Introduction to Perl
(including Perl 5)

Phil Spector

Statistical Computing Facility
Department of Statistics
University of California, Berkeley

What is Perl?

Practical Extraction and Report Language
Developed by Larry Wall in the late 1980s
Combines features of awk, sed, grep and shell scripts
Originally developed for UNIX; now available widely

No inherent limitations to the size of problems it can handle

Some Typical Uses of Perl

e NOT for computational algorithms

e preprocessing input for other programs

e postprocessing output from other programs

e repetitive editing, searching or processing of a series of files
e simplified access to system calls

e managing tasks requiring coordination among programs

e emerging as a language of choice for WWW CGI scripts

e prototyping more ambitious projects

Accessing Perl

Under UNIX, create an executable file whose first line is
#!/usr/local/bin/perl optional_flags
and whose remaining lines contain your perl program
Alternatively, invoke perl from the command line:
perl optional_flags perl_program ...
Some of the flags available include:
-e - invoke perl with a one line program
-w - invoke perl in warning mode
-n - invoke perl with automatic input loop
-d - invoke perl with symbolic debugger
Flags can be combined. A useful example is

perl -de O

which will run the debugger with no program.

Variables

e All variables begin with a special symbol:
$ - scalar @ - array % - associative array

e Each type of variable has its own namespace

e Variable names are case sensitive: $var, $Var and $VAR are
three different variables

e By default, all variables are global

e Perl determines type (numeric or character, scalar or array) by

context
e Numbers initialize to 0, characters initialize to ""

e Fliminate variables with undef

System Variables

There are many built-in variables which control the behavior of
perl; each of the variables has a terse name, as well as a one or
more mnemonic ones. To access the long names in the table below,

include the line “use English;” in your perl program

Name | Long Name Name | Long Name

$/ $INPUT_RECORD_SEPARATOR $\ $0UTPUT _RECORD_SEPARATOR

$, $0UTPUT_FIELD_SEPARATOR $. $INPUT_LINE_NUMBER
$< $UID $> $EUID

$$ $PROCESS_ID $& $MATCH

$! $0S_ERROR $? $CHILD_ERROR

$1 $0UTPUT_AUTOFLUSH $-T $BASETIME

$ARGV | name of file being read @ARGV | array of command line args

Arrays

Regular arrays (@) are indexed by number - negative numbers
count from the end of the array

The highest index of an array can be found using $#array

By default, indexing of arrays starts at O
Can be changed with automatic variable $ [

Associative arrays (%) are indexed by strings
Associative arrays use curly braces (like $ary{$value})

Subscripting can be used to create scalars or arrays
Suppose @T is an array with 10 elements

@T[0,1,2]; # array with three elements

$T[O]; # scalar

Opart

$part

More complex structures can be stored in arrays by using

references

Operators
All the standard binary operators from C
+ - addition - - subtraction / - division #* - multiplication

Additional operators
** - exponentiation . - string concatenation
x - string repetition .. - range operator (1..3=1,2,3)

All operators have a corresponding assignment operator
For example $string .= $add concatenates $string and $add
and puts the result into $string

Increment and decrement operators
++ - increments -— - decrements

prefix = before evaluation, postfix = after evaluation

| | is logical or, && is logical and - These differ from the C
operators in that they return the last expression evaluated
instead of 0 or 1. You can also use the words or or and.

Comparison Operators

Perl provides two sets of comparison operators, one for numbers
and one for strings

It’s your responsibility to use the right one (the -w flag helps)

Function Numerical | Character
Equality == eq
Non-equality I= ne
Less than < 1t
Greater than > gt
Less than or equal <= le
Greater than or equal >= ge
Comparison <=> cmp

Quoting Operators

While we generally think of quotes as literal values, perl provides
operators which provide similar capabilities. These are especially
useful if the object to be quoted contains quotes.

e q{text} - similar to the single quote (’). No variable
interpolation is performed.

e qq{text} - similar to the double quote ("). Variable
interpolation is performed

o gx{text} - similar to the backquote (¢). After variable
interpolation, the text is treated as an operating system
command, and its result is returned.

e qw{text} - returns an array of words from text, equivalent to
quoting each one. No interpolation is performed.

You can use any character you choose in place of the {} pair.

10

Simple Examples

Print only lines with exactly five fields

perl -ne ’print if split == b5’ filename

Print lines that are longer than 80 characters
perl -ne ’print if length > 80’ filename

Print the 10th through 20th lines of a file
perl -ne ’print if $. >= 10 && $. <= 20’ filename

Print lines where the third field is 0
perl -ne ’print if (split)[2] == 0’ filename

Change cat to dog
perl -pe ’s/cat/dog/’ filename

Translate lowercase to uppercase
perl -pe ’tr/[a-z]/[A-Z]/;’ filename

11

Per]l Functions 1

Note: Most functions operate on $_ if they have no arguments

For more information, type perldoc -f functionname.

e chop - removes last character of its argument

Usetul for removing newlines:

while(<>){
chop;

$_ no longer contains a newline

}

e split - break a line into words

QT = split; # breaks $_ into words,
QT = split(","); # uses comma as separator
Qw = split(/[,]+/,$in); # uses comma or space

12

Perl Functions 2
join - combine an array or list

print join(" ",QT);
$fn = join("/",@parts);

keys - produce array containing the indices of an associative
array
Q@thekeys = keys(jarray) ;
values - produce ordinary array containing the values of an
associative array
each - iteratively returns a key/value pair from an associative
array, or a null value at the end of the array.
while(($key,$value) = each(farray)){ ... }

iterates over all the key/value pairs.

13

Perl Functions 3

index - returns the position of the first occurence of a
substring within a string. (returns -1 if no match)

$str = "the cat in the hat";

$i = index($str,’cat’);

sets $i equal to 4.

substr - extracts part of a string from a larger string

$piece = substr($str,3,5); # 5 chars, start at pos. 3
substr($str,3); # from pos. 3 to the end

$part
$end

substr($str,-5); # starts 5 chars from end

grep - evaluate an expression for each element of an array, and
return an array of elements for which the expression was true

@joes = grep(/joe/,Qarray);

14

Perl Functions 4

map - returns a list resulting from evaluating an expression on
each element of a list.

Qcts = map(length,@text)

@cts will contain the lengths of each element of @text.
eof - returns 1 if the next input (<>) would return end of file.
eval - evaluate a string as if it were a Perl program

unpack - breaks a string into an array using format codes
Can be used for fixed format records or binary data

QT
ON

unpack ("x3A4A5",$in); # like (3x,a4,ab)
unpack("d4",$vals) ; # reads 4 doubles (binary)

pack does the opposite of unpack

15

Perl Functions 5

push - add an element to the end of an array

push(@array,$newval) ;

pop - remove and return the last value of an array

$lastvalue = pop(@array) ;

shift - remove and return the first value of an array
$firstvalue = shift(@array);

16

Programming in Perl

All statements must end in a semicolon (;)

Blocks of statements are surrounded by curly braces ({ })
Control statements from C: for, while, goto

Additional statements: unless and until

Inside loops, use next and last

Compound statements can eliminate the need for brackets

Examples: $x = 3 if $a < $b;
$new = &sub($new) until ($new > $o0ld);

foreach statement makes processing arrays easy
Example: foreach $value (Qarray){ ... }

17

Reading Input

Basic input operator is angle brackets: < >

Perl is clever about figuring out where input comes from

— Reads from files if their names appear on the command line

— Reads from standard input otherwise

open function creates a filehandle
open(FI,"filename") || die "Couldn’t open filename";
Then read from filename with
$in = <FI>;

Character based input can be performed using the read and

seek functions:

read (FILEHANDLE, $target,$length) ;
$success = seek(FILEHANDLE, $position,$whence) ;

18

Two Special Cases
e With a while statement, input goes to $_

while(<>){ # or while(<FILEHANDLE>)

each line is read into $_

This is so useful, it’s implemented as the -n flag.

e If a wildcard is in the brackets, it is expanded and $_ set to
each filename

while(<*x.c>){
open(FI,$_);

}
19
Filehandles
e Special cases:
open(FH,"<filename"); # open for input only
open(FH,">filename"); # open for output only
open(FH,">$filevar"); # same using variable
open(FH,">>filename"); # open for append
open(PI,"command|"); # open pipe from ’command’
open(PI,"|command"); # open pipe to ’command’

Automatic Filehandles: STDIN, STDOUT, STDERR

$response = <STDIN>;
chop($response) ;

Input record separator defined by automatic variable $/

Setting $/ = 0777 causes the whole file to be read into a scalar

Reading a filehandle into an array reads the whole file

20

References
References are a way of storing a “link” to one variable as the value
of another variable, and can be used to produce structures of
arbitrary complexity.

Perl will never automatically dereference your references — you
always need to explicitly dereference them.

To explicitly make a variable a reference, you can use the backslash
(\) operator:
$thearray = \@array;
To dereference a reference, surround the reference name with curly
braces ({ }), and precede it with the appropriate “operator”:
$value = ${$thearrayl}[2]; # extract a scalar
Q@vals = @{$thearrayl}[2..5]; # extract an array slice

You can check to see whether a variable is a reference using the
ref () function, which returns "" for a regular variable.

21

References (cont’d)

One of the most useful ways of using references is to create an
array of arrays, similar to C’s multiply subscripted arrays. In these
examples, the arrays are created implicitly.

@{$test{"harry"}} = (5,3,2,9); # makes an array
print $test{"harry"}[3]; # prints 9
$x[1]1[3] = 17; # creates x on the fly

When an element of an array is a reference to an array, you must
dereference it correctly to use it as an array:

push(@{$test{"harry"}},17);
Double subscripts are shorthand for the “->” operator:

print $test{"harry"}[2]; # prints 2
print $test{"harry"}->[2]; # same as above

22

Example: Rearranging output from rusers

The UNIX rusers command lists users on each machine on a
network. We'll rearrange the output to give a list of users and the
machines to which they are logged in:

#1/usr/local/bin/perl
open(RU,"rusers ‘stathosts‘|");
while (<RU>){
chop;
@T=split(’ ’);
($machine = shift(QT)) =~ s/(.*)\..*x/$1/;
foreach $t (@T){
push(@{$usr{$t}}, $machine)
if (1grep(/~$machine$/,0{$usr{$tI}));
}
}
Qusers = sort(keys(%usr));
foreach $u (Qusers){
printf ("%s’sks\n",$u,length($u) < 8 7 "\t\t" : "\t",
join(" ",@{$usr{$ulr}));
}

23

rusers Example (cont’d)

The rusers output looks like:

alpha.Berke joe fred sam
beta.Berkel fred fred fred fred harry

gamma.Berke sue john sam

The output from the perl script looks like:

fred alpha beta
harry beta
joe alpha
john gamma
sam alpha gamma
sue gamma

24

Example: Finding and killing jobs

Suppose we want a command which will find telnet sessions which
we have initiated and selectively eliminate them.

The UNIX ps command can list the telnet sessions. We could then
present the process id to the kill command. We'll use perl to
automate the process.

#!/usr/local/bin/perl
@ps = ‘/usr/ucb/ps auxww | grep telnet;
foreach $ps (@ps){
@T = split(" ",$ps);
if ($T[10] =" /~“telnet/){
print ("Kill session to $T[11]7 ");
$resp = <STDIN>;
chop $resp;
kill 15,$T[1] if($resp eq "y");
}

25

Printing

Remember that variables are expanded inside of quotes, making
many printing tasks simple.

e print function

— $, is field separator

— $\ is record separator
e printf function behaves like its counterpart in C
e You can specify a filehandle as an alternative to STDOUT

print STDERR "Error in input line $.\n";

e Simplified printing of errors and warnings
warn - prints message (with newline) to standard error
die - like warn, but exits after printing

26

More on Printing

e Use escape characters to literally print special characters

$cost = 100;
print "The cost is \$$cost\n";

results in
The cost is $100

e Include large blocks of text using perl’s “here-is” syntax:
print <<identifier;

text to be printed

identifier

e Extensive formatted printing can be done with format/write

27

Sorting

The sort function by default performs a lexicographical sort.
Alternatively, a subroutine or block of statements can be provided.
Plain sort gives lexicographical sort:

@snames = sort(@names) ;
Using <=> gives numerical sort (note no comma):
Osvals = sort({$a <=> $b} @values);
Sorting an associative array based on keys:

@skeys = sort(keys(%array));

foreach $key (@skeys){
push(@sarray, $array{$keyl}) ;
}

Sorting keys based on the values of an associative array:

@skeys = sort({$array{$a}l <=> $array{$v}} keys(%array));

28

Functions which return Arrays
You can use a list with individual members instead of an array
($first, $last) = split(" ",$name);
You can extract just part of a returned array

first word from $_ is stored in $first
$first = (split) [0];

second through fifth words in $line
@some = (split(" ",$line))[2..5];

Setting a scalar to an array results in the number of elements

$num is number of comma-separated items in $line

$num = split(",",$line);

29

Examples
Finding Unique Lines in a File

#!/usr/bin/perl -n
-n puts the perl program in a while(<>) loop
print if ($x{$_}++ == 0);

Finding the Longest Line in a File

#!/usr/bin/perl -n

chop; # remove the newline
$11 = length;

$maxl = $11 if $11 > $maxl;

print "$maxl\n" if eof;

30

Example: Keeping Track of Number of Fields

#!/usr/bin/perl

while(<>)A{
$n = split;
$ct{$n}++;
}

@skey = sort({$a <=> $b} keys(lct));

foreach $key (@skey){
print "$key:\t$ct{$key\n";
}

31

Regular Expressions

e =" operator allows testing or substitution
$in =" m/r_e/ # returns 1 if r.e is in $in
$in ! m/r_e/ # returns 1 if r_e is not in $in
(The m is optional; you could use /r_e/ instead.)
$str =~ s/old/new/; # changes old to new in $str

($new = $save) =" s/old/new/;# doesn’t change$save
e Variables are expanded inside of regular expressions

e Regular expressions can be arguments to split or to set $/

Note: With them/.../ or s/.../ operators, you can replace the
“/” with any character you choose, or you can use pairs of {} or []
as delimiters. (Avoid using ? as a delimiter).

32

Constructing Regular Expressions

Regular Expressions can contain any combination of:

e Literal Characters
Note: Alwaysescape . =~ $ + 7 () [1 {2} |\

Character Classes

Characters surrounded by square brackets ([])

Negated Character Classes

First character in brackets is a caret (7)

Escape Characters

\n newline \f formfeed \t tab
\b* word boundary \d digit \w alphanumeric
\B non-boundary \D non-digit \W non-alphanumeric

Octal or Hexadecimal Characters

\nnn - octal \xnn - hexadecimal

* - Represents a backspace in a character class

33

Constructing Regular Expressions(cont’d)

e Operators within Regular Expressions

~

$

O

{n}
{n,}
{n,m}

anchors expression to beginning of target

anchors expression to end of target

matches any single character except newline
separates alternative patterns

groups patterns together

matches 0 or more occurrences of preceding entity
matches 0 or 1 occurrences of preceding entity
matches 1 or more occurrences of preceding entity
matches exactly n occurrences of preceding entity
matches at least n occurrences of preceding entity

matches between n and m occurrences

34

Grouping in Regular Expressions

In addition to grouping alternations, parentheses are used in
regular expressions to tag sub-expressions which can be referred to
later. The expression contained by the i-th set of parentheses
(counting from the left) is referred to as \i on the left-hand side of
a substitution, and $i anywhere else. If you want to use
parentheses for just grouping, without tagging the enclosed
sub-expression, use (7: and) for grouping.

For example, the following program identifies the first occurrence in

each line of input of two identical words in a row:

if (/\bQw+) +(\1)/\b){
print ’$1 appears twice in line $.\n’;

}

Note that the tagged expression is referred to as \1 in the regular
expression itself, but as $1 outside the regular expression.

35

Modifiers for Regular Expressions

A number of letters can be placed after the final delimiter of a
regular expression to modify some aspects of the matching process

e i - Makes the match case-insensitive.

e g - Operates on all occurences of the regular expression,
instead of just the first, which is the default behavior.

e s - Allows . to match newline along with everything else

e m - Changes the meaning of ~ and $ anchors so they are
meaningful for each logical line. (You can always use \A and \Z
to mean the beginning and end of the input.)

o e - Treats the right hand side of the s/.../.../ operator as a
Perl expression instead of simply text.

e x - Ignore whitespace and comments inside of the regular

expression - useful for formatting complex regular expressions.

36

Return Values from Regular Expression Operators

The values returned from them/.../ and s/.../.../ operators
are different depending on the context in which they are used

e m/.../ operator

— When used as a scalar, returns 1 if the match was
successful, 0 otherwise

— When used as an array, returns a list of tagged items.

e m/.../g operator
When used as an array, returns a list of tagged items
corresponding to as many matches as were found.

e s/.../.../ operator
In scalar or array context, returns the number of substitutions
which actually took place.

37

Examples of Regular Expressions 1

Change NA to . (period)

s/NA/./
Problem: NAME gets changed to .ME
Solution: Use \b to specify word boundaries

s/\bNA\b/ . /

The s command returns a count of the number of substitutions
which are carried out, so it can be used to count occurrences of
regular expressions:

while (<>){
$i = s/\bNA\b/ . /g;
print "Too many missing in line $.\n" if $i > 5;

}

38

Examples of Regular Expressions 2

Reverse the order of two words
s/O\w+) (\w+)/$2 $1/;

$line = "one two three four'";

$line =" s/(\w+) (\w+)/$2 $1/; = two one three four
$line =" s/(\w+) (\w+)/$2 $1/g; = two one four three
Find a word followed by a number

if(/Q\w+) (\d+)/){
print "word is $1, number is $2\n";

}

Note that $1 and $2 retain their values after the regular expression.

39

Examples of Regular Expressions 3

Add one to a series of line numbers at the beginning of each line.
s/"(\d+)/$1 + 1/e;

Since we can’t add 1 to a number using text, the e modifier was

used.

Function calls which return appropriate types can also be used with
the e modifier. For example, to convert numbers to their
hexadecimal representation, you could use the sprintf function:

$str = "125 234 321";
$str =~ s/(\d+)/sprintf ("%x",$1)/ge; = 7d ea 141

40

Greediness of Regular Expressions

Consider extracting URLs from a document. One strategy could be
to find strings which start with http or ftp, followed by a colon (:)
and which end with a character which is not a valid character for a
URL, leading to a pattern like

/((?:httplftp) : . %) [T-_\/."\wl/
But if we use this pattern on text such as
Go to http://www.info.com and report any problems.
we would find that $1 will be set to
http://www.info.com and report any problems.

since the end of line allowed a longer match than the address alone.

41

Greediness of Regular Expressions (cont’d)

One way to solve the problem is to replace the occurence of “.”,
which represents any character, with a more specific character
class. In this case, we could use any character which is a valid part
of a URL:

/((?:httplftp) : [-_\/."\wl*) ["-_\/."\wl/

A more general approach is to use a question mark (?7) after the
quantifier to tell perl to find the smallest string that matches
instead of the longest, which is the default:

/((?:httplftp) :.*x7) ["-_\/."\wl/

Either of these approaches will extract only the URL and not the
text which follows.

42

Iterative Use of the m/. . ./g operator

When used inside a while loop, the m/.../g operator can be used
to process multiple occurences of regular expressions. For example,
suppose we wanted to process a file containing email addresses, in
order to count how many address were in each domain. (Recall
email addresses are in the form username@domain.name.) The
following program would process each address, even if there were
multiple addresses on the line:

while(<>){
chop;
while(/\b(\w+)@(["@ 1+)/g){
$count{$2}++;
}
}

foreach $key (keys(Yicount)){
print "$count{$key} addresses from $key\n",

}

43

More Examples of Regular Expressions

Remove trailing newline (alternative to chop)

s/\n$//;

Eliminate leading Os in a line of numbers

s/\b0+(\d) /$1/g;

Removing the leading portion of a pathname
($tail = $path) =" s#.+/(.*)#$1#;

Capitalize the first letter of first word in a line

s/~ ([a-z]) /\U$1\E/;

e Remove comments (#) from a line

$line =" s/ (.x)#.x/$1/;

44

Using Perl to Edit Multiple Files

Two flags are especially useful when using perl as a stream editor:

e -p sets up input loop and automatically prints $_

e -i allows inplace editing (an extension = backup copy)

For example,

perl -pe ’s/\bNA\b/ . /g’ old.dat > new.dat

would change all NAs to periods in old.dat, and write to new.dat
perl -i.bak -pe ’s/\bNA\b/ . /g’ *.dat

would do the same in place for all files ending with .dat, creating
copies with .bak appended to the names.

This command works well with the UNIX find command:

perl -i.bak -pe ’s#INCL=-I..#INCL=-I.. -I../include#’ \

‘find . -name Makefile -print°

45

Interacting with the Operating System

e system lets you execute an operating system command

e backquotes (¢ ¢) or the qx{} operator let you capture output
into a perl variable
— retains newlines
— multiline output can be captured in an array
— variable expansion takes place inside of backquotes

e Perl provides functions for many operating system calls

chdir, kill, sleep, wait, exec, fork, unlink, mkdir, etc.

e The associative array %ENV contains environmental variables
$ENV{"USER"}, $ENV{"EDITOR"}, etc.

46

File System Operators

As in many shells, perl offers operators for simplified file queries

Op | Tests Op | Tests Op | Tests

-r | Readable -w | Writable -x | Executable

-1 | Link -e | Existence -f | Plain File

-d | Directory || -T | Text -B | Binary
Example:

$prefix = "/usr/local/help/";
$filename = $prefix.$topic;

warn("No help file for $topic") unless -f $filename;

47

Example: Executing Commands on a Network

#!/usr/local/bin/perl
@machines = ("winnie","pooh","kestrel","eeyore");

foreach $machine (@machines){
$job = ‘rsh $machine ps aux | grep $ARGV[O]‘;
print "Jobs on $machine:\n$job\n" if($job);
}

48

Formatted Output

The format statement allows you to define a template for
output produced by the write function. Substitutions are
made as follows:

@<<<:- - - left justify as many columns as there are <s
@>>>- - - right justify as many columns as there are >s
ell]--- center as many columns as there are |s

Specify the variables to be printed below the format lines,
separated by commas

Final line of the format should have a single period

You can specify a header to appear on top of each page
($= is the page size)

49

Example of Format Statement

format STDOUT_TOP =

Name Office Extension

format STDOUT =
0<<<<KLL<LLLLLLLLLLLLLLLLLLLL @>>>>>>> @>>>>>>

$name,$office,Pext

while(<>){

($name,$office,Pext) = split(",");
write;

}

50

Example of Format Statement (cont’d)

The previous example would convert

Fred Smith,425,x7743
John Jones,372,x4450
Harold Johnston,421,x4622

to:

Name Office Extension
Fred Smith 425 x7743
John Jones 372 x4450
Harold Johnston 421 x4622

51

Creating Subroutines

e Define a subroutine using
sub subroutine_name{

statements

}
e The last expression evaluated is returned, or use return

e Arguments to subroutines are passed as one list through @_ :
First arg is $_[0], second is $_[1], etc.

e Arguments other than scalars must be passed to subroutines as
references

e Recall by default perl variables are global. The my function can
create local variables within the subroutine.

e Perl subroutines may be recursive

52

Using Subroutines

Call with &sub(args...)
Note that parentheses and arguments are optional

Include subroutines using the require statement

require ’file.pl’;

The require statement searches the directories in @INC, which

will always contain the current directory.

To read in a subroutine using require, the last line must be

1;

53

Example: Prompting for a Password

sub getpass{
my ($prompt) = $#_ < 0 ? "Password:" : $_[0];
system("stty -echo");
print (STDERR $prompt) ;
$pass = <STDIN>;
system("stty echo");
chop($pass) ;
printf (STDERR "\n");

return $pass;

1;
If the subroutine was in a file called getpass.pl, use:

require ’getpass.pl’;

$secret = &getpass; # or &getpass("Prompt:");

54

Example: Counting Strings in Files

Suppose we wish to write a subroutine which will accept a list of
files as its first argument, a regular expression as its second
argument, and which will return an array containing the number of
times the regular expression occurs in each of the files. Since
arguments to perl subroutines are passed as a single list, the first
argument must be a reference to a list. In the subroutine on the
next slide, the list will be stored in a local array called files
through the use of the my function. To call a subroutine such as
this, a reference must be passed as the first argument, for example

Omyfiles = ("test.1","data","README");
Qcts = &countpat (\@myfiles,"duck");

55

Example: Counting Strings in Files (cont’d)
sub countpat {
my (@files) = @{$_[0]1};
my ($pat) $_[11;
my (@res) = ();
foreach $f (@files){
open(FI,"<$£f") || die "Couldn’t open $f";
$ct = 0;
while (KFI>){
$ct++ while s/$pat//;
}
close(FI);
push(@res,$ct) ;
}

return(@res) ;

56

Example: Resolving Links (recursion)

On many systems there are long chains of links, so using 1s to find
where a file really is can be confusing. Since perl functions can be
called recursively, they provide a simple solution.

The strategy is to write a function which prints a given filename,
and, if it is a link, to follow the 1s convention of using -> to point
to the link. This process is continued until a file which is not a link
is found.

Since many links are stored as absolute pathnames, we'll need a
function which takes a relative pathname and makes it absolute.
That turns out to be the hard part. The main loop and printing
program (&reslink) are shown on the next slide; the pathname
resolution program (&resdir) is on the slide after the next.

57

Example: Resolving Links (cont’d)

main loop
foreach $name (@ARGV){
&reslink($name) ;
printf ("\n");
}
resolve links using "->" notation
sub reslink{
printf ("%s",$_[0]1);
if(! -e $_[0]){ printf("(does not exist)")
}
if (-1 $_[01){
printf (" -> ");
&reslink (&resdir($_[0]));
}

58

Example: Resolving Links (cont’d)

sub resdir{

$_[0]1;
my $now = readlink($dir);
if (substr($now,0,1) ne "/"){
not absolute pathname
$i = 1;
@n = split("/",$dir);
resolve relative links (..)
if (index($now,"../") > -1){
$i++ while $now =" s#\.\./##;

my $dir

}
$now = join("/",0n[0..$#n-$i],$now) ;
}
return $now;

}

59

Command Line Arguments

e Arguments are stored in the array @ARGV
First argument is $ARGV[0], second is $ARGV[1], etc.

e &Getopts subroutine

— Argument to Getopts is a string of characters

— Options with arguments are followed by : in the string
— Variables of the form $opt_letter are set appropriately
— Options and arguments are removed from @ARGV

require ’getopts.pl’;

&Getopts("an:x");

Running

program -a -n 100

will set $opt_a to 1, $opt_n to 100, and $opt_x to ""

60

Resources

Manual page (man perl) - provides a overview of the other
25 (!) manual pages describing perl

Books: (Note: 2nd edition is perl5, 1st edition is perl4)
Learning Perl, 2nd Edition by Randal L. Schwartz
Programming Perl, 2nd Edition by Larry Wall & Randal L.
Schwartz

Perl Cookbook by Tom Christiansen & Nathan Torkington
all three published by O’Reilly and Associates

Internet Newsgroup: comp.lang.perl
FAQ from convex.com (pub/perl/info/faq) (anon. ftp)

Reference Card (part of Programming Perl)
from CPAN archive (/doc/perlref-5.004.1.tar.gz)

61

Resources(cont’d)

Source is available from CPAN archives (try www.perl.org or
check http://language.perl.com/CPAN for more

information.)

The official perl website (maintained by Tom Christiansen) is
located at http://www.perl.com .

http://www.eecs.nwu.edu/perl/perl.html is another good
starting point for finding WWW perl resources.

62

