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Risk-Limiting Postelection Audits: Conservative
P-Values From Common Probability Inequalities

Philip B. Stark

Abstract—Postelection audits of a random sample of batches of
ballots against a trustworthy audit trail can limit the risk of cer-
tifying an incorrect electoral outcome to «, guaranteeing that—if
the apparent outcome is wrong—the chance of a full hand count of
the audit trail is at least 1 — «. Risk-limiting audits can be built
as sequential tests that audit more batches until either 1) there is
strong evidence that the outcome is correct, given the errors found,
or 2) there has been a complete hand count. The P-value of the
hypothesis that the outcome is wrong is the largest chance, for all
scenarios in which the outcome is wrong, that overstatements of
the margins between winners and losers would be ‘“no larger” than
they were observed to be. Different definitions of ‘“larger” give dif-
ferent P-values. A small P-value is strong evidence that the out-
come is correct. This paper gives simple approaches to calculating
a conservative P-value for several ways of summarizing overstate-
ments and several ways of drawing the sample of batches to audit,
emphasizing sampling with probability proportional to a bound u,,
on the error in the pth audit batch (PPEB sampling). A P-value
based on Markov’s inequality applied to a martingale constructed
from the data seems the most efficient among the methods dis-
cussed; there are plans to use it to audit contests in two California
counties in November 2009.

Index Terms—Dvoretzky—Kiefer—Wolfowitz inequality, Ho-
effding’s inequality, hypothesis test, Markov’s inequality, mar-
tingale, monetary unit sampling (MUS), NEGEXP, probability
proportional to an error bound (PPEB), probability proportional
to size, sequential test.

I. INTRODUCTION

HIS paper concerns audits to assess whether the apparent
T winner of an election is the true winner. Statistical audits
based on hand counts of an audit trail can assess, with prespeci-
fied maximum risk, whether error caused the apparent outcome
to differ from the outcome that a full hand count of the audit
trail would show—regardless of the source of the error. Audits
can serve other forensic purposes, including detecting anomalies
characteristic of security breaches or equipment malfunctions.
The goal addressed here is to determine from a sample
whether the apparent (semiofficial) outcome agrees with the
outcome that a full hand count of the audit trail would show.
If it does not, there needs to be a full hand count to set the
record straight. Statistical evidence generally cannot be used to
overturn an election outcome; if it could, sampling variability
might result in disenfranchising the majority, which seems con-
stitutionally intolerable. An audit can err. It can conclude that
the apparent outcome is correct when a full hand count would
show that the apparent outcome is wrong, or it can require a
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full hand count when that will merely confirm that the apparent
outcome is right. The first error is more serious: the wrong
candidate wins. The second error wastes resources. In the
hypothesis-testing formulation of election auditing proposed
by [1], the first error corresponds to a classical Type I error and
the second to a Type II error.

An audit that has a known prespecified minimum chance of
requiring a full hand count whenever that would show a different
outcome is called risk-limiting.! To the best of my knowledge,
there have been only four risk-limiting election audits to date,
all in California: an audit in Marin County in February 2008 and
audits in Marin, Santa Cruz, and Yolo counties in November
2008 [2]. I designed and supervised all four. The first used a
method introduced by [1] and [3] based on stratified random
sampling. The same general method was used in Yolo County
in November 2008. The November audits in Marin and Santa
Cruz counties used samples drawn with probability proportional
to an error bound [4]; the auditing method is presented in [5].
See also Section IV-C1.

Suppose that—given the reported election results, the sam-
pling procedure, and the errors the audit found—we can say
that either a full hand count would show the same outcome,
or an event with probability no greater than P occurred. The
number P is the P-value of the hypothesis that the outcome is
wrong. Smaller P-values are stronger evidence that the outcome
is right.

The P-value of the hypothesis that the outcome is wrong is a
useful summary of any audit and has a central role in risk-lim-
iting audits. References [1], [3], and [6] give a general approach
to constructing risk-limiting audits. The audit is conducted in
stages, indexed by s. There is a sequence of thresholds { }8521.
In each stage, additional batches of ballots are audited and a
P-value is computed.2 The P-value is compared to «s. If the
P-value is less than «, the audit can stop, and the auditor can
recommend that the outcome be certified. If not, more batches of
ballots are audited. If, by stage s = S, the audit has not stopped,
there is a complete hand count, and the result of that count is re-
ported as the official outcome. References [1], [3], and [6] give
details for simple and stratified random samples, but the gen-
eral strategy works for any sampling plan and family of tests for
which one can calculate a P-value.

This paper gives methods to calculate a conservative P-value
for several sampling plans using tests based on the maximum
relative overstatement of pairwise margins [3], focusing on sam-
pling with probability proportional to an error bound (PPEB)
[4]. “Conservative” means that if the outcome is wrong, the
P-value might be bigger than the probability of observing no

ISee http://www.electionaudits.org/bp-risklimiting (last accessed February
19, 2009).

2[n [1], the P-value is based on all the data collected. In [6], the P-value is
based on the data collected in the current stage, conditional on the audit results
at all prior stages, which can include audits of deliberately selected batches.
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more error than was observed, but never smaller. The methods
described here never overstate the strength of the evidence that
the outcome is correct.

A. Connections to Financial Auditing

Advantages of using statistical methods to draw financial
audit samples have been known for more than 50 years (e.g.,
[7]1-[9]). It has been known for almost as long that standard
statistical techniques can be grossly inaccurate for analyzing
accounting errors because accounting errors tend to be quite
skewed—most errors are near zero, but some are very large.
See, e.g., [10] and [11].

Populations of vote-counting errors are similar to popula-
tions of accounting errors. Typically, the error in the count of
a precinct-size batch of ballots is at most a few votes. How-
ever, fraud, bugs, and problems such as miscalibrated optical
scanners, ballot definition errors, database or memory card
“glitches,” lost memory cards, and lost (or “found”) boxes of
ballots can produce discrepancies of thousands of votes.

In both financial and electoral auditing, the key question is not
whether there is any error at all in the population audited—there
usually is—but rather, whether the total error is material. Error
in a financial report is typically considered material if a rea-
sonable person relying on the report would have acted differ-
ently but for the error. Materiality in electoral auditing is more
straightforward: error in reported election results is material if
it makes the winning candidate(s) or position appear to lose.3

To test whether the total value of a financial account is mate-
rially overstated, it is common to sample items with probability
proportional to their book value rather than with equal probabil-
ities. This is called monetary unit sampling (MUS) or dollar unit
sampling. See, e.g., [10] and [12]-[15].4 Reference [10] seems
to be the first to report using MUS in financial auditing; see [11]
for the history of MUS. In inferences about accounting over-
statements, it is common to assume the book value of an item is
an upper bound on the amount by which the value of the item
was overstated: At worst, the item is worthless. MUS is PPEB:
items that can have more error have proportionately larger prob-
ability of being drawn than items that can have less error.

B. Sampling Schemes for Election Auditing

Existing legislation for postelection audits draws batches by
simple random sampling (SRS) or stratified random sampling
[2]. Sampling schemes that give more scrutiny to batches that
can hide more error can be more efficient [4]. Suppose that the
ballots are divided into N auditable batches and that we have
an a priori upper bound u,, on the error e, in batch p.> Let U =

3However, in determining whether a direct-recording electronic voting ma-
chine (DRE) is functioning correctly, any discrepancy between a complete, read-
able paper trail and the electronic record is material. Even a single error in
DRE results indicates a bug or fraud. With voter-marked paper ballots, optical
scanners will occasionally misread voter intent, if only because of variability
in voters’ marks. If the margin is small enough, that can change the apparent
outcome.

4Some methods rely on parametric approximations [16], [17], Bayesian prior
distributions [18]—[22], or numerical simulations [23]-[25]; the reliability of
such methods rests on assumptions that are largely untestable.

SHow to measure error and find an a priori bound on the error are addressed
below. This paper uses the maximum relative overstatement of pairwise margins
[3], the largest amount by which error inflated the margin of any apparent winner
over any apparent loser, expressed as a fraction of the apparent margin between
them.
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Z;\;l u,. Reference [4] proposes two ways of drawing prob-
ability samples of batches for postelection audits: NEGEXP,
where the probability of auditing batch p is 1— exp(—-yu,) and
batches are selected independently; and PPEB, which makes n
independent draws from the pool of batches, with probability
up /U of drawing batch p each time.6 PPEB leads to test statis-
tics that have attractive theoretical features; see Section I'V-C.
In November 2008, PPEB was field-tested in Marin and Santa
Cruz counties, California [5], and NEGEXP was field-tested in
Boulder County, Colorado.” If PPEB or NEGEXP sampling is
sanctioned by audit laws, substantial gains in efficiency are pos-
sible. Nonetheless, there are arguments against methods other
than simple or stratified random sampling for election audits.
Such methods are less transparent to the public and jurisdic-
tional users. Drawing a PPEB or NEGEXP sample requires first
computing error bounds, which can require knowing the ap-
parent outcome in every batch in the contest, across jurisdic-
tions. Using dice or other simple physical sources of random-
ness to draw a NEGEXP or PPEB sample is more complicated
than it is for simple or stratified random sampling; it typically
requires the use of software or lookup tables. There are legal is-
sues too: if batches are sampled using simple random sampling
or using stratified random sampling with equal sampling frac-
tions in every stratum, every ballot has the same chance of being
audited. That is not the case for NEGEXP and PPEB audits: bal-
lots cast in batches with larger error bounds are more likely to
be audited. This could raise questions of equal protection or of
differing chances of disenfranchisement in different batches.

C. Previous Work: Detecting Error Versus Limiting Risk

Most research on election auditing has asked how large a
sample is needed to have a high chance of detecting at least
one error, on the assumption that the apparent outcome is wrong
[4], [27]-[30]. This is the “detection” formulation of auditing.
In practice, auditing even a handful of precinct-size batches of
voter-marked ballots often finds at least one discrepancy, so an-
swering that question is not so helpful.

A more useful question to answer is, “Given the reported re-
sults of the contest, the design of the sample, and the discrepan-
cies the audit found, how strong is the evidence that the apparent
outcome is correct?” This is the “risk” formulation of auditing.

References [1], [3], and [6] answer the latter question, fo-
cusing on audits that select batches using simple or stratified
random sampling. Reference [1] argues that an audit procedure
should always either recommend certifying the election out-
come or require a full recount; otherwise, the procedure is in-
complete. The procedure should have an error rate that can be
quantified. For instance, it could guarantee that if the apparent
outcome is wrong, the probability that the method will require a

6See also [26]. The sample size calculations in [4] for PPEB are a special case
of formulas in [10].

7See  http://ben.boulder.co.us/neal/elections/boulder-audit-08-11/  (last
accessed February 19, 2009). That site claims that the Boulder County
audit was risk-limiting, but it does not meet the definition used here and
in http://www.electionaudits.org/bp-risklimiting (last accessed 19 February
2009). It did not “have a large, predetermined minimum chance of leading to
a full recount whenever a full recount would show a different outcome,” for
reasons including the following. i) It did not have any rule for determining
when to do a full hand count. ii) It audited only the Boulder County portion of
statewide contests. iii) It used an ad hoc value for u,. iv) For local contests,
the chance of finding any error at all on the assumption that the outcome was
wrong varied by contest, as a result of how the auditing effort was allocated
across contests. See [2] for more discussion of the Boulder County audit.
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full hand count is at least 1 —«.. The methods of [4] and [27]—[30]
have this property only if a full hand count is conducted when-
ever the audit discovers any error at all.

D. Organization of This Paper

This paper shows how to use common (and some less
common) probability inequalities to find conservative P-values
for the hypothesis that the outcome differs from the outcome a
full hand count would show, given the discrepancies found in
SRS, NEGEXP, or PPEB samples. As described in [1], [3], and
[6], a risk-limiting audit can be built by wrapping the P-value
calculation in an iterative procedure—sample, assess evidence,
stop, or sample more.

Section II explains P-values. Section III sets out notation
and gives a necessary condition for the election outcome to
be incorrect. Section IV sketches three basic strategies for
testing the hypothesis that the necessary condition holds; draws
connections among SRS, NEGEXP, and PPEB-based methods
for detecting at least one error and how they relate to the
method of [1] and [3]; and gives a simple method for accommo-
dating errors uncovered in SRS, NEGEXP, or PPEB sampling.
Section IV-C focuses on PPEB sampling and methods that use
the observed distribution of errors, connecting election auditing
to tests of hypotheses about the expected value of a nonnegative
random variable from an independent identically distributed
(i.i.d.) sample. Section IV-C2 shows how to use Markov’s
inequality to find a P-value for the hypothesis that the outcome
is wrong, given the discrepancies uncovered in a PPEB sample.
Section IV-C3 shows how to use the Kiefer—Dvoretzky—Wol-
fowitz inequality for that purpose, and Section IV-C4 shows
how to use Hoeffding’s inequality.

Section IV-D finds a P-value using a method due to [31]
for constructing lower confidence bounds for the mean of a
nonnegative random variable. Section IV-E compares several
P-value calculations from PPEB samples in different hypo-
thetical scenarios. The “Kaplan—-Markov” P-value described
in Section IV-D is uniformly the best in the tests—it gives the
smallest P-values. Section V summarizes the findings.

II. P-VALUES

Thispaperisabout P-values,soadefinitionisinorder. P-values
are a way of summarizing the evidence against a hypothesis: the
smaller the P-value, the less credible the hypothesis. To assign
anumerical P-value requires quite a bit of structure. Here is one
formal setup that allows P-values to be defined.

There is a hypothesis about the world. Datum Y will be col-
lected; Y is a random variable that takes values in a measurable
space ). The datum could be multivariate. If the hypothesis is
true, the probability distribution G of Y is in some set G of prob-
ability distributions. We identify the hypothesis with the asser-
tion G € G; if the hypothesis is false, G ¢ G. For simplicity, we
suppose that all the distributions in G are defined on the same
o-algebra, denoted X. For every value a € (0, 1), we have a set
R, € Y such that

sup Pg{Y € R.} < a. )
Geg

That is, if the hypothesis G € § is true, the chance that the
datum Y will be in the set R, is no greater than a. We call
R, the rejection region of a significance-level « test of the hy-
pothesis. The hypothesis is rejected at significance level « if

1007

Y € R,. If we conclude that the hypothesis is false whenever
Y € R,, the chance of erroneously concluding that the hypoth-
esis is false if it is in fact true is at most a.

To define P-values, we shall also insist that the rejection re-
gions nest: If 0 < 8 < v < 1, then

Rs C R, 2)

This ensures that if the family of tests rejects the hypothesis
at significance level «, it also rejects the hypothesis at every
significance level greater than «v. We also define Ry = ).

Given this structure, the PP-value of the hypothesis given the
observation Y = y is

P=inf{ae(0,1]:y € R.}. 3)

That is, the P-value is the smallest significance level at which
the family of tests rejects the hypothesis. Because of the
nesting, the family rejects the hypothesis for all significance
levels greater than the P-value.

The P-value depends not only on the hypothesis G and the
observation that Y = y but also on the family of hypothesis
tests (the sets R,, a € (0,1]). Different tests in general give
different P-values for the same hypothesis given the same data.
One test is better than another if i) no matter what value y the
datum Y takes, the first test assigns a P-value no larger than the
second test does, and ii) there is some y € ) such that the first
test assigns a smaller P-value than the second when Y = y.

In this paper, the hypothesis is that the reported election out-
come is wrong. That hypothesis corresponds to a family G of
probability distributions for the datum Y, a vector of errors ob-
served in a random sample of reported election results normal-
ized in a particular way—the maximum overstatement of pair-
wise errors [3], described below. Each component of Y repre-
sents an audited batch. A component is positive if error in the
batch resulted in overstating the margin between an apparent
winner and an apparent loser. The probability distribution G of
Y depends on how the sample is drawn and on the true distribu-
tion of votes in every batch.

Many of the tests discussed below are defined by a test
statistic—a single-number summary ¢(Y) of the vector Y,
where ¢ is a Y-measurable function from ) to . The value
#(Y) measures the overall “size” of the errors that the audit
uncovers. For instance, ¢(Y") might be the largest component
of Y. The rejection region is then expressed in terms of ¢(Y").
The hypothesis is rejected if ¢p(Y) < fo, where f, is chosen
to satisfy

sup P {¢(Y) < fa} < a. “)
Geg

The nesting condition requires that, for 0 < 8 < v < 1,

lyeV: o) <foyc{yed: o) < fr} )

i.e., fo should increase monotonically with .. The P-value of
the hypothesis for the observation Y = y is then

P=inf{a:¢(y) < fa}. (6)

The following sections specialize this definition to election
auditing and consider particular tests of the hypothesis that the
apparent electoral outcome is wrong.
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III. ASSUMPTIONS AND NOTATION

The audit trail is the legal record; a hand count of the audit
trail determines the true outcome.? We want to determine
whether a full hand count of the audit trail would show a
different result than the apparent result—the result that would
become official but for the audit—and we want to know how
reliable that determination is.

We consider one contest at a time, of the form “vote for up
to f candidates.” There are K candidates in the contest. Elec-
tion results are subtotaled separately in /N auditable batches,
p =1,...,N.10 Let ar, denote the number of votes for can-
didate k in batch p that an audit would show. The total number
of votes a complete hand count would show for candidate & is
A, = Z;?[:l ayp.!! Let vy, be the reported number of votes for
candidate k& in batch p. The total number of votes reported for
candidate k is Vj, = ZIJ)V:I vgp. Let Vy,¢ be the apparent margin
of candidate w over candidate /:

le = Vw - w (7)

Let WV be the set of indexes of the f apparent winners and £
the set of indexes of the K — f apparent losers. If w € W and
{ € L, then V,,p > 0. Candidate w really did beat candidate ¢ if
Awe = Ay — A > 0.

We summarize error using the maximum relative overstate-
ment of the margin between any apparent winner and any ap-
parent loser [3], which we now define. Let e, be the relative
overstatement of the margin between apparent winner w € W
and apparent loser £ € L in batch p:

Vwp — Vep — (a/mp — (l[p)

Vw 14

®)

Cwlp =

The outcome of the race is correct if, for every apparent winner
w € VY and apparent loser £ € L,

N
Z Cwip <1 (9)
p=1
Let
= wlp- 10
P = wewrtee U (10)

This is the maximum relative overstatement of pairwise margins
in batch p. The apparent outcome must agree with the outcome
a full hand count would show if

N
EEZBP< 1.
p=1

8If the audit trail is so incomplete or inaccurate that it does not reflect the true
electoral outcome, then confirming that the apparent outcome is the outcome a
full hand count would show is not helpful. Using voting systems that create a
durable and accurate audit trail and maintaining proper chain of custody of that
audit trail are obviously crucial.

(1)

9See [32] for a method to audit a collection of contests simultaneously.

10The symbol p is mnemonic for precinct, although batches need not corre-
spond to precincts. A batch might consist of the ballots tabulated by a particular
machine on election day, or a “deck” of ballots cast by mail that are run through
optical scanners as a group. But subtotals must be reported for every batch, and
it must be possible to isolate and hand count the audit record for any batch.

1 The symbols @ and A stand for audit or actual.
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The condition £/ > 1 is necessary but not sufficient for the
apparent outcome to be wrong. Hence, testing the hypothesis
E > 1 gives a conservative test of the hypothesis that the ap-
parent outcome is wrong.

How strong is the evidence that E' < 1, given the errors {e, }
discovered by the audit? As noted in Section II, the P-value of
the hypothesis £ > 1 depends not only on the data but also on
how the sample is drawn and on the family of tests under con-
sideration. Moreover, to have strong evidence that the outcome
of the contest is correct without auditing the majority of batches
requires an upper bound on the N values {e,}.

We can derive an upper bound on e, from independent
information. Let b, be a bound on the number of votes cast for
any single candidate in batch p. For example, if p represents
a precinct, b, might be the number of voters registered in
the precinct, the number of ballots sent to the precinct, or
the number of pollbook signatures. The overstatement of the
margin between winner w and loser ¢ is largest when all b,
votes were for £ but were not reported that way

Vup — Vep — (0 = bp)

Cwip <

- Vw[
bp + Vwp — vip
=Lr WP P 12
Vs (12)
Define
by + Vwp — Vep
= . 1
=L Ve -
Then
ep < Uy (14)
Define
t, =epfu, < 1. (15)

We call ,, the taint in batch p. It is the ratio of the largest rel-
ative overstatement of any margin of an apparent winner over
an apparent loser in batch p, divided by the maximum possible
relative overstatement of the margin of an apparent winner over
an apparent loser in batch p. The bounds {u, };)\;1 can be calcu-
lated from {b,} and the reported election results, but the error
e, and the taint £, are known only if batch p is audited. The fact
that ¢, < 1 will be exploited in Section IV-C.

The total of the maximum possible relative overstatements is

N
U= Zup.
p=1

Auditing is superfluous if U < 1, because then there cannot
be enough error to cause the wrong candidate to appear to win.
Therefore, we assume that U > 1. The total attained error is

N N
E= Zep = Zuptp.
p=1 p=1

We now examine several nonparametric approaches to testing
the hypothesis £ > 1.

(16)

7)

IV. AUDIT STRATEGIES

A risk-limiting audit can be performed by testing the hy-
pothesis that £ > 1. If the hypothesis is rejected, the audit
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stops without a full hand count. We would like a conservative
test—one that does not understate the chance of rejecting the
hypothesis when in fact £ > 1. We shall discuss a variety sam-
pling plans and test statistics.

Current auditing approaches use one of three basic strategies
to test whether £ > 1. The first strategy looks for any error
that overstated a margin. It requires a full hand count if any
observed ¢, > 0. The second strategy is a refinement of the
first: it looks for an error that overstates the margin by some
threshold. That threshold can be larger than zero and can vary by
batch. If an error exceeding the threshold is found, the method
requires further auditing, but not necessarily a full hand count.
These two strategies are based on detection. If no batch in an
appropriately drawn sample has a (large) positive error and the
sample is drawn appropriately, one can infer that there is no set
of batches for which the total error is greater than or equal to
one; hence, £/ < 1. The third strategy uses more details of the
distribution of error in the sample. This can reduce the sample
size needed to stop the audit and certify the outcome; in partic-
ular, errors that understated the margin can help. Examples are
given in Section IV-C.

Because audits typically find error, the first strategy is very
likely to result in a full hand count, even when a full count agrees
with the apparent outcome. The methods of [4], [27], [29], and
[30] are in this category.!2 The second strategy permits some
errors provided there is strong evidence that the total error is not
large enough to account for the entire apparent margin. Because
it tolerates some error, it requires larger samples than the first
strategy: it needs evidence that despite the error in the sample,
the total error in all batches is still small. The methods of [1],
[3], and [6] are in this category. This paper extends the strategy
to PPEB and NEGEXP sampling.

The third strategy is most closely related to approaches
used in financial auditing [10], [11], [15]. It uses the observed
distribution of errors—not merely the number above some
threshold—to draw inferences about E. This paper gives sev-
eral ways of using the distribution of error in PPEB samples
and points to other approaches.

A. Strategy 1: Look for Any Error at All

If £ > 1, there must be some set of 7 of “tainted” batches
such that

> ep>1 and e,>0, VpeT. (18)
peT
If 7 exists, it must satisfy
> up>1 (19)

peT

since e, < wu,. If no such 7 exists, the apparent outcome of the
election is the outcome a full hand count would show.

This strategy tries to find strong statistical evidence that £ <
1 by drawing a sample in such a way that if 7 did exist, the
sample would be very likely to contain at least one batchp € 7.

12Those papers do not address risk-limiting audits. They calculate the prob-
ability of finding one or more errors when the outcome is wrong, rather than
assess the evidence that £/ < 1 when the audit finds error, the typical case. To
use those methods for risk-limiting audits, one must demand a full hand count
if the audit finds any error at all.

1009

If the sample contains no batch with e, > 0, that is evidence
that £ < 1. In this test, the datum Y is an n-vector of observed
taints, and the test statistic is

$(Y) = max ;.
7j=1

(20)

The test rejects the hypothesis that the outcome is incorrect if
#(Y) < 0. Details depend on how the sample is drawn.

1) SRS Sampling: If the sample is a simple random sample
of n of the IV batches, the chance that the sample contains at
least one batch with e, > 0 is
(Nf#{p:ep >0})

()
This increases monotonically as the number of batches p for
which e, > 0 increases; therefore, if 7 exists, the chance of
finding one or more batches with e, > 0 is smallest if 7 con-
centrates the errors in as few batches as possible. Let d = d(u)
be the smallest integer &k for which the sum of the largest k el-
ements of the multiset {up};?v:l is greater than or equal to one.
If 7 exists, necessarily #7 > d(u). Hence, if £ > 1, then the
chance that a simple random sample of n of the NV batches con-
tains no element of 7 is at most

(N—d(u))

()
For this strategy, if e, < 0 for every batch p in the SRS sample,
(22) is the P-value of the hypothesis that £ > 1.

2) NEGEXP Sampling: Consider selecting batches for audit
independently, with probability 1—exp(—vyu,) of selecting
batch p, where v > 0 is a fixed constant. Suppose 7 exists.
What is the chance that the sample will contain one or more

batches p with e, > 0? The chance that no element of 7 is in
the sample is

I (1= (1 = exp(—yuy)) =

1- @21)

(22)

H eXP(_'Yup)

peT peT
=exp | —v Z Up
peT
< exp(—7) (23)

by (19). Hence, for this strategy, if e, < 0 for every batch p
in the sample, the P-value of the hypothesis that £ > 1 is
exp(—).

3) PPEB Sampling: We draw n times at random, indepen-
dently (with replacement), from the set of N batches, with prob-
ability u, /U of selecting batch p in each draw. Suppose 7 ex-
ists. Then the chance that the jth draw is an element of 7 is

Z%Zl/U

peET

(24)

Since the draws are independent, the chance that none of the n
draws gives an element of 7 is at most
(1-1/0)". (25)

So, for this strategy, if e, < 0 for every batch p in the sample,
the P-value of the hypothesis £ > 1is (1—1/U)".
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B. Strategy 2: Look for Taint That Exceeds a Threshold

This section sketches the second method in its simplest form;
in particular, it does not consider stratified samples or general
weight functions for the error in each batch. For a more thorough
treatment, see [1] and [6].

Lett € [0,1/U). Recall that ¢, = ep,/u,. We will answer the
question, “What is the chance that the audit would have found
no batch p with ¢, larger than ¢ if &/ > 1, given the design and
‘size’13 of the sample?” This is the P-value of the hypothesis
E > 1 for a test that rejects when ¢(Y) < ¢. A small P-value is
strong evidence that £ < 1 and hence that the apparent outcome
of the race is correct.

The ability to calculate P-values also lets us answer the ques-
tion, “If we would like to be able to certify the outcome of the
race provided that the audit finds ¢, < ¢ for every batch p in
the sample, how big a sample do we need to guarantee that the
chance of a full hand count is at least 1 -« if the outcome is
wrong?” By wrapping the P-value calculation in an iterative
expansion of the sample as described above, we can construct
risk-limiting audits. See [1], [3], and [6].

There are many possibilities at this juncture. Here is a
simple choice that allows a unified treatment of different sam-
pling plans and reduces the problem to the problem solved in
Section IV-A. The basic idea is to reduce the apparent margin
to allow for a “background” taint of ¢ in every batch, then to
apply the method of the previous section to the reduced margin
by looking for taints that exceed .

For any set 7 C {1,...,N}, > crup < U. Hence, if
E > 1, there must be some set of batches 7; such that

> (e —tup) 21— tU (26)
peTy
ie.,
3 L 27)
S 1-w
Define
&, = % 28)
and
wEt e @)
Then ¢, < 4,,p =1,...,N. Define
- 1—t
UzZaszl_tU (30)

If the apparent outcome differs from the outcome a full hand
count would show, there must exist some 7; C {1,..., N} such
that

Y & >1 and & >0,
peT;

Vp € T;. 3D

13The measure of “size” depends on how the sample is drawn. For SRS, it is
the number of batches. For NEGEXP, it is the scale factor . For PPEB, it is the
number of draws, which tends to be larger than the number of batches drawn
because duplicates are possible.
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If 7; exists,

> i, > 1.

peT;

(32)

This is structurally the same condition tested in Section IV-A.
Moreover, because u, o u,, NEGEXP sampling using u, is
the same as NEGEXP sampling using u, but with a different
value of 7. And PPEB sampling using error bounds {, };Vzl is

identical to PPEB sampling using error bounds {up}ﬁ;l.

Hence, the calculations in Section IV-A apply, provided we
substitute ¢, for e, u,, for u, [thereby substituting U for U and
d(u) for d(u)]. If we fix ¢, those calculations tell us how large
a sample to take to have at least 1 —a chance of finding at least
one batch p with ¢, > ¢ if the outcome is wrong.

If instead we take ¢ to be the maximum value of ¢, in the
sample, we can use the calculations in Section IV-A to solve for
«. That value of « is the maximal probability that no taint larger
than ¢ would be observed if ¥ > 1. It is a conservative P-value
for the hypothesis that the outcome is wrong.

C. P-Values Using the Distribution of Observed Error in
PPEB Sampling

We come to the third strategy, which uses more details of
the observed distribution of taint. Part of the magic of PPEB
sampling is that the taint is bounded above by one and that the
expected value of the taint in each draw is E /U, as we shall see
presently. These facts are exploited by the Stringer bound and
its sharpened version [10], [13], [14]; by the multinomial bound
[15]; and by the trinomial bound [5]. They also make it possible
to find P-values from PPEB samples using standard probability
inequalities, as illustrated in the next three sections.

The total error F can be written

N N N
E= Zep = thup = Uthu—J.
p=1 p=1 p=1

Suppose we draw a batch at random, with chance u,/U of
drawing batch p: a PPEB sample of size one. Let 7" be the taint
t,, of the batch that is selected. Then

N U FE
ET = t,—L = —.
20 =g

The outcome of the race must be correct if KT < 1/U. The
smallest significance level at which we can reject the hypothesis
IET > 1/U is the P-value of the hypothesis E > 1.

Suppose we draw a PPEB sample of size n. We draw a batch
n times at random, independently, with probability u, /U of
drawing batch p in each draw. Let {Tj};;l be the taints of the
n not necessarily distinct batches that are drawn. Then {7;} are
independent and identically distributed with the same distribu-
tion as 7" (they are i.i.d. T"). Moreover, since ¢, < 1, P{T; <
1} = 1. The variables {T}} are all bounded above by one. The
next few sections use these facts to derive nonparametric upper
confidence bounds for IET from {7} }.

If we define X; = 1 — T}, then {X;} are i.i.d. nonnegative
random variables. We can reject the hypothesis IET > 1/U if
we can reject the hypothesis IEX; < 1 — 1/U. Thus, methods
for testing hypotheses about the mean of a nonnegative random

(33)

(34)
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variable can be used to solve the auditing inference problem
from a PPEB sample.
In what follows, we will use the definitions

n

T = minT;}
J=1
T = H_l%XTj
7=1
1 n
T=- >3
j=1

1) P-Values From the Binomial: Consider replacing T} by a
random variable that is stochastically larger

. t, T; <t
{4 7

otherwise.
This variable is at least as large as 7; with probability of one.
Hence, IET; > IET;. Now

(35)

ET; =t + (1 —t)IP{T > t} (36)
o)
ET; >1/Uiff P{T >t} > 1/U__ L mu(t).  (37)
Define the test statistic
S=¢oY)=#{j: T, >t,j=1,...,n} (38)

i.e., S is the number of observed taints in the sample that exceed
t. Whether each observation 77 is greater than ¢ is a Bernoulli
trial with probability IP{T" > ¢} of success; the n trials are in-
dependent. Thus, S has a binomial distribution with parame-
ters n and IP{7T" > t}. We would reject the hypothesis £ > 1
at significance level « if S < s,, where s, is the largest in-
teger for which, on the assumption that S ~ Bin(n,wy(t)),
P{S < sa} < ajie., s, is the largest integer such that

> (Z)wé}(t) (1-mp(t)" ™ <o

k=0

(39)

Suppose that S = s is observed. For this family of tests, the
P-value of the hypothesis £ > 1 is

Pgin = XS: (Z)Wg(f) (1

k=0

— ()" (40)

the largest probability that there would be so few large values of
t, in the sample if £ > 1.

The binomial method constructs a random variable from 7" by
discretizing the possible values of T into two categories—not
greater than ¢ and greater than {—and treating every value in a
category as if it had the largest value possible in that category. It
then finds a P-value for the hypothesis that the expected value
of the new variable is bigger than 1/U. This is a P-value for
the hypothesis that the expected value of the original variable is
bigger than 1/U because the new variable is, by construction,
stochastically larger than 7. Thus, it is a P-value for the hypoth-
esis £ > 1.

The multinomial method of [15] and the related trinomial
method of [5] are similar to the binomial method: They bound
the mean of a random variable that is constructed to be stochas-
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tically larger than T' by discretizing the values of 7" can take.
But instead of dividing the values of 7" into two bins, they use
three or more bins.

2) P-Values From Markov’s Inequality: Markov’s inequality
says that if P{X > 0} = 1, then

P{X >EX/r} <. 41)

Suppose {Xj}?zl are i.i.d. with IP{X; > 0} = 1. Then the
chance all n are greater than IEX /7 is

P{ﬂj{X]’ ZIEXl/T}} <Tr" 42)
Let X = (1/n) Y 7 ) X;; then EX = IEX. Inequalities (41)
and (42) yield two tests of the hypothesis IEX; < p, the first
based on X and the second on X~ = min}_; X.
i) Reject the hypothesis IEX; < p at significance level «
on observing X = z if

x> pla. (43)

ii) Reject the hypothesis IEX; < p at significance level o
on observing X~ = x if

x> pfat/m, (44)

To connect these two tests to election auditing, define X; =
1—Tj. Then {X j}?:l are i.i.d. nonnegative random variables,
and the outcome of the race must be correct if EX; > 1—1/U.
A test statistic for test (i), based on the sample mean, is ¢(Y') =
1—T.If we observe T = t, the P-value of the hypothesis ¥ > 1
is

1-1/U

1—t )

PNlarkov—mean =
A test statistic for test (i) is ¢(Y') = min}_, (1-T;) = 1-T".
If we observe T+ = ¢, the P-value of the hypothesis £ > 1 is

1-1/U\"
PMarkov—max = ( —/ ) .

1—t (46)

The first test turns out to be too weak to be useful in practice,
in part because generally U > 2 and the first test is insensitive
to sample size: For U = 2, if all the observed taints are zero,
Priarkov—mean = 0.5, no matter how large the sample, and the
P-value grows with U and with the mean taint.

3) P-Values From the Massart—Dvoretzky—Kiefer—Wolfowitz
Inequality: Let F(t) denote the cumulative distribution func-
tion of 7,

Fi@)=P{T<t}, teR 47)
so that
ET = / tdF(t). (48)

Since T; < 1, we know that F'(1) = 1.
Let F,(t) denote the empirical cumulative distribution func-
tion of T,

Fu(t) (49)

% ; Lis, .
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Consider the one-sided Kolmogorov—Smirnov statistic

D = sup (F(t) .y (t)) . (50)
t

The distribution of this statistic does not depend on F' if F'

is continuous. Dvoretzky, Kiefer, and Wolfowitz (DKW) [33]
showed that

P {D; > x} < Cexp(—2ny?) (51)

for some constant C'. Massart [34] showed that C' = 1 is sharp

when exp(—2nx?) < (1/2). 1 will call (51) with C = 1 the

MDKYW inequality. It follows from the MDKW inequality that

IP{D; > ,/—hl—o‘} <a.
2n

The distribution of D is stochastically larger when F' is contin-
uous than when F' has jumps [34]; thus the MDKW inequality
is conservative for i.i.d. sampling from finite populations.!4

Inequality (52) can be used to test the hypothesis £ > 1.
Let F(Fy; () be the set of distribution functions G for which
G(1) = 1 and

(52)

sup (G(1) ~ Fu(1)) < 6. (53)

If there is no G € F(Fy,; ) for which [tdG(t) > 1/U, we
can reject the hypothesis £ > 1 at significance level @ =
exp(—2n/3?).

To use the MDKW inequality to find a P-value for the hy-
pothesis E > 1, define

pt(B) = sup

/ 1AG(1),
GE—’F(FHZ['})

Then the P-value of the hypothesis £/ > 1 (taking E, as given)
is

(54)

Pypxkw = Slgp {exp(=2nB) : pt(B) < 1/U}.  (55)

Solving the optimization problem (55) is straightforward: Move
mass from the lowest observations to one until the mean of the
resulting distribution is 1/U. If the amount of mass moved is 3,
the P-value is exp(—2n3?)—provided that is no greater than
1/2. That restriction is not a problem because the interesting case
is when the P-value is small.

Two cases are particularly simple. Suppose we observe

(Tj = tj)?:l’ T = 1?, and T~ =1¢~.
i) If¢ > 1/U, the P-value is one.
ii) Let
1/U -t
ez VUt (56)
1—-1t—

If £ < 1/U and at least [ne] of the values {¢;} are equal
to t~, then the P-value is exp(—2ne?), provided that is
not greater than 1/2.

4Moreover, D;; is stochastically larger for sampling with replacement than
for sampling without replacement, so the MDKW inequality is conservative for
sampling from a finite population without replacement as well.
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4) P-Values From Hoeffding’s Inequality: Hoeffding [35]
establishes that if {X j};-l:l are i.i.d. random variables that take
values in [0, 1], then

P{X —p>x}<e 2. (57)

Let zT = max(z,0). Then Tj+ is stochastically larger than T;
and takes values in [0, 1]. Define 7' = (1/n) Z?zl T]T". The
Hoeffding inequality P-value for the hypothesis £ > 1 if we
observe T' = ¢ is

1, t>1/U

PHoettding = {e&p (=2n(1/U —1)?), t<1/U. (58)

D. Kaplan—Markov P-Value

As we have seen, methods for testing the hypothesis that the
expected value of a nonnegative random variable is below a
threshold using an i.i.d. sample can be adapted to test whether
E > 1 from a PPEB sample. Reference [31] gives two methods
for finding a lower confidence bound for the expected value of a
nonnegative random variable from an i.i.d. sample. Here is the
simpler of the two, expressed as a P-value.

Suppose {X;}"_, are i.i.d. with P{X; > 0} = 1. Form the
nonnegative martingale

X1/EX, (X1/EXy) - (X2/EXy), ..., [[ Xn/EX,
(59)
The expected value of each term is one. Reference [31] notes
a result in [36, p. 88] that applies Markov’s inequality to an
optionally stopped nonnegative martingale 71, Z5, . . .. For any
z > 0,P{max?_, Z; > 2} < I£Z, /7. In the case at hand, that
gives

J
P {m%XHXj/]EXl > 1/a} < a. (60)
=i

We can reject the hypothesis that IEX; < p at significance level
a if

J
¢ X;/u>1/a. 61
I;lgfil;[l /n>1/a (61)

If we observe (X; = z j)?zl, the P-value of the hypothesis that
]EXl S 17 is

(62)

The transformation X; = 1 — T then gives a P-value for the
hypothesis £ > 1 if we observe (T = tj)?zlz

11U

s (63)

n
PKM = min
Jj=1-

1=1

This Kaplan—-Markov P-value is equal to Pyarkov—max 10
Section IV-C2 when all {T};} are equal and less than 1/U;
when they are not, Py can be much smaller. The P-value
Pk can depend on the order in which the data are collected,
which is discomfiting unless the data are in fact collected
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sequentially. If every taint T is less than 1/U—typical in
election auditing, unless there is a serious problem—the terms
in the products are all less than one. Then the minimum occurs
for 5 = n, and every permutation of the data gives the same
P-value.

E. Comparison

Table I compares P-values for PPEB samples for several of
the methods in scenarios with sample sizes between n = 10 and
n = 40 and total error bounds between U = 2 and U = 15.
The binomial P-value is given for thresholds ¢ = 0.01 and
t = 0.02. For each combination of sample size and error bound,
there are six hypothetical data sets with different taints. These
hypotheticals are intended to mimic the taints one might find
in batches of hand-marked optically scanned ballots when the
outcome is correct. Most batches will show little or no error, but
a few might show errors of a few votes out of a few hundred. In
the table, rows where every entry is 0.5 or larger are suppressed.

The value of Pioefrding is almost identical to (and just as bad
as) that of Pyipkw. The value of Pk is uniformly smallest,
often by a quite a bit.

As discussed in [2] and [5], in the November 2008 race for
Measure B in Marin County, California, U < 9.782; 14 batches
were selected by PPEB. All observed taints were zero. The Ka-
plan—-Markov P-value for this race is 22.1%. The November
2008 Santa Cruz County race for Supervisor, District 1, had
U = 13.461; 19 PPEB draws gave 16 distinct batches. The
nonzero taints were 0.036, 0.007, —0.002, —0.003, —0.005,
—0.007, and —0.012; the other 12 taints were zero. The Ka-
plan—Markov P-value is 23.4%. The Marin and Santa Cruz au-
dits were designed and analyzed using the trinomial method at
risk limit 25%. Both were certified.

V. CONCLUSION

The maximum probability that the audit would find “no
more” error than it did find, if the outcome is wrong, is the
P-value of the hypothesis that a full hand count would contra-
dict the apparent outcome. (What “more” means depends on
the test.) The smaller the P-value, the stronger the evidence
that the apparent outcome is correct. Wrapping the calculation
of a P-value in a cycle of expanding the audit sample and
comparing the P-value to a sequence of thresholds makes it
possible to construct risk-limiting postelection audits—audits
with a known minimum chance of requiring a full hand count
when the outcome of that count would show that the apparent
outcome is wrong [1], [6], [32].

To construct a risk-limiting audit, it helps to summarize the
errors the audit discovers as the maximum relative overstate-
ment of pairwise margins [3], which expresses those errors as
the fractions by which they inflated the margins of apparent win-
ners over apparent losers. A necessary condition for the apparent
outcome to be wrong is that F, the total of the maximum rel-
ative overstatements, is one or larger. Taint is the ratio of the
maximum relative overstatement e,, in batch p, to the maximum
possible relative overstatement u,, in batch p. Expressing over-
statement as taint can simplify the analysis.

Sampling batches with probability proportional to the error
bound u,, connects election auditing with financial auditing and
with the problem of testing hypotheses about the expected value
of a nonnegative random variable. If batches are drawn for audit
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TABLE I
P-VALUES FOR PPEB SAMPLES USING SEVERAL TESTS
Method Observed Taints
clean 0.01 0.01 0.02 0.01 | -0.05 x5
0.01 0.03 0.05 x5
n=10,U =2
Bin, ¢ = 0.01 0.001 | 0.001 | 0.001 | 0.012 | 0.012 0.635
Bin, t = 0.02 0.001 | 0.001 | 0.001 | 0.001 | 0.013 0.648
Markov-max 0.001 | 0.001 | 0.001 | 0.001 | 0.001 0.002
MDKW 0.007 | 0.007 | 0.007 | 0.007 | 0.007 0.011
KM 0.001 | 0.001 | 0.001 | 0.001 | 0.001 0.001
n=10,U =5
Bin, t = 0.01 0.119 | 0.119 | 0.119 | 0.401 | 0.401 0.995
Bin, t = 0.02 0.131 | 0.131 | 0.131 | 0.131 | 0.427 0.996
Markov-max 0.107 | 0.119 | 0.119 | 0.131 | 0.146 0.179
MDKW 0.449 | 0453 | 0457 | 0.457 | 0.464 0.484
KM 0.107 | 0.108 | 0.110 | 0.110 | 0.112 0.109
n=20,U=5
Bin, ¢ = 0.01 0.014 | 0.014 | 0.014 | 0.081 | 0.081 0.830
Bin, t = 0.02 0.017 | 0.017 | 0.017 | 0.017 | 0.095 0.854
Markov-max 0.012 | 0.014 | 0.014 | 0.017 | 0.021 0.032
MDKW 0.202 | 0.204 | 0.205 | 0.205 | 0.208 0.234
KM 0.012 | 0.012 | 0.012 | 0.012 | 0.012 0.012
n=20,U =10
Bin, ¢ = 0.01 0.149 | 0.149 | 0.149 | 0.446 | 0.446 0.993
Bin, t = 0.02 0.182 | 0.182 | 0.182 | 0.182 | 0.506 0.996
Markov-max 0.122 | 0.149 | 0.149 | 0.182 | 0.224 0.339
KM 0.122 | 0.123 | 0.124 | 0.124 | 0.127 0.123
n=30,U =10
Bin, t = 0.01 0.057 | 0.057 | 0.057 | 0.229 | 0.229 0.950
Bin, t = 0.02 0.078 | 0.078 | 0.078 | 0.078 | 0.285 0.968
Markov-max 0.042 | 0.057 | 0.057 | 0.078 | 0.106 0.198
KM 0.042 | 0.043 | 0.043 | 0.043 | 0.044 0.043
n=40,U =15
Bin, t = 0.01 0.095 | 0.095 | 0.095 | 0.324 | 0.324 0.975
Bin, t = 0.02 0.142 | 0.142 | 0.142 | 0.142 | 0.426 0.989
Markov-max 0.063 | 0.095 | 0.095 | 0.142 | 0.214 0.493
KM 0.063 | 0.064 | 0.065 | 0.065 | 0.066 0.064

P-values for several tests of the hypothesis £ > 1 based on taints of the
maximum relative overstatement of margins in PPEB samples. The P-value
is the maximum chance that the observed error would be no “larger” than

it was, on the assumption that a full hand count would show a different
outcome. Different tests use different definitions of “large.” Rows are
suppressed if every entry is >0.5. The number of batches in the sample

is n; U is the a priori upper bound on the total overstatement error as a
multiple of the amount of error required to alter the apparent outcome. “Bin”
is the binomial PP-value of Section IV-C1. The Markov-max °-value is in
Section IV-C2; MDKW is in Section IV-C3. “KM” is the Kaplan—-Markov
P-value of Section IV-D. Columns 2-7 list the taints in the sample: Column
2, “clean,” means no errors were found; column 3 is a single taint of 0.01;
column 4 is two taints of 0.01; column 5 is a single taint of 0.02; column 6
is a one taint of 0.01 and one of 0.03; column 7 is five taints of —0.05 and
five of 0.05.

independently so that, in each draw, batch p is selected with
probability proportional to u,, the observed taints are indepen-
dent and identically distributed and their expected value is £ =
Zp ep, the total overstatement error, divided by U = Zp Up,
an a priori bound on the total overstatement error.

For PPEB samples, in examples with observed taints like
those one might expect to see for voter-marked optically
scanned ballots, the Kaplan—-Markov P-value is the smallest
among those presented here and is very simple to compute.
Audits using the Kaplan—-Markov P-value and a new method
for auditing several contests simultaneously are planned for
November 2009 in Marin and Yolo counties [32].
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