Algorithm AS 154: An Algorithm for Exact Maximum Likelihood Estimation
of Autoregressive-Moving Average Models by Means of Kalman Filtering

G. Gardner, A. C. Harvey, G. D. A. Phillips

Applied Statistics, Volume 29, Issue 3 (1980), 311-322.

Your use of the JSTOR database indicates your acceptance of JISTOR’s Terms and Conditions of Use. A copy of
JSTOR’s Terms and Conditions of Use is available at http://www.jstor.org/about/terms.html, by contacting JSTOR
at jstor-info@umich.edu, or by calling JSTOR at (888)388-3574, (734)998-9101 or (FAX) (734)998-9113. No part
of a JSTOR transmission may be copied, downloaded, stored, further transmitted, transferred, distributed, altered, or
otherwise used, in any form or by any means, except: (1) one stored electronic and one paper copy of any article
solely for your personal, non-commercial use, or (2) with prior written permission of JSTOR and the publisher of
the article or other text.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Applied Statistics s published by Royal Statistical Society. Please contact the publisher for further permissions
regarding the use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/rss.html.

Applied Statistics
©1980 Royal Statistical Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2001 JSTOR

http://www.jstor.org/
Wed Mar 7 13:44:16 2001

Algorithm AS 154

An Algorithm for Exact Maximum Likelihood Estimation of
Autoregressive-Moving Average Models by Means of Kalman

Filtering
By G. GARDNER A. C. HARVEY and G. D. A. PHILLIPS
Service in London School of Economics University of Leeds
Information and
Analysis Itd,
London, UK

Keywords: MAXIMUM LIKELIHOOD; AUTOREGRESSIVE-MOVING AVERAGE MODEL; KALMAN FILTER

LANGUAGE
Fortran 66

DESCRIPTION AND PURPOSE

The algorithm presented here enables the exact likelihood function of a stationary
autoregressive-moving average (ARM A) process to be calculated by means of the Kalman filter;
see Harvey and Phillips (1976, 1979). Two subroutines are basic to the algorithm. The first,
subroutine STARM A, casts the ARM A model into the “state space” form necessary for Kalman
filtering, and computes the covariance matrix associated with the initial value of the state vector.
The second subroutine, KARM A, carries out the recursions and produces a set of standardized
prediction errors, together with the determinant of the covariance matrix of the observations.
These two quantities together yield the exact likelihood, and this may be maximized by an
iterative procedure based on a numerical optimization algorithm which does not require
analytic derivatives.

Subroutine KARMA contains a device whereby the likelihood may be approximated to a
level of accuracy which is under the control of the user. This enables a considerable amount of
computing time to be saved, with very little attendant loss in precision.

Finally, another subroutine, KALFOR, may be used to compute predictions of future values
of the series, together with the associated conditional mean square errors.

THEORY
An autoregressive-moving average process is defined by

W= Wt bW, te+06_+..0,6_, t=1..,n, (1)

where the ¢;’s are normally and independently distributed with mean zero and variance o2, and
w, is observable. Such a process will be referred to as an ARMA(p, q) process and the set of
parameters (¢, ..., ¢,, 0,,...,0,) will be denoted by (¢,).

An ARMA(p, q) process may be put in “state space” form by defining an r x 1 vector, a,,
which obeys the “transition equation”

o =Ta,_+Re, t=1,..,n, (2)

where r = max (p,q+ 1) and

312 APPLIED STATISTICS

[b, 1 [1]
: 0,
A
T= : , and R= : . 3)
.‘?.'.:.1
| ¢r ;'—1_ -0'_1-

Note that, unless p = g+ 1, some of the ¢;s or 6’s will be identically equal to zero. The
associated “measurement equation” is

w=>010,_)o=za, t=1,..,n “4)
Equations (2) and (4) constitute a linear dynamic model. Given q,_ ,, an estimate of the state
vector at time ¢ — 1, together with a matrix P,_, defined by

El(a,_ —o_)(a-—0,_)] = o’ P,y

a prediction of «,, a|, - 1, may be made. This may then be updated once the rth observations, w,,
becomes available. The prediction and updating are carried out by means of a set of recursive
equations known as the “Kalman filter”. The parmeter 62 does not appear in these recursions.

In order to start the recursions, an initial estimator of the state «, is needed, together with the
associated matrix P,. The best estimator of a, for the ARM A modelis a, = 0,and the matrix P,
is therefore given by 6 ~2 E[a, ag]. The evaluation of P, constitutes a key feature of the present
algorithm, and the method employed is discussed at some length in the next section.

Application of the recursive formulae yields a set of n standardized residuals, denoted by 7,,
t =1,...,n, together with a set of n quantities, f, t = 1,...,n, proportional to the one-step
prediction mean square errors. The log-likelihood function may then be maximized with respect
to (¢, 0) by minimizing

L¥($,0) = nlogS(6,0)+ . logf, (5)

where S(¢,60) = £77. The subroutine KARMA outputs the second term in expression (5) as
SUMLOG, and S(¢,0) as SSQ.

An approximation to the likelihood may be obtained as follows. Once a certain number of
observations, say t*, have been processed, future values of ¥, are approximated by ¥, which is
obtained directly from the ARMA equation (1), i.e.

Y =W— W = W0,V — 0,0, t=tF LR 42, (6)

where ¥, = 7, t = t*,...,t* —q +1. The value of t*, the point at which the switch to the “quick
recursions” takes place, is determined automatically as soon as f, < 1 + &. The choice of 8, which
will generally be a small positive number, say 0-01 or 0-001, is open to the user. If § is set equal to
a negative number the full Kalman filter is carried out for all observations and the exact
likelihood is obtained. Results concerning the trade-off between accuracy and computational
efficiency for the approximation are given in Table 1. The figures show the time taken to
compute the likelihood function for several values of 6, the parameter in a first-order moving
average process. The results indicate that setting d equal to a value of, say, 0-01 or 0-001 yields a
negligible error of approximation while saving a considerable amount of computing time. This
saving is particularly marked when |6| is relatively small. With 6 = 05, for example, the
likelihood function may be computed very accurately in a time which is only marginally greater
than that needed to compute the conditional sum of squares.

Once estimates of ¢ and 0 have been obtained, one may wish to obtain predictions of future
values of the series. The predicted value of w,,, ,,, and its mean square error, conditional on (¢, 0),
are obtained from the recursions

STATISTICAL ALGORITHMS 313
Apitn = Tps i 1
Poywn=TPy e 1w T'+RR, t=1,...m, (7

where a,, = a,and P,, = P,. The first element of a,.. ,, is the predicted value of w, , ,, while the
top left-hand element of P,.,,,, gives the associated conditional mean square error when
multiplied by an estimate of ¢°.

METHOD
The initial matrix, P, obeys the equation
Py =TP,T +RR. 8)

If V= RR', and if p;;, t;; and v;; denote the element in the ith row and jth column of Py, T and V
respectively, then

Py = ;; Ly D L+ 0y 9)

ie.
v = pi,-—g; Ly Pra Lji- (10)
Thus each element of Vis a linear combination of the elements of P,. We may therefore write
vec (V) = Svec(P,) (11)

where S is an appropriate square matrix, whose form depends on the definition of vec(-).
Expression (11) is a set of linear equations, from which we may obtain P,,.

We consider three definitions of vec(4), where A is a given symmetric square matrix:

(1) vec(A) is obtained by stacking the columns of A. In this case

TABLE 1
The evaluation of the likelihood for a M A(1) model by the modified Kalman filter method with
different values of 6

n=20 n=60
0=05 0=08 0 =099 0=05 0=08 0=099
Exact L* 663606 669910 68-8726 255-643 255-903 259-166
likelihood Time 0-36 0-36 0-35 0-95 095 0-94
6 = 0001 L* 663601 669906 — 255-641 255-903 —
t* 4 13 — 4 13 —
Time 0-25 0-31 — 0-55 062 —
4 =001 L* 66-3541 669816 —i 255636 255-909 259-116
t* 3 8 — 3 8 54
Time 024 0-27 — 0-55 0-58 091
=01 L* 662636 667719 68-8116 255-704 255794 259-142
t* 1 3 9 1 3 9
Time 0-23 0-24 0-28 0-53 0-55 0-58
Conditional L* 660853 659915 664512 256:528 257729 264-634
sum of
squares Time 022 0-22 0-21 0-53 0-52 0-51

T Number of seconds on an ICL 4130 computer.
1 A “—" indicates that no switch occurred; i.e. f;> 1+ for all .

314

2

3

APPLIED STATISTICS
S=I1-TQRT; (12)

see Harvey and Phillips (1976).

vec (A) is obtained by stacking the columns of the lower triangular part of A. This makes
use of the symmetry of Vand P,, and reduces the problem to one of solving r(r +1)/2
linear equations.

When we take into account the form of T, we see that the matrix S contains many
zeroes. We may therefore solve (10) by means of a series of Givens transformations of S,
thus obtaining the Q R decomposition of S. The matrix S is processed row by row, and the
method takes into account leading zeros in the rows of S to reduce computing time.
Solving the equations this way on an ICL 4130 computer for a M A(4) process was faster
than the standard NAG routine by a factor of about three.

A further saving in time may be made for pure moving average processes when the
equation (10) forms a triangular system, and P may be found by backsubstitution.
vec (A)is obtained by stacking the columns of the lower triangular part of 4, beginning at
column 2, with the first column attached at the end. This formulation attempts to bring
more leading zeroes in the rows of S, leading to a reduction in the time taken to evaluate
P,. This formulation is used in subroutine STARMA for processes with auto-
regressive components. For pure moving average processes, the method described in the
preceding paragraph is used. [The referee has suggested an alternative approach in
which P, is derived from the dispersion matrix of w,, ..., w; _,, &g, ..., &1 —,» and computed
using the algorithm of McLeod (1975).]

The recursions in subroutine KARM A are programmed efficiently by taking account of the
zero values which arise in predetermined positions in the various matrices. An important saving
is effected in computing TP, T' in the prediction recursion because of the special nature of P,; see
Harvey and Phillips (1976).

STRUCTURE

SUBROUTINE STARMA(IP,IQ,IR,NP, PHI, THETA,A, P,V, THETAB, XNEXT, XROW,
RBAR, NRBAR, IFAULT)

Formal parameters

IP Integer input : the value of p

1Q Integer input : the value of ¢

IR Integer input : the value of r = max(p,q+1)

NP Integer input : the value of r(r +1)/2

PHI Real array (IR) input : the value of ¢ in the first p locations

output : contains the first column of T

THETA Real array (IR) input : the value of 6 in the first g locations

A Real array (IR) output : on exit contains a,

P Real array (NP) output : on exit contains P,, stored as a lower
triangular matrix, column by column

|4 Real array (NP) output : on exit contains RR’, stored as a lower
triangular matrix, column by column

THETAB Real array (NP) workspace : used to calculate P

XNEXT Real array (NP) workspace : used to calculate P

XROW Real array (NP) workspace : used to calculate P

RBAR Real array (NRBAR) workspace : used to calculate P

NRBAR Integer input : the value of NP¥(NP —1)/2

IFAULT Integer output : a fault indicator, equal to
1 ifIP<0
2 ifIQ<0

3 ifIP<0and IQ<0

STATISTICAL ALGORITHMS 315

ifIP=10=0

if IR#MAX(IP,1Q +1)

if NP#£IR*(IR+1)/2

if NRBAR#NP*NP—1)/2

ifIP=1and IQ =0
(Subroutine STARMA is not ap-
propriate for an AR(1) process)

0 otherwise.

[c<BEN o WV I N

SUBROUTINE KARMA(IP, 1Q, IR, NP, PHI, THETA,A, P, V, N, W, RESID, SUMLOG,
SSQ, IUPD, DELTAE, NIT)

Formal parameters

IP

19

IR

NP
PHI
THETA
A

P

Vv

N

w
RESID

SUMLOG

SSQ

IUPD

DELTA

Integer
Integer
Integer
Integer
Real array (IR)
Real array (IR)
Real array (IR)

Real array (NP)
Real array (NP)
Integer

Real array (N)
Real array (N)

Real

Real

Integer

Real

Real array (IR)

input :
input :
input :
input :
input :
input :
input :
output :
input :
output :
input :
input :
input :
output :

input :

output :
input :

output :
input :

input :

workspace :

the value of p

the value of ¢

the value of r = max(p,q+1)

the value of r(r+1)/2

the first column of T

the value of 0 in the first g locations
contains a,

contains a,, where t = t*

contains P,

contains P,, where t = t*

contains RR’

n, the number of observations

the observations

the corresponding standardized prediction
errors

initial value of Xlogf, (zero if no previous
observations)

final value of logf,

initial value of £V (zero if no previous
observations)

final value of X #2

if IUPD = 1 the prediction equations are by-
passed for the first observation. This is
necessary when the value of P, has been
obtained from STARMA. In this case,
P, = P, and a,, = a, and using the pre-
diction equations as coded in KARMA
would lead to erroneous results. For values
other than 1, the prediction equations are
not by-passed

when NIT =0 this parameter determines
the level of approximation. Negative DELTA
ensures that the Kalman filter is used for all
observations. Otherwise the filter is per-
formed while f,>1+9, “quick recursions”
being used thereafter

used to store the last g standardized predic-
tion errors ‘

316 APPLIED STATISTICS

NIT Integer input : when set to zero see description of DELTA
for the effect of NIT; for non-zero values, the
“quick recursions” are performed through-
out, so that a conditional likelihood is
obtained
output : number of observations dealt with by the
Kalman filter, ie. t*

SUBROUTINE KALFOR(M, IP, IR, NP, PHI, A, P, V, WORK)

Formal parameters

M Integer input : the value of m, the number of steps ahead for which
predictor is required
IP Integer input : the value of p
IR Integer input : the value of r
NP Integer input : r(r+1)/2
PHI Real array (IR) input : contains the first column of T, the transition matrix
A Real array (IR) input : current value of g,
output : predicted value of q,,,,
P Real array (NP) input : current value of P,, stored in lower triangular form,

column by column
output : predicted value of P, ,,
|4 Real array (NP) input : contains RR’ stored in lower triangular form,
column by column
WORK Real array (IR) workspace :

Auxiliary algorithms
The subroutine STARMA calls the auxiliary algorithms INCLU?2 (Farebrother, 1976) and
REGRES (Gentleman, 1974). These algorithms were originally presented as Algol 60 pro-
cedures. The following modified Fortran 66 versions of these procedures are listed after
subroutine KALFOR:

SUBROUTINE INCLUZNP, NRBAR, WEIGHT, XNEXT, XROW, YNEXT, D, RBAR,
THETAB, SSQERR, RECRES, IRANK, IFAULT)
SUBROUTINE REGRES(NP, NRBAR, RBAR, THETAB, BETA)

The formal parameters of these subroutines correspond to those in the original Algol
procedures except that NRBAR contains the value p(p—1)/2, XNEXT contains the in-
dependent variables for the current observation, and X ROWis workspace. Both XNEX Tand
XROW are real arrays of length NP, and the values in XNEXT are unchanged by a call of
INCLU2.

TIME

The figures in Table 2 show the number of seconds taken to compute the likelihood function
of various M A(q) models for set values of the M A parameters. The computations were carried
out on an ICL 4130 machine at the University of Kent. The classical method of evaluating the
exact likelihood function involves estimating the pre-sample residuals; see Box and Jenkins
(1970, Chapter 7). Our algorithm was written to be as efficient as possible, employing what is
essentially a specialization of the method described by Osborn (1977) for the M A multivariate
case; see Harvey and Phillips (1976). The “quick recursions” were not used in the Kalman filter
algorithm. However, the Kalman filter algorithm appears to be marginally faster than the
classical method for small sample sizes. Both methods of computing the exact likelihood
function take significantly longer than the conditional sum of squares approximation, although

STATISTICAL ALGORITHMS 317

TABLE 2
Comparison of timest required to evaluate the likelihood for M A(q) models for different sample
sizes
Conditional Kalman
q n sum of squares Classical Sfilter
1 20 023 0-39 0-37
40 0-39 0-61 0-65
60 0-56 0-87 093
80 073 1-12 119
100 0-89 1-38 1-46
2 20 023 046 041
60 0-58 1-14 1-16
100 092 1-81 1:77
3 20 023 0-59 0-50
4 20 024 0-75 0-60

T Number of seconds required to execute each of the three algorithms on an ICL 4130 computer.

the results in Table 1 suggest a considerable saving of time in the Kalman filter method when the
quick recursions are used.

Although these computational comparisons are restricted to M A models, we believe that for
general ARMA models the conclusions concerning the performance of our Kalman filter
algorithm, vis-g-vis algorithms based on other methods are likely to be similar. Indeed a
yardstick for gauging the relative efficiency of the Kalman filter method in this context is
provided by noting that the time taken to evaluate the likelihood of an ARMA(5,4) model was
1-00 seconds for n = 20. This figure may be compared with the corresponding figure for the
M A(4) process presented in Table 2. The dimensions of the matrices in the filter are exactly the
same for these two processes, but the likelihood for the pure MA model is computed more
rapidly because of the special features exploited in evaluating P,,.

A CKNOWLEDGEMENTS

We are grateful to the SSRC for financial support in connection with our project “Testing for
Specification Error in Econometric Models” which was carried out at the University of Kent in
1976-77. We would also like to thank the editor and referee for their comments and suggestions.

REFERENCES

Box, G. E. P. and JENKINS, G. M. (1970). Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day.

FAREBROTHER, R. W. (1976). Remark AS R17. Recursive residuals—a remark on Algorithm AS 75. Basic procedures
for large, sparse or weighted linear least squares problems. Appl. Statist., 25, 323-324.

GENTLEMAN, W. M. (1974). Algorithm AS 75. Basic procedures for large, sparse or weighted linear least squares
problems. Appl. Statist., 23, 448-454.

HARVEY, A. C. and PHILLIPS, G. D. A. (1976). Maximum likelihood estimation of autoregressive-moving average models
by Kalman filtering. University of Kent: QSS Discussion Paper No. 38.

—— (1979). Maximum likelihood estimation of regression models with autoregressive-moving average disturbances.
Biometrika, 66, 49—58. '

McLeop, L (1975). The derivation of the theoretical autocovariance function of autoregressive-moving average time
series. Appl. Statist., 24, 255-256.

OsBorn, D. R. (1977). Exact and approximate maximum likelihood estimators for vector moving average processes. J.
R. Statist. Soc. B, 39, 114-118.

318

s NeNesNs NN Ne N NN NeNe]

(s N e Ne]

s e Ne]

o000

[N N NeNoRoNe)

10

APPLIED STATISTICS

SUBROUTINE STARMA(IP, 1Q, IR, NP, PHI, THETA, A, P, V, THETAB,
* XNEXT, XROW, RBAR, NRBAR, IFAULT)

ALGORITHM AS 154 APPL, STATIST. (1980) VOL.2q, NO.3

INVOKING THIS SUBROUTINE SETS THE VALUES OF V AND PHI, AND
OBTAINS THE INITIAL VALUES OF A AND P,

THIS ROUTINE IS NOT SUITABLE FOR USE WITH AN AR(1) PROCESS,
IN THIS CASE THE FOLLOWING INSTRUCTIONS SHOULD BE USED FOR
INITIALISATION,

V(1) = 1.0

A1) 0.0

P(1) 1.0 / (1,0 - PHI(1) * PHI(1))

DIMENSION PHI(IR), THETA(IR), A(IR), P(NP), V(NP), THETAB(NP),
* XNEXT(NP), XROW(NP), RBAR(NRBAR)

CHECK FOR FAILURE INDICATION,

IFAULT = O
IF (IP LT, O) IFAULT = 1

IF (IQ LT, 0) IFAULT = IFAULT + 2

IF (IP * IP + IQ * IQ ,EQ, O) IFAULT = 4
K=1Q +1

IF (K ,LT. IP) K = IP

IF (IR ,NE, K) IFAULT = §

IF (NP ,NE, IR * (IR + 1) / 2) IFAULT = 6

IF (NRBAR NE, NP * (NP - 1) / 2) IFAULT = 7
IF (IR ,EQ, 1) IFAULT = 8

IF (IFAULT ,NE, 0) RETURN

NOW SET A(O), V AND PHI,

DO 101 =2, IR

A(I) = 0,0

IF (I .GT. IP) PHI(I) = 0,0
v(I) = 0,0 :
IF (I .LE, IQ + 1) V(I) = THETA(I - 1)
CONTINUE

A(1) = 0,0

IF (IP ,EQ, O) PHI(1) = 0,0
V(1) = 1.0

IND = IR

DO 20 J = 2, IR

VI = V()

DO2C I =J, IR

IND = IND + 1

V(IND) = V(I) = VJ

20 CONTINUE

NOW FIND P(0).
IF (IP ,EQ. 0) GOTO 300

THE SET OF EQUATIONS S * VEC(P(0)) = VEC(V)

IS SOLVED FOR VEC(P(0)).

S 1S GENERATED ROW BY ROW IN THE ARRAY XNEXT,
THE ORDER QF ELEMENTS IN P IS CHANGED, SO AS TO
BRING MORE LEADING ZEROS INTO THE ROWS OF S,
HENCE ACHIEVING A REDUCTION OF COMPUTING TIME,

IR1 = IR - 1
IRANK = O

IFAIL = O

SSQERR = 0,0

DO 40 I = 1, NRBAR
RBAR(I) = 0.0

DO 50 I =1, NP
P(1y = 0,0

THETAB(I) = 0.0
XNEXT(I) = 0,0

s Ne X2l

[eNeNeNe]

50

100

*

110

200

210

220

300

310

STATISTICAL ALGORITHMS

CONTINUE

IND = O

INDL = O

NPR = NP - IR
NPR1 = NPR + 1
INDJ = NPR1
IND2 = NPR

DO 110 J =1, IR

PHIJ = PHI(J)

XNEXT (INDJ) = 0.0

INDJ = INDJ + 1

INDI = NPR1 + J

DO 110 I = J, IR

IND = IND + 1

YNEXT = V(IND)

PHII = PHI(I)

IF (J .EQ. IR) GOTO 100
XNEXT(INDJ) = -PHII

IF (I ,EQ. IR) GOTO 100

XNEXT(INDI) = XNEXT(INDI) - PHIJ
IND1 = IND1 + 1

XNEXT(IND1) = -1,0

XNEXT(NPR1) = -PHII * PHIJ

IND2 = IND2 + 1

IF (INDZ .GT. NP) IND2 = 1
XNEXT(IND2) = XNEXT(INDZ) + 1,0

WEIGHT = 1,0

CALL INCLU2(NP, NRBAR, WEIGHT, XNEXT, XROW, YNEXT,
P, RBAR, THETAB, SSQERR, RECRES, IRANK, IFAIL)

XNEXT(INDZ2) = 0,0

IF (I .EQ. IR) GOTO 110
XNEXT(INDI) = 0,0

INDI = INDI + 1
XNEXT(IND1) = 0,0
CONTINUE

CALL REGRES(NP, NRBAR, RBAR, THETAB, P)

NOW RE-ORDER P,

IND = NPR

DO 200 I =1, IR
IND = IND + 1
XNEXT(I) = P(IND)
CONTINUE

IND = NP

INDL = NPR

DO 210 I = 1, NPR
P(IND) = P(IND1)
IND = IND - 1
INDL = IND1 - 1
CONTINUE

DO 220 I =1, IR
P(I) = XNEXT(I)
RETURN

P(0) IS OBTAINED BY BACKSUBSTITUTION FOR

A MOVING AVERAGE PROCESS.

INDN = NP + 1
IND = NP + 1
PO 3101 =1, IR
po310J =1, I

IND = IND - 1

P(IND) = V(IND)

IF (J .EQ. 1) GOTO 310
INDN = INDN - 1.

P(IND) = P(IND) + P(INDN)
CONTINUE

RETURN

END

319

320

K Ne RN EeNe Xzl

a0

a0

[e e Ne]

an0

10

100
110

120
200

210

300

400
410

420

APPLIED STATISTICS

SUBROUTINE KARMA(IP, IQ, IR, NP, PHI, THETA, A, P,
* V, N, W, RESID, SUMLOG, SSQ, IUPD DELTA, E, NIT)

ALGURITHM AS 154.1 APPL, STATIST., (1980) VOL.29, NO,3

INVOKING THIS SUBROUTINE UPDATES A, P, SUMLOG AND SSQ BY
INCLUSION QF DATA VALUES W(1) TO W(N), THE CORRESPONDING
VALUES OF RESID ARE ALSO OBTAINED,

WHEN FT IS LESS THAN (1 + DELTA), QUICK RECURSIONS ARE USED,

DIMENSION PHI(IR), THETA(IR),

* W(N), RESID(N), E(IR)
IR1 = IR - 1

po10 I =1, IR

E(I) = 0.0

INDE = 1

A(IR), P(NP), V(NP),

FOR NON-ZERO VALUES OF NIT, PERFORM QUICK RECURSIONS,

IF (NIT .NE, 0) GUTO 600
DO500 I =1, N
WNEXT = W(I)

PREDICTION,

IF (IUPD ,EQ. 1 .AND, I .EQ. 1) GOTO 300

HERE DT = FT - 1,0

DT = 0,0

IF (IR ,NE, 1) DT = P(IR + 1)

IF (DT ,LT. DELTA) GOTO 610
Al = A(1)

IF (IR .EQ. 1) GOTO 110
DO 100 J =1, IRl

A(J) = AT + 1)

A(IR) = 0.0

IF (IP ,EQ, 0) GOTO 200
DO 120 J =1, IP

A(J) = A(J) + PHI(J) * A1
IND =

INDN = IR

IND = IND + 1

P(IND) = V(IND)

IF (J .EQ., IR) GOTO 210
INDN = INDN + 1

P(IND) = P(IND) + P(INDN)
CONTINUE

UPDATING,

= P(1)
= WNEXT - A(1)
IF (IR .EQ, 1) GOTO 410
IND = IR
DO 400 J = 2, IR
= P(J) / FT
A(I = A(J) + G = UT
DO 400 L = J, IR
IND = IND + 1
P(IND) = P(IND) - G * P(L)

CONTINUE

A(1) = WNEXT

DO 420 L = 1, IR
P(L) =

RESID(I) = UT / SQRT(FT)
E(INDE) = RESID(I)

INDE = INDE + 1

IF (INDE .GT. IQ) INDE = 1
§5Q = S5Q + UT * UT / FT
SUMLOG = SUMLOG + ALOG(FT)

(2]

aon0ana0

s NeNe]

[eNeN e}

STATISTICAL ALGORITHMS

IF (IP .EQ, 0) GOTO 630

Do 620 J = 1, IP

INDW = INDW - 1

IF (INDW .LT. 1) GOTO 630

ET = ET - PHI(JY * W(INDW)
620 CONTINUE
630 IF (IQ .EQ. 0) GOTO 045

DO 640 J = 1, 1Q

INDE = INDE - 1

IF (INDE .EQ, 0) INDE = IQ

ET = ET - THETA(J) * E(INDE)
640 CONTINUE
645 E(INDE) = ET

RESID(II) = ET

$5Q = 55Q + ET * ET

INDE = INDE + 1

IF (INDE ,GT, IQ) INDE =1
650 CONTINUE

RETURN

END

SUBROUTINE KALFOR(M, IP, IR, NP, PHI, A, P, V, WORK)
ALGORITHM AS 154.2 APPL. STATIST, (180) VOL.2q, NO.3

INVOKING THIS SUBROUTINE OBTAINS PREDICTIONS
OF A AND P, M STEPS AHEAD,

DIMENSION PHI(IR), A(IRY, P(NP), V(NP), WORK(IR)
IRl = IR - 1
DO300 L=1, M

PREDICT A,

Al = AQD)
IF (IR .EQ, 1) GOTO 110
DO 100 I = 1, IRl

100 A(I) = A(I + 1)

110 A(IR) = 0,0
IF (IP ,EQ. 0) GUTO 200
DO 120 J = 1, 1P

120 A(J) = A(J) + PHI(J) * A1

PREDICT P,

200 DO 210 I =1, IR
210 WORK(I) = P(I)

IND = 0O
IND1 = IR
DT = P(1)

DO 220 J = 1, IR

PHIJ = PHI(J)

PHLJDT = PHIJ * DT

DO 220 I = J, IR

IND = IND + 1

PHII = PHI(I)

P(IND) = V(IND) + PHII * PHIJDT

IF (J LT, IR) P(IND) = P(IND) + WORK(J + 1) * PHII

IF (I .EQ. IR) GOTO 220

INDL = IND1 + 1

P(IND) = P(IND) + WORK(I + 1) * PHIJ + P(IND1)
220 CONTINUE
300 CONTINUE

RETURN

END

321

322

[sEeNoNoNeNoNel

2 Ns Kz N NeNs]

]

s Xz N s NeNs R Ne!

10

20

100

10
30

50

SUBROUTINE INCLUZ(NP, NRBAR, WEIGHT, XNEXT, XROW, YNEXT,
~ D, RBAR, THETAB, SSQERR, RECRES, IRANK, IFAULT)

ALGORITHM AS 154.3 APPL, STATIST. (180) VOL.29, NO.3

FORTRAN VERSION OF REVISED VERSION OF ALGORITHM AS 75,1
APPL, STATIST, (1974) VOL.23, NO. 3,
SEE REMARK AS R17 APPL, STATIST, (1g70) VOL, 25, NO, 3.

DIMENSION XNEXT(NP), XROW(NP), D(NP), RBAR(NRBAR), THETAB(NP)

INVOKING THIS SUBROUTINE UPDATES D, RBAR, THETAB, SSQERR

AND IRANK BY THE INCLUSION OF XNEXT AND YNEXT WITH A
SPECIFIED WEIGHT, THE VALUES OF XNEXT, YNEXT AND WEIGHT WILL
BE CUNSERVED, THE CORRESPONDING VALUE OF RECRES IS CALCULATED,

Y = YNEXT
WT = WEIGHT

DO 10 I = 1, NP
XROW(I) = XNEXT(I)
RECRES = 0.0

IFAULT = 1

IF (WT ,LE, 0,0) RETURN
IFAULT = 0O

ITHISR = O

DO 501 =1, NP
IF (XROW(IY .NE, 0,0) GOTO 20
ITHISR = ITHISR + NP - I

GOTO 50
XI = XROW(ID)
DI = D(IY
DPI = DI + WT * XI * XI
D(I) = DPI
CBAR = DI / DPI
SBAR = WT * XI / DPI
= CBAR * WT
IF (I .EQ. NP) GOTO 40
I1=1+1

DO 30 K = I1, NP
ITHISR = ITHISR + 1

XK = XROW(K)

RBTHIS = RBAR(ITHISR)

XROW(K) = XK = XI * RBTHIS

RBAR(ITHISR) = CBAR * RBTHIS + SBAR * XK
CONTINUE

XK = Y

Y = XK - XI * THETAB(I)

THETAB(I) = CBAR * THETAB(I) + SBAR * XK
IF (DI .EQ, 0.0) GOTO 100

CONTINUE

SSQERR = SSQERR + WT * Y * Y

RECRES = Y * SQRT(WT)

RETURN

IRANK = IRANK + 1

RETURN

END

SUBROUTINE REGRES(NP, NRBAR, RBAR, THETAB, BETA)
ALGORITHM AS 134.4 APPL. STATIST. (1980) VOL.20, NO.3

REVISED VERSION OF ALGORITHM AS 75.4

APPL, STATIST, (1(74) VOL.23, NO,3

INVOKING THIS SUBROUTINE OBTAINS BETA BY BACKSUBSTITUTION
IN THE TRIANGULAR SYSTEM RBAR AND THETAB,

DIMENSION RBAR(NRBARY, THETAB(NP), BETA(NP)
ITHISR = NRBAR

IM = NP

DO 50 I =1, NP

BI = THETAB(IM)

IF (IM .EQ. NP) GOTO 30

m=1-1
JM = NP
D010 J =1, 11

BI = BI - RBAR(ITHISR) * BETA(JM)
ITHISR = ITHISR =~ 1

JM = JM - 1

CONTINUE

BETA(IM) = BI

IM=1IM -1

CONTINUE

RETURN

END

