is not unique and one can always take it to be a polyhedron. This estimator,

for d = 2, was first proposed by Prince and Willsky (1990), who assumed that

u1, . . . , un are evenly spaced on the unit circle and that the error variables ξ1, . . . , ξn

are normal with mean zero. They also proposed an algorithm for computing it based

on quadratic programming. Lele et al. (1992) extended this algorithm to include the

case of non-evenly spaced u1, . . . , un as well. Recently, Gardner and Kiderlen (2009)

proposed an algorithm for computing a minimizer of the least squares criterion for

every dimension d ≥ 2 and every sequence u1, . . . , un.

In addition to the least squares estimator, Prince and Willsky (1990) and Lele

et al. (1992) also proposed estimators (in the case d = 2) designed to take advantage

of certain forms of prior knowledge, when available, about the true compact, convex

set. These estimators are all based on a least squares minimization.

Fisher, Hall, Turlach, and Watson (1997) proposed estimators for d = 2 that are

not based on the least squares criterion. They assumed that the support function

hK , viewed as a function on the unit circle or on the interval (−π, π], is smooth and

estimated it using periodic versions of standard nonparametric regression techniques

such as local regression, kernel smoothing and splines. They suggested a way to

convert the estimator of hK into an estimator for K using a formula, which works

for smooth hK , for the boundary of K in terms of hK . Hall and Turlach (1999)

added a corner-finding technique to the method of Fisher et al. (1997) to estimate
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two-dimensional convex sets with certain types of corners.

There are relatively fewer theoretical results in the literature. Fisher et al. (1997,

Theorem 4.1) stated a theorem without proof which appears to imply consistency and

certain rates of convergence for their estimator under certain smoothness assumptions

on the support function of the true compact, convex set K. Gardner, Kiderlen, and

Milanfar (2006) proved consistency of the least squares estimator and also derived

rates of convergence. They worked with the following assumptions:

1. u1, u2, . . . are deterministic satisfying

max
u∈Sd−1

min
1≤i≤n

||u− ui|| = O(n−1/(d−1)) as n→∞,

2. ξ1, ξ2, . . . are independent normal with mean zero and variance σ2,

3. K is contained in a ball of radius Γ centered at the origin with Γ ≥ σ15/2.

Their Theorem 6.2 showed that `2(K, K̂ls) = Od,σ,Γ(βn) as n approaches ∞ almost

surely, where

βn :=


n−4/(d+3) when d = 2, 3, 4

n−1/2 (log n)2 when d = 5

n−2/(d−1) when d ≥ 6.

(5.2)

Here Od,σ,Γ is the usual big-O notation where the constant involved depends on

d, σ and Γ. Gardner et al. (2006, Theorem 6.2) provided explicit expressions for the

dependence of the constant with respect to σ and Γ (but not d) which we have not

shown here because our interest only lies in the dependence on n.

As part of our proof of the upper bound for the minimax risk, we construct an

estimator with improved rates.
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5.3 Lower Bound

The following theorem shows that R(n) is at least n−4/(d+3) up to a multiplicative

constant that depends only on d, σ and Γ.

Theorem 5.3.1. There exist two positive constants c and C depending only on d

(and independent of n, σ and Γ) such that

R(n) ≥ cσ8/(d+3)Γ2(d−1)/(d+3)n−4/(d+3) whenever n ≥ C(σ/Γ)2. (5.3)

For the proof, we put this problem in the general decision-theoretic framework

of Chapter 3 and use an inequality proved in Section 3.8. Let Θ = Kd(Γ) and the

action spaceA consist of all possible compact, convex subsets of Rd. The loss function

equals L(K,K ′) = `2(K,K ′). For K ∈ Θ, let PK denote the joint distribution of

(u1, Y1), . . . , (un, Yn). It may be recalled that a subset F of Θ is called η-separated if

inf
K∈A

(
`2(K1, K) + `2(K2, K)

)
≥ η for all K1, K2 ∈ F with K1 6= K2.

We use the following global minimax lower bound proved in Chapter 3 (see Sec-

tion 3.8):

R(n) ≥ η

2

(
1− 1

N(η)
−

√
(1 + ε2)M2(ε; Θ)

N(η)

)
for every η > 0 and ε > 0, (5.4)

where N(η) is the size of a maximal η-separated subset of Θ and M2(ε; Θ) is the

number of probability measures needed to cover {Pθ, θ ∈ Θ} up to ε2 in the chi-

squared divergence.

Proof. For the application of (5.4), we only need a lower bound for N(η) and an
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upper bound for M2(ε; Θ). We start with N(η). By the triangle inequality, we have

`2(K1, K) + `2(K2, K) ≥ 1

2
(`(K1, K) + `(K2, K))2 ≥ 1

2
`2(K1, K2)

for every K1, K2 and K. It follows therefore that N(η) ≥ Ñ(
√

2η; `), where Ñ(δ; `)

denotes the δ-packing number of Kd(Γ) under the metric ` i.e., the size of a maximal

subset F ⊂ Kd(Γ) such that `(K1, K2) ≥ δ for K1, K2 ∈ F with K1 6= K2.

Bronshtein (1976, Theorem 4 and Remark 1) proved that there exist positive

constants c′ and δ0 depending only on d such that the δ-packing number of Kd(Γ)

under the Hausdorff metric is at least exp
(
c′(Γ/δ)(d−1)/2

)
whenever δ ≤ Γδ0. The

Hausdorff distance is defined as `H(K,K ′) := supu∈Sd−1 |hK(u)−hK′(u)| and is clearly

larger than `(K,K ′).

It turns out that Bronshtein’s result is true for the metric ` as well. This has

not been proved anywhere in the literature however. We provide a proof in the

Appendix (Theorem 5.5.1) by modifying Bronshtein’s proof appropriately and using

Varshamov-Gilbert lemma. Therefore, from Theorem 5.5.1, we have

logN(η) ≥ log Ñ(
√

2η; `) ≥ c′
(

Γ
√
η

)(d−1)/2

for η ≤ Γ2δ2
0/2. (5.5)

Let us now turn to M2(ε; Θ). For K,K ′ ∈ Kd(Γ), the chi-squared divergence

D2(PK ||PK′) satisfies

1 +D2(PK ||PK′) =

(∫
Sd−1

exp

(
(hK(u)− hK′(u))2

σ2

)
du

)n
≤ exp

(
n`2

H(K,K ′)

σ2

)
.

As a result,

D2(PK ||PK′) ≤ ε2 whenever `H(K,K ′) ≤ ε′ := σ
√

log(1 + ε2)/
√
n. (5.6)
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Let Wε′ be the ε′-covering number for Kd(Γ) in the Hausdorff metric i.e., it is the

smallest W for which there exist sets K1, . . . , KW in Kd(Γ) having the property that

for every set L ∈ Kd(Γ), there exists a Kj such that `H(L,Kj) ≤ ε′. Bronshtein

(1976, Theorem 3 and Remark 1) showed that there exist positive constants c′′ and

ε0 depending only on d such that logWε′ is at most c′′(Γ/ε′)(d−1)/2 whenever ε′ ≤ Γε0.

Consequently, from (5.6), we obtain

logM2(ε; Θ) ≤ c′′

(
Γ
√
n

σ
√

log(1 + ε2)

)(d−1)/2

if log(1 + ε2) ≤ nΓ2ε20/σ
2. (5.7)

We are now ready to apply (5.4). Let us define the following two quantities

η(n) := c σ8/(d+3)Γ2(d−1)/(d+3)n−4/(d+3) and α(n) :=

(
Γ
√
n

σ

)(d−1)/(d+3)

,

where c is a positive constant that depends on d alone and will be specified shortly.

Also let ε2(n) = exp(α2(n))− 1. By (5.5) and (5.7), we have

logN(η) ≥ c′c−(d−1)/4α2(n) and logM2(ε; Θ) ≤ c′′α2(n),

provided

η(n) ≤ Γ2δ2
0/2 and α2(n) ≤ nΓ2ε20/σ

2. (5.8)

Inequality (5.4) with η = η(n) and ε = ε(n) gives the following lower bound for R(n):

η(n)

2

[
1− exp

(
−α2(n)c′c−(d−1)/4

)
− exp

(
α2(n)

2
(1 + c′′ − c′c−(d−1)/4)

)]
.

If we choose c so that c′c−(d−1)/4 = 2(1 + c′′), then

R(n) ≥ η(n)

2

(
1− exp

(
−1 + c′′

2
α2(n)

))
.
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If the condition (1 + c′′)α2(n) ≥ 2 log 4 holds, then the above inequality implies

R(n) ≥ η(n)/4. This condition as well as (5.8) hold provided n ≥ C(σ/Γ)2 for a

large enough C.

Remark 5.3.1. In the above proof, our assumptions about the design unit vectors

u1, . . . , un were only used via

D2(PK ||PK′) ≤ exp

(
n`2

H(K,K ′)

σ2

)
− 1.

This inequality is actually true for every joint distribution of (u1, . . . , un) as long

as they are independent of the errors ξ1, . . . , ξn. Consequently, c n−4/(d+3) is a lower

bound for the minimax risk for any arbitrary choice of the design unit vectors provided

they are independent of ξ1, . . . , ξn.

5.4 Upper Bound

The following theorem shows that R(n) is at most n−4/(d+3) up to a multiplicative

constant that depends only on d, σ and Γ.

Theorem 5.4.1. There exist two positive constants c and C depending only on d

(and independent of n, σ and Γ) such that

R(n) ≤ c(Γ2/σ2)

1− e−Γ2/(2σ2)
σ8/(d+3)Γ2(d−1)/(d+3)n−4/(d+3) if n ≥ C(σ/Γ)2. (5.9)

For each finite subset F of Kd(Γ), let us define the least squares estimator K̂F by

K̂F := argmin
L∈F

n∑
i=1

(Yi − hL(ui))
2 .

We shall show that, if F is chosen appropriately, then supK∈Kd(Γ) EK`
2(K, K̂F ) is
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bounded from above by the right hand side of (5.9).

Our proof is based on a general estimation result described next. This general

result is an adaptation of a technique due to Li (1999) and Barron, Li, Huang, and

Luo (2008) for obtaining risk bounds for penalized likelihood estimators.

5.4.1 A general estimation result

Consider an estimation problem in which we want to estimate θ ∈ Θ, under a loss

function L, based on an observation X whose distribution Pθ depends on the un-

known θ. We assume that Pθ has a density pθ with respect to a common dominating

measure µ.

Let θ̂(X) := arg maxθ′∈F pθ′(X) denote the maximum likelihood estimator over a

finite subset F of Θ. The following method of obtaining an upper bound is based on

an idea of Li (1999) and Barron et al. (2008). For every θ ∈ Θ, θ∗ ∈ F and α > 0,

we can write

L(θ, θ̂(X)) = log
(
eL(θ,θ̂(X))

)
≤ log

(
eL(θ,θ̂(X))

(
pθ̂(X)(X)

pθ∗(X)

)α)

= log

(
eL(θ,θ̂(X))

(
pθ̂(X)(X)

pθ(X)

)α)
+ α log

(
pθ(X)

pθ∗(X)

)

Taking expectation with respect to X under the probability measure Pθ on both

sides and using Jensen’s inequality, we obtain

EθL
(
θ, θ̂(X)

)
≤ log Eθ

(
eL(θ,θ̂(X))

(
pθ̂(X)(X)

pθ(X)

)α)
+ αD1(Pθ||Pθ∗)

≤ log

[∑
θ′∈F

eL(θ,θ′)Eθ

(
pθ′(X)

pθ(X)

)α]
+ αD1(Pθ||Pθ∗),
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where D1(Pθ||Pθ∗) denotes the Kullback-Leibler divergence between Pθ and Pθ∗ .

Since this is true for any arbitrary θ∗ ∈ F , we get that

EθL
(
θ, θ̂(X)

)
≤ log

[∑
θ′∈F

eL(θ,θ′)Eθ

(
pθ′(X)

pθ(X)

)α]
+ αmin

θ∗∈F
D1(Pθ||Pθ∗).

In particular, for the following choice of the loss function L,

L(θ, θ′) := − log Eθ

(
pθ′(X)

pθ(X)

)α
, (5.10)

we would obtain

sup
θ∈Θ

EθL(θ, θ̂(X)) ≤ log |F |+ α sup
θ∈Θ

min
θ∗∈F

D1(Pθ||Pθ∗). (5.11)

Note that for α = 1/2, the loss function (5.10) is known as the Bhattacharyya

divergence (see Bhattacharyya, 1943).

5.4.2 Application of the general result

We apply inequality (5.11) to our problem with Θ = Kd(Γ) and PK , the joint distri-

bution of (u1, Y1), . . . , (un, Yn). Also, let pK denote the density of PK with respect

to the dominating measure (ν ⊗ Leb)n where Leb denotes Lebesgue measure on the

real line. It can be easily checked that (X below stands for the observation vector

comprising of ui, Yi, i = 1, . . . , n) for K,K ′ ∈ Kd(Γ), we have

EK

(
pK′(X)

pK(X)

)α
=

(∫
exp

(
−α(1− α)

2σ2
(hK(u)− hK′(u))2

)
dν(u)

)n
(5.12)
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and

D1(PK ||PK′) =
n

2σ2

∫
(hK(u)− hK′(u))2 dν(u) =

n

2σ2
`2(K,K ′). (5.13)

Therefore, inequality (5.11) implies that the risk

EK

[
− log

(∫
exp

(
−α(1− α)

2σ2

(
hK(u)− hK̂F (u)

)2
)
dν(u)

)]
(5.14)

of K̂F is bounded from above by

log |F |
n

+
α

2σ2
min
K′∈F

`2(K,K ′).

Because − log x ≥ 1−x, the above upper bound also holds for the risk when the loss

function is taken to be the power divergence Dα(PK′||PK), for α ∈ (0, 1):

Dα(PK′ ||PK) :=

∫ (
1− exp

(
−α(1− α)

2σ2
(hK(u)− hK′(u))2

))
dν(u).

For K,K ′ ∈ Kd(Γ), the loss function `2(K,K ′) can be bounded from above by a

multiple of Dα(K,K ′) for α ∈ (0, 1). Indeed, for K,K ′ ∈ Kd(Γ), we have

α(1− α) (hK′(u)− hK(u))2

2σ2
≤ 2α(1− α)Γ2

σ2

and since the convex function x 7→ e−x lies below the chord joining the points (0, 1)

and (2α(1− α)Γ2/σ2, exp(−2α(1− α)Γ2/σ2)), it can be checked that

`2(K,K ′) ≤ 4Γ2

1− exp(−2α(1− α)Γ2/σ2)
Dα(K,K ′).
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We have therefore shown that

EK`
2(K, K̂F ) ≤ 4Γ2/σ2

1− exp(−2α(1− α)Γ2/σ2)

[
σ2

n
log |F |+ α

2
min
K′∈F

`2(K,K ′)

]
.

(5.15)

According to Bronshtein (1976, Theorem 3 and Remark 1), there exist positive con-

stants c′ and ε0 depending only on d and a finite subset F ⊆ Kd(Γ) such that

log |F | ≤ c′
(

Γ

ε

)(d−1)/2

and sup
K∈Kd(Γ)

min
K′∈F

`2(K,K ′) ≤ ε2

whenever ε ≤ Γε0. With this choice of F and α = 1/2, inequality (5.15) gives

EK`
2(K, K̂F ) ≤ 4Γ2/σ2

1− exp(−2α(1− α)Γ2/σ2)

[
c′σ2

n

(
Γ

ε

)(d−1)/2

+
ε2

4

]
, (5.16)

for every ε ≤ Γε0. If we now choose

ε := σ4/(d+3)Γ(d−1)/(d+3)n−2/(d+3),

then ε ≤ Γε0 provided n ≥ C(σ/Γ)2 for a large enough constant C depending only

on d and the required inequality (5.9) follows from (5.16).

5.5 Appendix: A Packing Number Bound

In this section, we prove that the η-packing number Ñ(δ; `) of Kd(Γ) under the `

metric is at least exp(c(Γ/δ)(d−1)/2) for a positive c and sufficiently small η. This

result was needed in the proof of our minimax lower bound. Bronshtein (1976, The-

orem 4 and Remark 1) proved this for the Haussdorff metric `H which is larger than

`.
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Theorem 5.5.1. There exist positive constants δ0 and c depending only on d such

that

Ñ(δ; `) ≥ exp

(
c

(
Γ

δ

)(d−1)/2
)

whenever η ≤ Γη0.

The following lemma will be used in the proof of the above theorem. Let B

denote the unit ball in Rd.

Lemma 5.5.2. For a fixed 0 < η ≤ 1/8 and a unit vector v, consider the following

two subsets of the unit ball B:

D(1) := B and D(0) := B ∩ {x : 〈x, v〉 ≤ 1− η}.

Then `2(D(0), D(1)) ≥ cη(d+3)/2 for a positive constant c that depends only on d.

We first provide the proof of Theorem 5.5.1 using the above lemma, which will

be proved subsequently.

Proof of Theorem 5.5.1. We observe that, by scaling, it is enough to prove for Γ = 1.

We loosely follow Bronshtein (1976, Proof of Theorem 4). We fix 0 < η ≤ 1/8 and

let v1, . . . , vm be unit vectors such that the Euclidean distance between vi and vj is

at least 2
√

2η for i 6= j. Since the ε-packing number of the unit sphere under the

Euclidean metric is ≥ cε1−d for 0 < ε < 1, we assume that m ≥ c1η
(1−d)/2 for a

positive constant c1 that depends only on d.

For each τ ∈ {0, 1}m, we define the compact, convex set

K(τ) := D1(τ1) ∩ · · · ∩Dm(τm)

where Dj(τj) equals B ∩{x : 〈x, vj〉 ≤ 1− η} when τj = 0 and B when τj = 1, where

B denotes the unit ball in Rd. By the choice of v1, . . . , vm, it follows that the sets
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B ∩ {x : 〈x, vj〉 > 1− η} are disjoint. As a result, we have

`2(K(τ), K(τ ′)) =
∑
i:τi 6=τ ′i

`2(Dj(0), Dj(1)) = Υ(τ, τ ′)`2(D1(0), D1(1)),

for every τ, τ ′ ∈ {0, 1}m where Υ(τ, τ ′) :=
∑

i{τi 6= τ ′i} denotes the Hamming distance

between τ and τ ′. By Lemma 5.5.2, we get `2(K(τ), K(τ ′)) ≥ c2Υ(τ, τ ′)η(d+3)/2 where

c2 depends on d alone.

We recall the Varshamov-Gilbert lemma used in the previous chapter to assert

the existence of a subset W of {0, 1}m with |W | ≥ exp(m/8) such that Υ(τ, τ ′) =∑
i{τi 6= τ ′i} ≥ m/4 for all τ, τ ′ ∈ W with τ 6= τ ′.

Therefore, for every τ, τ ′ ∈ W with τ 6= τ ′, we get (note that m ≥ c1η
(1−d)/2)

`2(K(τ), K(τ ′)) ≥ c2

4
mη(d+3)/2 ≥ c1c2

4
η2.

Taking δ := η
√
c1c2/4, we see that, whenever δ ≤ √c1c2/16, {K(τ), τ ∈ W} is a

δ-packing subset of Kd(Γ) in the `2-metric of size M where

logM ≥ m

8
≥ c1

8
η(1−d)/2 ≥ cδ(1−d)/2 with c :=

c1

8

(
2
√
c1c2

)(1−d)/2

.

The proof is complete.

For the proof of Lemma 5.5.2, we recall an elementary fact about spherical caps.

For a unit vector x and a real number 0 < δ < 1, consider the spherical cap S(x; δ)

centered at x of radius δ consisting of all unit vectors whose Euclidean distance to

x is at most δ. It can be checked that this spherical cap consists of precisely those

unit vectors which form an angle of at most α with the vector x, where α is related
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to δ through

cosα = 1− δ2

2
and sinα =

δ
√

4− δ2

2
.

A standard result is that ν(S(x; δ)) equals c
∫ α

0
sind−2 t dt where the constant c only

depends on d. This integral can be bounded from below in the following simple way:

∫ α

0

sind−2 t dt ≥
∫ α

0

sind−2 t cos t dt ≥ sind−1 α

d− 1
,

and for an upper bound, we note

∫ α

0

sind−2 t dt ≤
∫ α

0

cos t

cosα
sind−2 t dt ≤ sind−1 α

(d− 1) cosα
.

We thus have c1 sind−1 α ≤ ν(S(x; δ)) ≤ c2 sind−1 α/ cosα for constants c1 and c2

depending on d alone. Writing cosα and sinα in terms of δ and using the assumption

that 0 < δ ≤ 1, we obtain that

C1δ
d−1 ≤ ν(S(x; δ)) ≤ C2δ

d−1, (5.17)

for positive constants C1 and C2 depending only on d.

Proof of Lemma 5.5.2. It can be checked that the support functions of D(0) and

D(1) differ only for unit vectors in the spherical cap S(v,
√

2η). This spherical cap

consists of all unit vectors which form an angle of at most α with v where cosα = 1−η.

In fact, if θ denotes the angle between an arbitrary unit vector u and v, it can be

verified by elementary trigonometry that

hD(0)(u)− hD(1)(u) =


(1− cos (α− θ)) if 0 ≤ θ ≤ α,

0 otherwise.

(5.18)
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For a fixed 0 < b ≤ 1, let 0 ≤ β ≤ α denote the angle for which 1− cos(α− β) = bη.

It follows from (5.18) that the difference in the support functions of D(0) and D(1)

is at least bη for all unit vectors in the spherical cap consisting of all unit vectors

forming an angle of at most β with v. This spherical cap can be denoted by S(v, t)

where t is given by t2 := 2(1 − cos β). Therefore `2(D(0), D(1)) ≥ b2η2ν(S(v, t)).

It is easy to check that t2 ≤ 2(1 − cosα) ≤ 2η. Also, t ≥ sin β and sin β can be

bounded from below in the following way

1− bη = cos(α− β) ≤ cosα + sinα sin β ≤ 1− η +
√

2η sin β.

Thus t ≥ sin β ≥ (1− b)
√
η/2 and from (5.17), it follows that

`2(D(0), D(1)) ≥ cη2b2td−1 ≥ cb2(1− b)d−1η(d+3)/2

for all 0 < b ≤ 1. Choosing b = 1/2 will yield `2(D(0), D(1)) ≥ cη(d+3)/2.
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