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10.4 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimiza-
tion, that i, finding the minimum of a function of more than one independent
variable. This section stands apart from those which follow, however: All of
the algorithms after this section will make explicit use of the one-dimensional
minimizat ion algorithms of §10.1, §10.2, or §10.3 as a part of their computa-
tional strategy. This section implements an entirely self-contained strategy,
in which one-dimensional minimization does not figure.

The downhill simplez method is due to Nelder and Mead (1965). The
method requires only function evaluations, not derivatives. It is not very
efficient in terms of the number of function evaluations that it requires. Pow-
ell's method (§10.5) is almost surely faster in all likely applications. However
the downhill simplex method may frequently be the best method to use if
the figure of merit is “get something working quickly” for a problem whose
computational burden is small.

The method has a geometrical naturalness about it which makes it de-
lightful to describe or work through:

A simpler is the geometrical figure consisting, in N dimensions, of N +
1 points (or vertices) and all their interconnecting line segments, polygonal
faces, etc. In two dimensions, a simplex is a triangle. In three dimensions
it is a tetrahedron, not necessarily the regular tetrabedron. (The simplez
method of linear programming also makes use of the geometrical concept of
a simplex. Otherwise it is completely unrelated to the algorithm that we are
describing in this section.) In general we are only interested in simplexes that
are nondegenerate, i.e. which enclose a finite inner N-dimensional volume. If
any point of a nondegenerate simplex is taken as the origin, then the N other
points define vector directions that span the N-dimensional vector space.

In one-dimensional minimization, it was possible to bracket a minimum,
so that the success of a subsequent isolation was guaranteed. Alas! There
is no analogous procedure in multidimensional space. For multidimensional
minimization, the best we can do is give our algorithm =& starting guess, that is,
an N-vector of independent variables as the first point to try. The algorithm
is then supposed to make its own way downhill through the unimaginable
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complexity of an N-dimensional topography, until it encounters an (at least
local) minimum.

The downhill simplex method must be started not just with a single
point, but with N + 1 points, defining an initial simplex. If you think of one
of these points (it matters not which) as being your initial starting point Py,
then you can take the other N points to be

P; =Po+ Ae; (10.4.1)

where the e;’s are N unit vectors, and where ) is a constant which is your guess
of the problem’s characteristic length scale. (Or, you could have different A;'s
for each vector direction.)

The downhill simplex method now takes a series of steps, most steps
just moving the point of the simplex where the function is largest (“highest
point”) through the opposite face of the simplex to a lower point. These
steps are called refiections, and they are constructed to conserve the volume
of the simplex (hence maintain its nondegeneracy). When it can do so, the
method expands the simplex in one or another direction to take larger steps.
When it reaches a “valley floor,” the method contracts itself in the transverse
direction and tries to ooze down the valley. If there is a situation where the
simplex is trying to “pass through the eye of a needle,” it contracts itself ip all
directions, pulling itself in around its lowest (best) point. The routine name
amoeba is intended to be descriptive of this kind of behavior; the basic moves
are summarized ip Figure 10.4.1.

Termination criteria can be delicate in any multidimensional minimiza-
tion routine. Without bracketing nd with more than one independent vari-
able, we no longer have the optio:. of requiring a certain tolerance for a single
independent variable. We typically can identify one “cycle” or “step” of our
multidimensional algorithm. It is then possible to terminate when the vector
distance moved in that step is fractionally smaller in magnitude than some
tolerance tol. Alternatively, we could require that the decrease in the func-
tion value in the terminating step be fractionally smaller than some tolerance
ftol. Note that while tol should not usually be smaller than the square root
of the machine precision, it is perfectly appropriate to let £tol be of order
the machine precision (or perhaps slightly larger so as not to be diddled by
roundoff).

Note wel) that either of the above criteria might be fooled by a sio-
gle anomalous step that, for one reason or another, failed to get anywhere.
Therefore, it is frequently a good idea to restarla multidimensional minimiza-
tion routine at & point where it claims to have found & minimum. For this
restart, you should reinitialize any ancillary input quantities. In the downhill
simplex method, for example, you should reinitialize N of the N +1 vertices
of the simplex again by equation (10.4.1), with Pg being one of the vertices
of the claimed minimum.

Restarts should never be very expensive; your algorithm did, after all,
converge to the restart point once, and now you are starting the algorithm
already there.
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Figure 10.4.1. Possible outcomes for a step in the downhill simplex method. The simplex at
the beginning of the step, here a tetrahedron, is drawn with solid lines. The simplex at the
end of the step (drawn dashed) can be either (a) a reflection away from the bigh point, (b)
areflection and expansion away from the high point, (¢) a contraction along one dimension
from the high point, or (d) a contraction along all dimensions toward the low point. Aan
appropriate sequence of such steps will always converge to a minimum of the function.

Consider, then, our N-dimensional amoeba: .

s8include <zatb.h>

Sdetine NMAX 65000 Tne maximum altowed number of function evaluations, and three
$define ALPHA 1.0 parameters defining the expansions and contractions.
$define BETA 0.5

$detine GAMMA 2.0

#detine GET_PSUX for (j=1;j<endim;j++) { for (i=1,sum=0.0;i<=npta;ies)\
sun o p[31[§): psus{jl=sun;}

void azoeba(p,y,ndim.ftel,funk,nfuak)
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All the minimization methods in this section and in the two sections fol-
lowing fall under this general schema of successive line minimizations. In this
gection we consider a class of methods whose choice of successive directions
does not involve explicit computation of the function’s gradient; the next two
sections do require such gradient calculations. You will note that we need
not specify whether linmin uses gradient information or not. That choice
is up to you, and its optimization depends on your particular function. You
would be crazy, however, to use gradients in 1inmin and not use them in the
choice of directions, since in this latter role they can drastically reduce the
total computational burden.

But what if, in your application, calculation of the gradient is out of
the question. You might first think of this simple method; Take the unit
vectors ey, ey,...ey as & set of directions. Using linmin, move along the
first direction to its minimum, then from there along the second direction to
its minimum, and so on, cycling through the whole set of directions as many
times as necessary, until the function stops decreasing.

This dumb method is actually not too bad for many functions. Even
more interesting is why it ¢s bad, i.e. very inefficient, for some other func-
tions. Consider & function of two dimensions whose contour map (level lines)
happens to define a Jong, narrow valley at some angle to the coordinate ba-
sis vectors (see Figure 10.5.1). Then the only way “down the length of the
valley” going along the basis vectors at each stage is by a series of many tiny
steps. More generally, in N dimensions, if the function’s second derivatives are
much larger in magnitude in some directions than in others, then many cycles
through all N basis vectors will be required in order to get anywhere. This
condition is not all that unusual; by Murphy’s Law, you should count on it.

Obviously what we need is a better set of directions than the e;'s. All
direction set methods consist of prescriptions for updating the set of directions
as the method proceeds, attempting to come up with a set which either (i) in-
cludes some very good directions that will take us far along narrow valleys, or
else (more subtly) (i) includes some number of “non-interfering” directions
with the special property that minimization along one is not “spoiled™ by
subsequent minimization along another, 5o that interminable cycling through
the set of directions can be avoided.

Conjugate Directions

This concept of “non-interfering” directions, more conventionally called
conjugate directions, is worth making mathematically explicit.

First, note that if we minimize a function along some direction u, then
the gradient of the function must be perpendicular to u at the line minimum;
if not, then there would still be a nonzero directional derivative along u.

Next take some particular point P as the origin of the coordinate system
with coordinates x. Then any function f can be approximated by its Taylor
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Figure 10.5.1. Successive minimizations along coordinate directions in a long, narrow ‘“val-
ley” {shown as contour lines). Unless the valley is optimally oriented, this method is ex-
tremely inefficient, taking many tiny steps to get to the minimum, crossing and re-crossing
the principal axis.

series
_ af 0% f
160 = 1P+ 5L '+2Zaz r A
i (10.5.1)
xc¢c—-b-x+ %X-A-x
where
c=f(P) b=-Vflp [Aly= 2l (10.5.2)
- - P v az.-azj P o

The matrix A whose components are the second partial derivative matrix of
the function is called the Hessian matriz of the function at P.
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In the appraximation of (10.5.1), the gradient of [ is easily calculated as
Vf=A-x-b (10.5.3)

(This implies that the gradient will vanish — the function will be at an ex-
tremum — at & value of x obtained by solving A - x = b. This idea we will

return to in §10.7!)
How does the gradient Vf change as we move along some direction?

Evidently
5(Vf)=A- (6x) (10.5.4)

Suppose that we have moved along some direction u to a3 minimum and
now propose to move along some new direction v. The condition that motion
along v not spoil our minimization along u is just that the gradient stay
perpendicular to u, i.e. that the change in the gradient be perpendicular to
u. By equation (10.5.4) this is just

0=u-6(Vf)=u-A-v (10.5.5)

When (10.5.5) holds for two vectors u and v, they are said to be conjugate.
When the relation holds pairwise for all members of a set of vectors, they are
said to be a conjugate set. If you do successive line minimization of a function
along a conjugate set of directions, then you don’t need to redo any of those
directions (unless, of course, you spoil things by minimizing along a direction

that they are not conjugate to).
A triumph for a direction set method is to come up with a set of N

linearly independent, mutually conjugate directions. Then, one pass of N line
minimizations will put it exactly at the minimum of a quadratic form like
(10.5.1). For functions f which are not exactly quadratic forms, it won’t be
exactly at the minimum; but repeated cycles of N line minimizations will in
due course converge guadraiically to the minimum.

Powell’s Quadratically Convergent Method
Powell first discovered a direction set method which does produce N mu-

tually conjugate directions. Here is how it goes: Initialize the set of directions
u; to the basis vectors,

u;=e; i=1,....N (10.5.6)

Now repeat the following sequence of steps (“basic procedure”) until your
function stops decreasing:
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o Save your starting position as Po.

e Fori=1,...,N, move P;_, to the minimum along direction u; and
call this point P;.

e Fori=1,...,N -1, set u; — Wiyg.

o Set uy — Py - Py.

¢ Move Py to the minimum along direction uy and call this point Py.

Powell, in 1964, showed that, for a quadratic form like (10.5.1), k it-
erations of the above basic procedure produce a set of directions u; whose
last k members are mutually conjugate. Therefore, N iterations of the ba-
sic procedure, amounting to N (N + 1) line minimizations in all, will exactly
minimize a quadratic form. Brent (1973) gives proofs of these statements in
accessible form.

Unfortunately, there is a problem with Powell's quadratically convergent
algorithm. The procedure of throwing away, at each stage, u; in favor of
Px =Py tends to produce sets of directions that “fold up on each other” and
become linearly dependent. Once this bappens, then the procedure finds the
minimum of the function f only over s subspace of the full N-dimensional
case; in other words, it gives the wrong answer. Therefore, the algorithm
must not be used in the form given above.

There are a number of ways to fix up the problem of linear dependence
in Powell's algorithm, among them:

1. You can reinitialize the set of directions u; to the basis vectors e;
after every N or N + 1 iterations of the basic procedure. This produces a
serviceable method, which we commend to you if quadratic convergence is
important for your application (i.e. if your functions are close to quadratic
forms and if you desire high accuracy).

2. Brent points out that the set of directions can equally well be reset
to the columns of any orthogonal matrix. Rather than throw away the infor-
mation on conjugate directions already built up, he resets the direction set to
calculated principal directions of the matrix A (which he gives a procedure
for determining). The calculation is essentially a singular value decomposi-
tion algorithm (see §2.9). Brent has a number of other cute tricks up his
sleeve, and his modification of Powell's method is probably the best presently
town. Consult his book for a detailed description and listing of the program.
Jnfortunately it is rather too elaborate for us to include here.

3. You can give up the property of qQuadratic convergence in favor of a
nore heuristic scheme (due to Powell) which tries to find a few good directions
dong narrow valleys instead of N necessarily conjugate directions. This is the
nethod which we now implement. (It is also the version of Powell's method
iven in Acton, from which parts of the following discussion are drawn.)

Powell’s Method Discarding the Direction of Largest Decrease

The fox and the grapes: Now that we are going to give up the property
f quadratic convergence, was it so important after all? That depends on
1e function that you are minimizing. Some applications produce functions
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with long, twisty valleys. Quadratic convergence is of no particular advan-
tage to a program which must slalom down the length of a valley floor that
twists one way and another (and another, and another, ... — there are N
dimensions!). Along the long direction, a quadratically convergent method
is trying to extrapolate to the minimum of a parabola which just isn’t (yet)
there; while the conjugacy of the N — 1 transverse directions keeps getting
spoiled by the twists.

Sooner or later, however, we do arrive at an approximately ellipsoidal
minimum (cf. equation 10.5.1 when b, the gradient, is zero). Then, depending
on how much accuracy we require, a method with quadratic convergence can
save us several times N? extra line minimizations, since quadratic convergence
doubles the number of significant figures at each iteration.

The basic idea of our now-modified Powell’s method is still to take Py —
P, as a new direction; it is, after all, the average direction moved after trying
all N possible directions. For a valley whose long direction is twisting slowly,
this direction is likely to give us a good run along the new long direction. The
change is to discard the old direction along which the function f made its
largest decrease. This seems paradoxical, since that direction was the best of
the previous iteration. However, it is also likely to be a major component of
the new direction that we are adding, so dropping it gives us the best chance
of avoiding a buildup of linear dependence.

There are a couple of exceptions to this basic idea. Sometimes it is better
not to add a new direction at all. Define

fo=f(Po) In=[f(Pn) [fe=[(2PNn-Po) (10.5.7)

Here fg is the function value at an “extrapolated” point somewhat further
along the proposed new direction. Also define Af to be the magnitude of the
largest decrease along one particular direction of the present basic procedure
iteration. (Af is a positive number.) Then:

1. If fg 2 fo, then keep the old set of directions for the next basic
procedure, because the average direction Py — Py is all played out.

2. 62(fo—2/n+1g) [(Jo—In)—AS) 2 (fo—J£)*Af, then keep the old
set of directions for the next basic procedure, because either (i) the decrease
along the average direction was not primarily due to any single direction’s
decrease, or (i) there is a substantial second derivative along the average
direction and we seem to be near to the bottom of its minimum.

The following routine implements Powell's method in the version just
described. In the routine, xi is the matrix whose columns are the set of
directions n;; otherwise the correspondence of notation should be self-evident.

g#include <math.h>

#define ITMAX 200 Maximum 3liowed fterations.
static float sqrarg;

sdefine SQR(a) (sqrarg=(s),.sqrargesqrarg)

void powsll(p.xi,n,ftol,iter tret, func)
tloat p[),eexi,ttol,stret, (*qunc)();
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int n,*iter;

Minimization of a function func of a variables. input consists of an initial starting point
p(1..n); an Initial matrix x4 [1..2] (1..n) whose columns contaln the initlal set of directions
(usually the o unit vectors); and ftol, the fractlonal tolerance in the function value such that
fallure to decrease by more than this amount on one iteration signals doneness. On output.
p Is set to the best point found, xi Is the then-current direction set, fret Is the retumed
function value at p, and iter is the number of Iterations taken. The routine 1inmin is used.

{
int 1,1big,§:
1lcat t,fptt,fp.del;
float ept,eptt,exit, svector();
void linzin(),averror(),fres_vector();

ptevector(l,n);
pttevector(l,s);
xitevector(l,n);
sfrat=(otunc)(p);
tor (§=1;j<*n;j++) ptljlepl4]; Save the inltlal point.
tor (eitersy;;(eiter)es) {
tpe(etret);
ibige=0;
del=0.0; Will be the biggest function decrease.
for (im=1;i<en;i+¢) { In each iteration, loop over 3l girections in the set.
gor (f=1:j<wn;je+) xit[§)=xi[§)[1]; Copy the direction,
tptta(stret);
linein(p,xit,n,fret,func); minimize along It,
17 (fabs(fpte-(efret)) > del) ( and record It if it Is the largest decrease
del=fabs(tptt-(+tret)); 50 far.
ibiged;
}
it (2.0vfabs(2p-(s2ret)) <= ftole(fabs(fp)+fabs(stret))) {
free_vector(xit,i,n);
free_vector(ptt,i,n);
free_vector(pt,i,n); Terminatton criterion.
Teturn;
}
1f (eiter == ITMAX) nrerror(®Too many iterations im routine POWELL®);
for (§=1:i<on;jes) ( Construct the extrapolated point and the average
pttj)=2.0ep(j]-pt[y]: direction moved. Save the oid starting paint.
xit{§}=p§)-pt(j);
pelid=plyl;
fptte(ofunc)(ptt); Function value 3t extrapolated point.

11 (fpte < 1p) {
t=2.00(1p-2.0¢ (sfret)+1ptt)sSQR(Lp-(v2ret)-del) -delsSQR(2p-2ptt);
it (t < 0.0) {
lin=in(p,xit,s,fret, fune); Move to the minimum of the new direction,
Tor (y=3;j<=n;fe+) xi(j) (ibiglexit{}); and save the new direction.

} Back for another iteration.

Implementation of Line Minimization

Make no mistake, there is a right way to implement 1inmin: It is to use
the methods of one-dimensional minimization described in §10.1-§10.3, but
to rewrite the programs of those sections so that their bookkeeping is done
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on vector-valued points P (all lying along & given direction n) rather than
scalar-valued abscissas . That straightforward task produces long routines
densely populated with “for (k=1;k<=n;k++)" loops.

We do not have space to include such routines in this book. Our linzin,
which works just fine, is instead a kind of bookkeeping swindle. It constructs
an “artificial” function of one variable called £1dim, which is the value of your
function, say, func, along the line going through the point p in the direction
xi. linmin calls our familiar one-dimensional routines mnbrak (§10.1) and
brent (§10.2) and instructs them to minimize £1dim. linmin communicates
with f1dim “over the head” of mnbrak and brent, through global (external)
variables. That is also how it passes to fidima pointer to your user-supplied

function.
The only thing inefficient about linmin is this: Its use as an interface be-

tween a multidimensional minimization strategy and a one-dimensional min-
imization routine results in some unnecessary copying of vectors from hither
to yon and back again. That should not normally be a significant addition to
the overall computational burden, but we cannot disguise its inelegance.

sdefine TOL 2.0e-4

int ncon=0; /¢ defining declarations ¢/
float 'pcon-o.-xicon-o.(tnrtnnc)();

void linzin(p,xi,n.fret, func)
t1eat pl).xi{} o2ret, (e2unc)();

int n;
Given an n dimensional point p(1..8] and an 2 dimensional direction xi[1..n), moves and

resets p to where the function func(p) takes on 2 minimum along the direction xi from p,
and replaces x4 by the actual vector disptacement that p was moved. Also returns as fret
the value of func at the returned location p. This Is actually 3l accemplished by calling the
routines znbrak and brest.
{

int §:

{1cat xx,xnin,fx,1b,fs,bx,ax;

£loat brent(),21dia(),evector();

void mnbrak(),fres_vector();

ncomen; Defint the giodbdl variables.
peooevactor(l,n);
xiconsvecter{l,n);
prfunc=func;
for (§=1;§<wm;j+e) ¢
peoz(§)=pl§):
) xicon[§)exi(§];
ax=0.0; tnial guess for brackets.
xx=1.0;
bx*2.0;
nbnk(ku.b::.kbx.k!a.tt:.ktb.!ldu):
sfretebrent (ax,xx,bx,23d1s, TOL, bxnin) §
tor (§=3;j<en;i+s) { Construct the vector results to return.
x4[§] o= xnin;
; plg) o= xi[§):
free_vector(xicor,i,n);
fres_vector(pcon,,n):
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