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Abstract

The theory behind the success of adaptive
reweighting and combining algorithms (arcing) such
as Adaboost (Freund and Schapire [1995, 1996a]) and
others in reducing generalization error  has not been
well understood.   By formulating prediction as a
game where one player makes a selection from
instances in the training set and the other a convex
linear combination of predictors from a finite set,
existing arcing algorithms are shown to be
algorithms for finding good game strategies.  The
minimax theorem is an essential ingredient of the
convergence proofs.   An arcing algorithm is
described that converges to the optimal strategy.  A
bound on the generalization error for the combined
predictors in terms of their maximum error is
proven that is sharper than bounds to date.   Schapire
et al. [1997] offered an explanation of why Adaboost
works in terms of its ability to produce generally high
margins.  The empirical comparison of Adaboost to
the optimal arcing algorithm shows that their
explanation is not complete.
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1.  Introduction

Recent empirical work has shown that combining predictors can lead to
significant reductions in generalization error.   Interestingly, the individual
predictors can be very simple, i.e. single hyperplanes in two class classification
(Ji and Ma[1997])  or two terminal-node trees (stumps) Schapire et.al[1997].
While the empirical work has given exciting results, our full understanding
of why it works is only partially filled in.

Let {hm(x)}  be a set of M classifiers defined on input vectors x where hm(x)
takes values in one of J class labels.  Denote by {cm} an M-vector of constants

such that cm≥0, cm =1∑ .  The combined classifiers predict that class having the

plurality of the weighted votes.  That is, the predicted class is

arg maxy cm∑ I(hm (x)=y)

where I(true)=1, I(false)=0, and y ranges over the set of class labels.

The problem is this:  given an N-instance training set T={(yn,xn ),n=1,...,N} a n d

a set of M predictors  {hm (x)} find {cm } such that the combined predictor has
low generalization error.

The approachs that have been very successful to date construct a sequence of
altered training sets,  find the predictor in the class that minimizes the
training set error on the current altered training set, and use this information
together with past information to construct the next altered data set.  The

weights {cm} are also determined in this sequential process.

1.1 Background

The first well known combination algorithm was bagging (Breiman[1996b]).
The altered training sets were taken to be bootstrap samples from the original
training set, and each predictor grown had equal weighting.  It proved quite
effective in reducing generalization error.    The explanation given for its
success was in terms of the bias-variance components of the generalization
error.    The variance is the scatter in the predictions gotten from using
different training sets,  each one drawn from the same distribution.    Average
all of these predictions (or take their most probable value in classification)
and compute how much this average differs from the target function.  The
result is bias.   Breiman[1996]  shows that tree algorithms have small bias and
the effect of combination is to reduce the variance.
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Freund and Schapire[1996] introduced an combination algorithm called
Adaboost which was designed to drive the training error rapidly to zero.   But
experiments showed that Adaboost kept lowering the generalization error
long after the training set error was zero.    The resulting generalization errors
were significantly lower than those produced by bagging (Breiman[1996a].
Drucker and Cortes[1995], Quinlan [1996], Freund and Schapire[1996a], Kong
and Dietterich[1996], Bauer and Kohavi[1998]).

The Adaboost algorithm differed significantly from bagging, and begged the
question of why it worked as well as it did.  Breiman[1996b] showed that for
trees, Adaboost reduced variance more than bagging while keeping bias low.
leading to the possible conclusion that it was a more effective variance
reduction algorithm.   But  Schapire et al.[1997] gave examples of data where
two-node trees (stumps) had high bias and the main effect of Adaboost was to
reduce the bias.

Another explanation for Adaboost's success was offered in the Schapire et
al.[1997] paper.   For any combination of classifiers with non-negative weights

c={cm} summing to one, define the margin mg(z, c) at input z=(y,x) as

mg(z,c)= cm∑ I(hm (x)=y)−maxy' ≠y cm∑ I(hm (x)=y' ).  (1.1)

Thus, the margin is the total vote for the correct class minus the total vote for
the next highest class.   Intuitively, if the margins over a training set are
generally high, then the misclassifications, corresponding to all test set  inputs

such that mg(z,c)<0 , will be low.  In general, if Z=(Y,X) is a random vector
selected from the same distribution as the instances in T, but independent of

them,  the generalization error is P(mg(Z,c)<0)

Schapire et al. [1997] derived a bound on the generalization error of a
combination of classifiers that did not depend on how many classifiers were
combined, but only on the training set margin distribution, the sample size
and VC-dimension of the set of classifiers.   Then they showed,
experimentally, that Adaboost produced generally higher margins than
bagging.   They draw the conclusion from this that  the higher the margins
(all else being equal) the lower the generalization error, and implied that the
key to the success of Adaboost was its ability to produce large margins.

Meanwhile other combination algorithms, differing from Adaboost, have
been explored.  One was arc-x4, which Breiman[1996b] showed had error
performance comparable to Adaboost.   Another was an algorithm that used
hyperplanes as the class of predictors and produced low error on some hard
problems (Ji and Ma[1997]).    All three algorithms had the common property
that the current altered training set weighted more heavily examples that had
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been frequently misclassified in the past.  But any more precise statement of
what they have in common has been lacking.

1.2 Outline of Results

Replacing the maximum in (1.1) by a sum gives

mg(zn ,c)≥1−2 cmn∑ I(yn ≠hm (xn )) (1.2)

with equality in the two class situation.   Denote

        er(z,c)= cmI∑ (y≠hm (x)) (1.3)

so that mg(zn ,c)≥1−2er(zn ,c).   Now er(z,c) is the {cm} weighted

frequency of misclassifications over the set of predictors {hm (x)}.  The

smaller we can make er(z,c), the larger the margins.  In particular, define:

top(c)=maxzεT er(z,c) (1.4)

Then,

minzεT mg(z,c)≥−2top(c)+1              (1.5)

The smaller top(c) , the larger the minimum value of the margin.

In Section 2 a game theoretic context is introduced and the minimax theorem

gives a fundamental relation between the maximum value of  top(c)  over
all values of c  and other parameters of the problems.   This relation will be
critical in our convergence proofs for arcing algorithms.

In Section 3 we define a computationally feasible class of algorithms for

producing generally low values of er(z,c).  These are called arcing
algorithms--an acronym for A daptive R eweighting and C ombin ing .
Adaboost, arc-x4 and random hyperplanes are defined as examples of arcing
algorithms.

Section 4 discusses the convergence of arcing algorithms.  Two types of arcing
algorithms are defined.   We prove that the iterations in both types converge

to low values of  top(c)  or to low average values of a specified function of

er(z,c).   A critical element in these proofs is the min-max relation.  It's
shown that Adaboost belongs to one type--arc-x4 and random hyperplanes to
another.  These results give the unifying thread between the various
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successful combination algorithms--they are all arcing methods for producing

low values of  top(c)  or some functional average of er(z,c).

Section 5 defines an arcing algorithm called arc-gv and proves that

under arc-gv the values of top(c(k) ) converge to the lowest possible
value of top(c) . Section 6 gives an upper bound for the generalization error

of a combination of classifiers in terms of top(c) , the sample size of the
training set, and (essentially) the VC-dimension of the predictors in
the class {hm}.

 The bound is sharper than the bound in Schapire et.al[1997] based
on the margin distribution but uses the same elegant device in its
derivation.   If the Schapire et al. bound implies that the margin
distribution is the key to the generalization error, the bound in terms
of top(c)  implies even more strongly that top(c)  is the key to the
generalization error.

This is followed in Section 7 by experimental results applying arc-gv
and Adaboost to various data sets using tree classifiers confined to a
specified number of terminal nodes in order to fix their VC-
dimension. The surprise is that even though arc-gv produces lower
values of top(c)  than Adaboost, its test set error is higher.  We also
show that the margin distributions using arc-gv dominate those
gotten by using Adaboost--i.e. arc-gv produces generally higher
margins.

Section 8 gives surmises and hopes.  It seems that simply producing
larger margins or lower tops while keeping the VC-dimension fixed
does not imply lower generalization error.

Lengthy or difficult proofs are banished to the Appendices.

2.  The Prediction Game

 One way to formulate the idea that er(z,c) is generally small for zεT  is by
requiring uniform smallness.

Definition 2.1  Define the function top(c) on M-vectors {cm} as

top(c)=maxn er(zn ,c)

Two questions are involved in making  top(c)  small:
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i)    What is the value of  inf c top(c)?

ii)   What are  effective algorithms for producing small values of top(c)?

By formulating combinations in terms of a prediction game, we will see that
these two questions are linked.

Definition 2.2  The prediction game is a two player zero-sum matrix game.

Player I chooses  znεT .  Player II chooses {cm }.  Player I wins the amount

er(zn ,c)

Now er(zn,c)  is continuous and linear in c for each znεT  fixed.  By standard

game theory results (Blackwell and Girshick 1954]), Player II has a good pure
strategy, Player I has a good mixed strategy (a probability measure on the

instances in T)  and the value of the game φ* is given by  the minimax
theorem:

φ*=inf c supQ EQer(z,c)=supQ inf c EQer(z,c)                  (2.1)

where the Q are probability measures on the instances in T.   Note that

             top(c)=supQ EQer(z,c).

Then defining em ={zn : yn ≠hm (xn )} as the error set of the mth predictor,

rewrite (2.1) as

              φ*=inf c top(c)=supQ minm Q(em )                           (2.2)

The equation (2.2) is the key to our analysis of arcing algorithms.  Relation
(2.2) also follows from the duality theorem of linear programming
(Breiman[1997]).   The classification game was introduced in Freund and
Schapire[1996b].

3.  Arcing Algorithms

The algorithmic problem is how to determine c so that er(z,c)  is generally
small for z in T.    This can be formulated in different ways as a minimization
problem to which standard optimization methods can be applied.  For
instance, linear programming methods can be used to find a c  such that

φ*=top(c).  But such methods are not feasible in practice.  Typically, the set
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of classifiers is large and complex.   It would be extremely difficult to work
with many at a time as required by standard optimization methods.

3.1  Definition of Arcing Algorithms

The essence of feasible algorithms is that it is possible to solve, in practice,
problems of this following type:

Weighted Minimization. Given any probability weighting  Q(zn ) on the

instances in T, find the predictor in the set {hm} minimizing  Q(em ).

This means, minimize the Q-weighted misclassification rate.  This is not
always exactly possible.  For example, the CART algorithm does not find that
J-terminal node tree having  minimum Q-weighted error.   Instead, it uses a
greedy algorithm to approximate the minimizing tree.  In the theory below,
we will assume that it is possible to find the minimizing hm, keeping in
mind that this may be only approximately true in practice.

Definition 3.1  An arcing algorithm works on a vector b of non-negative
weights such  that bm  is the weight assigned to predictor hm  and  the c vector

is given by  b/|b|, where  b = bm∑ .   The algorithm updates b in these steps:

i)  Depending on the outcomes of the first k steps, a probability weight Q is
constructed on T.

ii)  The (k+1)st predictor selected is that hm minimizing  Q(em ).

iii)  Increase bm for the minimizing value of m.  The amount of the increase
depends on the first k+1 predictors selected.
iv) Repeat until satisfactory convergence.

Arcing is an acronym for A daptive R ewighting and C o m b i n i n g
(Breiman[1997]).  Each step in an arcing algorithm consists of a weighted
minimization followed by a recomputation of c and Q.  The usual initial
values are b=0  and Q uniform over T.

In the following sections we will give examples of arcing algorithms
together with general descriptions and convergence properties.

3.2   Examples of Arcing Algorithms,

There are a number of successful arcing algorithms appearing in recent
literature.  We give three examples that have given excellent empirical
performance in terms of generalization error.

Example 1.  Adaboost (Freund and Schapire ([1995], [1996a] ).
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If hm is selected at the kth step, compute εk =Qk (em ) .  Let βk =(1−εk )/εk ,

denote lm (zn )=I(yn ≠hm (xn )) and update by:

Qk+1(zn )=Qk (zn )βk
lm (zn ) /S

where the /S indicates normalization to sum one.  Put bm  equal to  log(βk ).

Example 2.  Arc-x4 (Breiman [1997])

Define ms(k) (zn )as the number of misclassifications of xn  by the first k

classifiers selected.  Let

Qk+1(zn )=(1+(ms(k) (zn ))4 )/S

If hm is selected at the kth step,  put bm  equal to one.

Example 3.  Random Hyperplanes (Ji and Ma[1997])

This method applies only to two-class problems.   The set of classifiers H is

defined this way:   Each vector in input space and point xn  in the training set

defines two classifiers.  Form the hyperplane passing through xn
perpendicular to the given vector.  The first classifier classifies all the points
on one side as class 1 and on the other as class 2.  The second classifier
switches the class assignment.

Set two parameters α >0, η>0  such that .5−η<α <.5 .   After the kth classifier
is selected, set its b weight to equal one.  Let

                Qk+1(zn )=I(ms(k) (zn )>αk)/S

where I(. ) is the indicator function. Select a hyperplane direction and training
set instance at random.  Compute the classification error for each of the two

associated classifiers using the probabilities Qk+1(zn ).  If the smaller of the

two errors is less than .5−η  then keep the corresponding classifier.
Otherwise, reject both and select another random hyperplane.
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4  Convergence of Arcing  Algorithms

The interesting question is: do arcing algorithms converge, and if so, what do
they converge to?  More explicitly, arcing algorithms generate sequences

{c(k)} of normalized weight vectors.  What can be said about the

convergence of the values of  er(zn ,c(k) ) or of top(c(k) )?

The results below place arcing algorithms into a unifying context of
numerical analysis concerned with the convergence of optimization
algorithms. Arcing algorithms become simply iterative methods for

optimizing some criteria involving the values of er(z,c).    But it will be
interesting to find out what the algorithms are optimizing--for instance, what
is arc-x4 optimizing?  Also important is the fact that they converge to the
optimal value.

Inspection of Adaboost and of arc-x4 and random hyperplanes shows that the
algorithms involved are of two intrinsically different types.  Adaboost is in
one type and arc-x4 and random hyperplanes are in the second type.  The first

type define a function g(b) of the unnormalized weights b,  iteratively

minimizes g(b) and in the process reduces the values of er(zn ,c) .   T h e

second type work directly on minimizing a function g(c) of the normalized
weights.  All existing arcing algorithms (see also Leisch and Hornik[1997]) fall
into one of these two types.

  4.1  Type I Arcing Algorithms.

Let f (x)  be any function of a single real variable defined on the whole line

such that f (x)→∞  as x→∞, to 0 as x→−∞ with everywhere positive first

and second derivatives. For weights { bm } we slightly abuse notation and set

er(zn ,b)= bmm∑ lm (zn ) where lm (zn )=I(yn ≠hm (xn )). Assuming that

φ>φ* , consider minimizing g(b)= f (n∑ er(zn ,b)−φ|b|) starting from b=0.

Definition 4.1 A Type I arcing algorithm updates b as follows: At the current
value of b let

        Q(zn )= f ' (er(zn ,b))−φ|b|)/S

and m*=argminm Q(em ). Add  ∆> 0  to bm *  and do a line search to

minimize g(b+∆um*) over ∆> 0where  um* is a unit vector in the
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direction of  bm*.   If the minimizing value of  ∆  is  ∆*  then update

b→b+∆*um*.  Repeat until convergence.

Comments.  Note that

∂g(b)/∂bm =(EQ (em )−φ) f ' (er(zn ,c)−φ|b|)
n
∑

so the minimum value of the first partial of the target function g(b) is in the
direction of bm*.   This value is negative, because by the minimax theorem

minm EQ (em )≤φ* .  Furthermore, the 2nd derivative of g(b+∆um*) with

respect to ∆  is positive, insuring a unique minimum in the line search over

∆>0.

Theorem 4.2.  Let  b(k)
 be the successive values generated by a Type I arcing

algorithm, and set  c(k) =b(k) /|b| Then  limsup ktop(c(k) )≤φ

proof.   See Appendix A

Proposition 4.3.  Adaboost is a Type I arcing algorithm using  f (x)=ex
a n d

φ=1/2 .

Proof: For f (x)=ex

          f (er(zn ,b)−φ|b|)=e−φ|b| e
bmlm (zn )

m
∏

Denote π(zn )= exp(m∏ bmlm (zn )).  Set Q(zn )=π(zn )/ π(zh )h∑ ,  m*=

argminm Q(em ).  Set εm =Q(em*) .  We do the line search step by solving

(lm (zn )−φ) f ' (er(zn ,b+∆um* )−φ|b|−φ∆)n∑ =0

which gives ∆*=log(φ/(1−φ))+log((1−εm )/εm ). The update for Q is given

in terms of

π(zn )→π(zn )e
∆*lm (zn )

/S .

For  φ=1/2 this is the Adaboost algorithm described in Section 1.
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 Schapire et al.[1997] note that the Adaboost algorithm produces a c  sequence

so that limsupc top(c) =φ1 where φ1is less than 1/ 2. In fact, we can show

that

limsupc top(c)≤(log2+log(1−φ*))/(− log(φ*)+log(1−φ*)).

If, for instance, φ*=.25, this bound equals .37.   Thus, even though Theorem
4.2 only guarantees an upper bound of .5,  using the exponential form of f
allows a sharper bound to be given.

4.2  Type II Arcing  Algorithms

A Type II algorithm minimizes g(c)= f (er(zn ,c))n∑  where f'(x) is non-

negative and f''(x) is continuous and non-negative for all x in the interval
[0,1].   Unlike the Type I algorithms which aim directly at producing low

values of top(c) , the Type II algorithms produce inf c Ef (z,c)  where the

expectation E is with respect to the uniform distribution on T.  Thus, it tries to

get  generally, but not uniformly, small values of  er(zn ,c)

Definition 4.4 Let  c=b/|b|. A Type II arcing algorithm updates b as follows:

At the current value of b , if  f ' (er(zn ,c))n∑ = 0  then stop.  Otherwise, let

            Q(zn )= f ' (er(zn ,c))/S

and  m*=arg minm Q(em ). I f  Q(em*)≥EQ (er(z,c))then stop. Otherwise let

bm* =bm* +1 and repeat.

Comment:  Since

∂g(c)/∂bm= 1
|b|

(lm (zn )−er(zn ,c)) f ' (er(zn ,c))n∑ ,

the smallest partial derivative is at m=m*.

Theorem 4.5    Let c  be any stopping or limit point of a Type II arcing
algorithm.  Then c is a global minimum of  g(c),

Proof: see Appendix B.

Proposition 4.6 Arc-x4 is a Type II arcing algorithm
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Proof.  In Type II arcing, the b-weight of each minimizing classifier is one, or

an integer greater than one if a classifier minimizes Q(em ) repeatedly.

Hence, the proportion of misclassifications of zn is er(zn ,c) .  At each stage in

arc-x4, the current probability  Q(zn )is taken proportional to er(zn ,c)4
.

Hence, the arc-x4 algorithm is minimizing er(zn ,c)5n∑ .

There is a modified version of the Type II algorithm that works on getting

low values of top(c) .  Starts with a function q(x) defined on [-1,1] such that

q' (x)  is zero for x ≤0, positive for x>0, and q" continuous, bounded and non-

negative.  For  φ>φ*  define f (x)=q(x−φ).  Applying  Theorem 4.5 to this
function gives the following result:

Corollary 4.7 For c any limit or stopping point of a Type II algorithm, using

f (x)=q(x−φ),  top(c)≤φ

Proof:   top(c)≤φ is necessary and sufficient for a global minimum of g(c).

Proposition 4.8  Random Hyperplanes is (almost) a Type II arcing algorithm.

Proof .  Take φ>φ* , q(x)=x+
, f (x)=q(x−φ) and consider trying to

minimize f (er(zn ,c))n∑ using the Type II algorithm.  At each stage, the

current probability Q(zn )  is proportional to I(er(zn ,c)−φ>0) where I   is

the indicator function, and this is the Ji-Ma reweighting.   In the standard

form of the Type II algorithm,  em* minimizes Q(em ) and the

corresponding b value is increased by one.  Because x+ does not have a
bounded 2nd derivative and because the Ji-Ma algorithm does only a
restricted search for the minimizing em, the Type II arcing algorithm has to
be modified a bit to make the convergence proof work.

Takeε >0 small, and q(x) defined on [-1,1]  such that q' (x)=0 for x≤0,

q' (x)=1 for x>ε , and q' (x)  in [0,ε ] rising smoothly from 0 to 1 so that

q"(x) is continuous, bounded and non-negative on [-1,1].  Now let φ>φ*  and

consider minimizing  q(er(zn ,c)−φ)n∑ .  Take δ >0 and at each stage, search

randomly to find a classifier hm such that  Q(em )≤φ*+δ .    Then as long as

φ*+δ−φ<0 , the result of Corollary 4.7 holds.
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The original Ji-Ma algorithm sets the values of two parameters α > 0, η > 0.

In our notation  φ=α , φ*+δ=.5−η .  Ji and Ma set the values ofα ,η  by an

experimental search.  This is not surprising since the value of φ* is
unknown.

5  An Optimizing Arcing Algorithm

None of the arcing algorithms described above have the property that they

drive top(c)  to its lowest possible value φ*=the value of the game. This
section describes an arcing algorithm we call arc-gv (gv=game value) and

proves that top(c(k) )→φ*.    The algorithm generates a sequence of weight

vectors b(k)
 and normed weights c(k) =b(k) /|b(k) |  Denote tk =top(c(k) ).

Initialize by taking b(1) =0  and Q1(zn )=1/ N , all n.

Definition 5.1  Arc-gv updates  b(k)
to  b(k+1)

 as follows:

i)  Let

Qk (zn )= exp(er(zn ,b(k) )−tk |b(k) |)/S

mk+1=arg minm Qk (em )

ii)  Let   ∆k  be the minimizer of

EQk
(exp(∆(lmk+1

(z)−tk )))

in the range  [0,1].

iii)  If  ∆k =0 then stop.  Otherwise increase the  mk+1 st coordinate of  b(k)

by the amount  ∆k  to get   b(k+1)
.

Theorem 5.2   If arc-gv stops at the kth step, then  top(c(k) )=φ*.  If it does

not stop at any finite step, then  limk top(c(k) )=φ*.
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Proof.   see  Appendix C which also shows that the minimizing ∆  at the kth
step is given by the simple expression:

∆=log[
t

1−t

1−q

q
]

where  q=Qk (em ) and t= top(c(k) ).

There is an early sequential method for finding optimal strategies in matrix
games known as the "method of fictitious play".  Its convergence was proved
by Robinson[1951].  A more accessible reference is  Szep and Forgo [1985].  It is
an arcing algorithm, but appears considerably less efficient than the arc-gv
method.

6.  A Bound on the Generalization Error

Schapire et.al[1997] derived a bound on the classification generalization error

in terms of the distribution of mg(z,c)  on the instances  of T.   Using the
same elegant device that they created, we derive a sharper bound using the

value of  top(c)  instead of the margin distribution.

Let Z = (Y,X ) be a random vector having the same distribution that the
instances in T were drawn from but independent of T and denote

er(Z,c)= cmm∑ lm (Z).   Define P̃  as the probability on the set of all N-

instance training sets such that each one is drawn from the distribution P.

Set δ>0  Then:

Theorem 6.1  For  ∆>0 , define

R=8log(2M)

N∆2

Except for a set of training sets with P̃  probability ≤δ , for every

∆≥ 8/ M and c

P(er(Z,c)≥∆+top(c))≤R(1+log(1/ R)+log(2N ))+(log(M)/δ)/ N             (6.1)

Proof  is patterned after the Schapire et al.[1997]proof.  See Appendix D.

Using the inequality mg(Z,c)≥1−2er(Z,c) and setting ∆=1/2 − top(c) gives:
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P(mg(Z,c)≤0)≤R(1+log(1/ R)+log(2N ))+(log(M)/δ)/ N    (6.2)

The bound in Schapire et al.[1997]  depends on PT (mg(z,c)≤θ)  where PT  is

the uniform distribution over the training set and θ  can be varied.  If θ  is
taken to be the minimum value of the margin over the training set, then in
the two-class case, their bound is about square root of the bound in (6.2).  If the
bound is non-trivial and <1, then (6.2) is less then the Schapire et al. bound.

The additional sharpness comes from using the uniform bound given by

top(c) . We give this theorem and its proof mainly as a factor hopefully
pointing in the right direction.  Generalization to infinite sets of predictors
can be given in terms of their VC-dimension (see Schapire et al.[1997]).

The motivation for proving this theorem is partly the following--Schapire et
al.  draw the conclusion from their bound that for a fixed set of predictors, the
margin distribution governs the generalization error.  One could just as well

say that Theorem 6.1 and equation (6.2) shows that it is the value of top(c)
that governs the generalization error.   But both bounds are greater than one
in all practical cases, leaving ample room for other factors to influence the
true generalization error.

7  Empirical results

Schapire et.al interpret their VC-type bound to mean that, all else being equal,
higher margins result in lower generalization error.  The bound in Section 6

could be similarly interpreted as, all else being equal, lower values of  top(c)
result in lower generalization error.

To do an empirical check, we implemented an algorithm into CART which
selects the minimum training set cost subtree having k terminal nodes,
where k is user specified.   More specifically, a tree is grown which splits down
to one instance per terminal node, using the current weights on each instance
to determine the splitting criterion.  Then the algorithm determines which
subtree having k terminal nodes has minimal weighted misclassification cost.
Setting the trees selected to have k terminal nodes fixes the VC-dimension.

For fixed k,  we compare Adaboost to arc-gv.  The latter algorithm reduces
top(c) to its minimum value, hence makes the margins generally large.
Adaboost is not touted to do a maximal enlargement of the margins, hence
should not, by theory to date, produce as low as generalization error as arc-gv.
To check, we ran both algorithms on a variety of synthetic and real data sets
varying the value of k.  We restrict attention to two-class problems, where

mg(zn ,c)=1−2er(zn ,c) .
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In the three synthetic data sets used, training sets of size 300 and test sets of
size 3000 were generated.  After the algorithms were run for 100 iterations, the
test sets were used to estimate the generalization error.   With the real data
sets, a random 10% of the instances were set aside and used as a test set.  In
both cases, the procedure was repeated 10 times and the test set results
averaged.  In each run, we kept track of top(c) and these values were also
averaged over the 10 runs for each algorithm.

The synthetic data  sets are called twonorm, threenorm, and ringnorm and
are described in Breiman[1997].   The real data sets are all in the UCI
repository. The real data sets have the following number of input variables
and instances--breast cancer 9-699: ionosphere 34-351: sonar 60-208.  Two
values of k were used for each data set.  One value was set low, and the other
higher.  Larger values of k were used for largest data set (breast cancer) so that
tree sizes would be appropriate to the data set.

7.1  Test Set Error and top(c)

                  Table 1 Test Set Error(%) and Top(c) (x100)

               Test Set Error         Top(c)
data set                    arc-gv          Adaboost  arc-gv      Adaboost
twonorm
k=8 5.3 . 4.9   21.5 23.5
k=16 6.0 4.9   10.7 13.8
threenorm
k=8           18.6           17.9   32.5 33.5
k=16           18.5           17.8   21.7 24.7
ringnorm
k=8             6.1             5.4   23.9 26.1
k=16             8.3 6.3   10.5 15.6
breast cancer
k=16             3.3 2.9   20.7 22.2
k=32             3.4 2.7   11.8   13.6
ionosphere
k=8             3.7 5.1    23.1 25.1
k=16             3.1 3.1    10.3 12.9
sonar
k=8            11.9             8.1    11.4 12.4
k=16            16.7           14.3      8.0 12.7

Although the test set errors for arc-gv and Adaboost are generally close, the
pattern is that Adaboost has a test set error less than that of arc-gv.  On the
other hand, top(c) is often significantly less for arc-gv than for Adaboost.  But
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this does not translate into a lower test set error for arc-gv.  Often, quite the
contrary.

7.2  The Margin Distributions

 A last question is whether lower values of top(c) translate into generally
higher values of the margin. We looked at this by computing two cumulative
distribution functions  of mg(zn ,c) for each data set--one using the Adaboost

values and the other, the  arc-gv values.  For the real data sets, the entire data
set was used in the comparison.  For the synthetic data, the first data set
generated was used. In all cases, the larger number of terminal nodes (16 or
32) was used.  The two distribution functions are compared in Figure 1 for the
synthetic data sets and in Figure 2 for the real data sets.   To compare the
results with Table 1, recall that the minimum margin is one minus twice
top(c).

In all cases the distribution of the margin under Adaboost is uniformly
smaller that the distribution under arc-gv. The conclusion is  that these
different margin distributions, keeping the VC-dimension fixed, had little
effect on the generalization error.  In fact, that smaller margins were usually
associated to smaller  generalization error.   These empirical results give a
definitive negative vote as to whether the margin distribution or the value of
top(c) determines the generalization error and casts doubt on the ability of the
loose VC-type bounds to uncover the mechanism leading to low
generalization error..

8 Remarks

The results above leave us in a quandary.   The laboratory results for various
arcing algorithms are excellent, but the theory is in disarray.   The evidence is
that if we try too hard to make the margins larger, then overfitting sets in.
One possibility is that the VC-type bounds do not completely reflect the
capacity of the set of classifiers.   For interesting recent work in this direction
see Golea et al.[1998] and Freund[1998].    My sense of it is that we just do not
understand enough about what is going on.
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Appendix A  Convergence of Type I Arcing Algorithms

Theorem .  Let   b(k)
be the successive values generated by the Type I arcing

algorithm, and set  c(k) =b(k) /|b|  Then  limsupk top(c(k) )≤φ

proof.   Clearly, g(b(k) )is decreasing in k.  It suffices to show that |b(k) | →∞
since writing

er(zn ,b(k) )−φ|b(k) |=|b(k) |(er(zn ,c(k) )−φ)

shows that if there is a subsequence k' such that along this subsequence

top(c(k' ) )→φ1>φ , then g(b(k' ) ) →∞ .  If |b(k) | does not go to infinity,

then there is at least one  finite limit point b*.  But every time that  b(k) is

in the vicinity of b*, g(b(k) )  decreases in the next step by at least a fixed

amount δ>0.  Since g(b(k) )  is  non-negative, this is not possible.

comments:  i) From this argument, it's clear that  cruder algorithms would
also give convergence, since  all that is  needed is to generate a sequence

|b(k) | →∞   such that g(b(k) )  stays bounded. In particular, the line search
can probably be avoided. ii)  if we take (w.l.o.g) g(0)=1, then at the kth stage 

|{n: er(zn , c
(k)

) > φ} ≤ Ng(b
(k)

)|.
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Appendix B  Convergence of Type II Arcing Algorithms

Theorem   Let c be any stopping or limit point of the Type II arcing algorithm.
Then c is a global minimum of  g(c).

proof:  Suppose there is a φ, 0<φ<1 such that f ' (x )>0  for x>φ and zero for

x≤φ.  If φ<φ*or if f ' (x )>0  for all x then f ' (er(zn ,c))n∑ =0  is not possible.

We treat this case first.  Suppose the algorithm stops after a finite number of

steps because Q(em*)≥EQ (er(z,c)).   Then

lm*(zn ) f ' (er(zn ,c)n∑ )≥ cmm∑ lm (zn ) f ' (er(zn ,c)n∑ ) (B.1)

This implies that for all m, either cm=0 or

lm*(zn ) f ' (er(zn ,c)n∑ )= lm (zn ) f ' (er(zn ,c)n∑ ) (B.2)

Consider the problem of minimizing g(c)under non-negativity and sum one
constraints on c.   The Kuhn-Tucker necessary conditions are that there exist

numbers λ and µm ≥0  such that if cm>0, then ∂g(c)/∂cm =λ .  If cm=0,

then ∂g(c)/∂cm =λ +µm .  These conditions follow from (B.1) and (B.2).

Because g(c) is convex in c these conditions are also sufficient.

Now suppose that the algorithm does not stop after a finite number of steps.

After the kth step, let c(k+1) be the updated c(k)
 and mk  the index of the

minimizing classifier at the kth step.   Then

er(zn ,c(k+1) )−er(zn ,c(k) )=(lmk
(zn )−er(zn ,c(k) ))/(k+1) (B.3)

Denote the right hand side of (B.3) by δk (zn )/(k+1) .   Using a partial Taylor

expansion gives

       g(c(k+1) )−g(c(k) )= 1
(k+1)

δk (zn )( f ' (er(zn ,c(k) )n∑ + γ
(k+1)2

    (B.4)

The first term on the right in (B.4) is negative for all k.  Since g(c) is bounded
below for all c,
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1

(k+1)
| δk (zn )( f ' (er(zn ,c(k) )n∑k∑ | <∞ (B.5)

So, except possibly on a non-dense  subsequence of the {k},

δk (zn )( f ' (er(zn ,c(k) )n∑ )→0   (B.6)

Take a subsequence of the k for which (B.6) holds such that

mk → m*, c(k) → c .  Then the situation of (B.2) is in force and c is a global

minimum.   Furthermore, since the first term on the right of (B.4) is negative

(non-stopping), then (B.4) implies that the entire sequence g(c(k) )
converges.  Thus, all  limits or stopping points of the c(k)sequence are global

minimum points  of g(c).

Now  examine the case  φ≥φ* .  If there is stopping because

f ' (er(zn ,c))n∑ =0  then top(c)≤φ and g(c)=Nf (0). Otherwise, note that

for any c

er(zn ,cn∑ ) f ' (er(zn ,c))≥φ f ' (er(zn ,c)n∑ ).

Hence

(lm* (zn )−n∑ er(zn ,c)) f ' (er(zn ,c))≤(φ*−φ) f ' (er(zn ,c)n∑ ) (B.7)

If φ>φ*  the right side of (B.7) is strictly negative and the algorithm never
stops.  Then (B.4) gives a subseqence satisfying (B.6).  For any limit point c and
m*,

    (lm*(zn )−n∑ er(zn ,c)) f ' (er(zn ,c))=0 (B.8)

 which implies top(c)≤φ and g(c). If φ=φ* and the algorithm stops,  then
(B.8) holds implying top(c)≤φ.  If it does not stop, the same conclusion is

reached.   In either case, we get g(c)=Nf (0).

Appendix C   Convergence of Arc-gv

Theorem   If arc-gv stops at the kth step, then top(c(k) )=φ*.  If it does not

stop at any finite step, then  limk top(c(k) )=φ*.

proof.  For an M-vector of weights b with c=b/|b| and t=top(c), define
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g(b)= exp(
n
∑ er(zn ,b)−t|b|)

Qb (zn )= exp(er(zn ,b)−t|b|)/S

Consider increasing the mth coordinate  of b by the amount ∆ to get b'.  Let

 Θ(m,b,∆)=EQb
(exp(∆(lm (z)−t).

Then this identity holds:

g(b' )=Θ(m,b,∆)g(b)exp((|b' |(t−t' ))) (C.1)

where t' =top(c' ).

Proposition   If  t−EQb
lm =µb >0  then

min∆ Θ(m,b,∆)≤1−.5µb
2

where the minimum is over the range  [0,1].

proof.  Abbreviate Θ(m,b,∆)by Θ(∆).   Using a partial expansion gives

Θ(∆)=1−µb∆+(∆2 /2)Θ' ' (α∆),       0≤α ≤1

Now,

Θ' ' (α∆)=EQb
[(lm −t)2 exp(α∆((lm −t))] ≤Θ(α∆)

Let [0,s] be the largest interval on which Θ(∆)≤1.  On this interval

Θ(∆)≤1−µb∆+∆2 /2 (C.2)

The right hand side of (C.2) has a minimum at ∆*=µb  and

Θ(∆*)≤1−µb
2 /2 (C.3)
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Note  that ∆*≤ 1 is in the [0,1] range.

To analyze the behavior of arc-gv we introduce the following notation

b(k)
:  the vector of weights after the kth step,

Ek  :  the expectation w.r. to Q
b(k) ,

Θk :  the minimum of Θ(mk+1,b(k) ,∆)over the interval [0,∆] ,

∆k :  the minimizing value of ∆ .

and set µk =µ
b(k) , gk =g(b(k) ).  By (C.1)

     log(gk+1)=log(gk )+|b(k+1) |(tk −tk+1)+logΘk  (C.4)

Summing (C.4) gives

 log(gk+1)=log(N )+ [|b( j+1) |j=1
k∑ (t j −t j+1)+logΘ j ]    (C.5)

Rearranging the sum on the right of (C.5) gives

log(gk+1)=log(N )+ [∆ jj=1
k∑ (t j −tk+1)+logΘ j ]

For any b , since minm EQb
lm ≤φ*  then minm EQb

lm ≤ top(c) with

equality only if top(c)=φ*.  Now µk =tk −minm Eklm so µk ≥0  only if

tk =φ*.  But this is just the stopping condition.  If there is no stopping then

all  µ j > 0 and

log(gk+1) ≤ log(N )+ [∆ jj=1
k∑ (t j −tk+1)−µ j

2 /2] (C.6)

 Since log(gk+1) ≥ 0  the sum on the right of (C.6) must be bounded below.

Take a subsequence {k'} such that tk' +1→ limsup tk = t  and look at (C.6)

along this subsequence assuming  t =φ*+δ  where δ > 0.  Let Nk'  be the
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number of terms in the sum in (C.6) that are positive.   We claim that

supk' Nk' < ∞. To show this, suppose the jth term is positive, i.e.

t j > tk' +1+µ j
2 /2 (C.7)

If t j ≥ φ*+τ ,  τ >0  then µ j ≥ τ .  This implies  that for k' sufficiently large,

there is a fixed ε > 0 such that if (C.7) is satisfied, then t j ≥ t +ε  .  But this can

happen at most a finite number of times.

Let the sum of the positive terms in (C.6) plus log(N) be bounded by S.  Fix

ε > 0.  In the negative terms in the sum, let j'  index those for which

| t j −tk' +1| ≤ ε .  Then

      log(gk' +1) ≤ S+ (εj'∑ −µ j'
2 /2)            (C.8)

Take ε≤δ /2  . For k'  large enough and all j' , t j' >φ*+δ /2  and µ j'
2 ≥ δ2 /4 .

Taking ε   so that  ε<δ2 /16 shows that the number of  terms in the (C.6)

sum such that | t j −tk' +1| ≤ ε  is uniformly bounded.  This contradicts that

fact that the tk' +1 sequence converges to a limit point unless limsup tk =φ*.

 Finding the minimizing ∆ .

The minimizing ∆  is given by a simple expression.   By its definition,
.

Θ(m,b,∆) = e−∆t [1+(e∆ −1)Qb (em )].

Setting the derivation of Θ with respect to ∆  equal to zero and solving gives

∆=log[ t

1−t

1−q

q
]

where q=Qb (em ) .

Appendix D   Upper Bound for the Generalization Error in Terms of Top(c)

Theorem For  ∆>0 , define
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R=8log(2M)

N∆2

Except for a set of training sets with P̃  probability  ≤δ , for every

∆≥ 8/ M and c

       P(er(Z,c)≥∆+top(c))≤R(1+log(1/ R)+log(2N ))+(log(M)/δ)/ N

Proof   Denote l(m,z)=I(z ∈ em ) where I  is the indicator function.  Let K  to

be a positive integer and fixing c take  Jk
∗ , k=1, ... ,K   to be independent

random variables such that P(Jk
∗ =m)=cm .  Denote by J* the random K -

vector whose kth component is Jk
∗

.  Conditional on Z

L (Z,J*)= 1
K

l(Jk
* ,Z1

K∑ )

is an average of iid random variables, each one having expectation er(Z,c).
Similarly,

L (zn ,J*)= 1
K

l(Jk
* ,zn1

K∑ )

is an average of iid variables, each having expectation er(zn ,c) .  For any

µ<λ

     P(er(Z,c)≥λ )≤P(L (Z,J*)≥µ )+P(L (Z,J*)<µ ,er(Z,c)≥λ )     (D.1)

Bound the 2nd term on the right of (D.1) by

E(P(L (Z,J*)<µ ,er(Z,c)≥λ |Z))
≤E(P(L (Z,J*)−E(L (Z,J*)|Z)<µ −λ |Z)) (D.2)

By a version of the Chernoff inequality, the term on the right of (D.2) is
bounded by

exp((−K(µ −λ )2 /2) (D.3)
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To bound the 1st term in (D.1), for some ε>0 consider the probability

P̃(E{P(L (Z,J*)≥µ |J*)−maxn I(L (zn ,J*)≥µ )}≥ε ) (D.4)

where P̃  is the probability measure on the sets of N -instance training sets T.
Let j denote any of the values of J*.   (D.4) is bounded above by

P̃(max j{P(L (Z, j)≥µ )−maxn I(L (zn , j)≥µ )}≥ε )

≤ P̃({P(L (Z, j)≥µ )−maxn I(L (zn , j)≥µ )}≥ε )j∑ (D.5)

By the independence of the {zn} under  P̃ , the jth term in (D.5) is bounded by

exp(−N(P{P(L (Z, j)≥µ )−I(L (Z, j)≥µ )}≤ε )) (D.6)

We can lower  bound the term multiplied by - N  in the exponent of (D.6).

P{P(L (Z, j)≥µ )−I(L (Z, j)≥µ )}≤ε )=
P{P(L (Z, j)≥µ )≤ε +1,L (Z, j)≥µ}+P{P(L (Z, j)≥µ )≤ε ,L (Z, j)<µ}=
P(L (Z, j)≥µ )+I(P(L (Z, j)≥µ )≤ε )P(L (Z, j)<µ )≥ε

Hence, (D.4) is bounded by Mk exp(−εN ). Take a grid of M values

µi , i=1, ... ,M  equispaced in [0,1].  Then the probability

P̃(maxi E{P(L (Z,J*)≥µ i |J*)−maxn I(L (zn ,J*)≥µ i )}≥ε )

bounded by Mk+1 exp(−εN ) .  To bound another term, take ν<µ and write

        E(maxn I(L (zn ,J*)≥µ ))=P(maxn L (zn ,J*)≥µ )≤

      I(maxn er(zn ,c)>ν )+P(maxn L (zn ,J*)≥µ , maxn er(zn ,c)≤ν )      (D.7)

The last term in (D.7) is bounded by

P(maxn (L (zn ,J*)−er(zn ,c))≥µ −ν )≤N exp(−K(µ −ν )2 /2) (D.8)

For any  λ ,ν  take µ to be the lowest value in the grid of M µ -values that is

≥(λ +ν)/2  . So
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µ =(λ +ν )
2

+ α
M

where 0≤α <1.  Assuming that 0<λ −ν≤1 the sum of the bounds in (D.3) and
(D.8) is less than

SK = max(2N,exp(K /2M))exp(−K(λ −ν )2 /8).

Let the ε  in (D.4) depend on K . and define δK =M K +1 exp(−εK N ).  Then,

except for a fixed set of training sets with P̃  probability ≤δK , for all λ ,ν ,c ,

and for fixed K ,

P(er(Z,c)≥λ )≤εK +SK +I(top(c)>ν ) (D.9)

Take δK =2−K δ .  Then (D.9) also holds for all K  except on a fixed set of

training sets with probability≤δ . Now let ν=top(c), λ =∆+top(c), σ=8/∆2
,

and take K =σ log(2N2 /σ log(2M)) .  If ∆≥ 8/ M ,  then 2N≥exp(K /2M)
and letting R=σ log(2M)/ N  gives:

P(er(Z,c)≥∆+top(c))≤R(1−log R+log(2M))+(log(2M /δ))/ N

which is the assertion of the theorem.
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