10.4 Downhill Simplex Method in Multidimensions | 306 |

REFERENCES AND FURTHER READING:

Acpon, Farman S, 1970, Nurmericdl Maghods Thar Work (Mews Yorko
Harper and Row). p. 55, po. 454—458.

Brent, Richard P. 1973, Alporithms for Minfmization withour Denivatves
[(Englewood Clifts, N_J.: Prentice-Hall}, p. 78

10.4 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimiza-
tion, that is, finding the minimum of a function of more than one independent
variable. This section stands apart from those which follow, however: All of
the algorithms after this section will make explicit use of the one-dimensional
minimization algorithms of §10.1, §10.2, or §10.3 a8 a part of their computa-
tional strategy. This section implements an entirely self-contained strategy.,
in which one-dimensional minimization does not figore.

The dounhill simplez method 18 due to Nelder and Mead (1965). The
method requires only function evaluations, not derivatives. It is not very
eficient in terms of the number of function evaluations that it requires. Pow-
ell's method (§10.5) is almost surely faster in all likely applications. However
the downhill simplex method may frequently be the best method to use if
the figure of merit is “get something working quickly” for a problem whose
eomputational burden is small.

The method has & geometrical naturalness about it which makes it de-
lightful to describe or work through:

A simpler is the geometrical figure consisting, in N dimensions, of N +
| points (or vertices) and all their interconnecting line segments, polygonal
faces, ete. In two dimensions, a simplex i a triangle. In three dimensions
it is & tetrahedron, not necessarily the regular tetrahedron. (The simplez
method of linear programming also makes use of the geometrical concept of
a simplex. Otherwise it is completely unrelated to the algorithm that we are
describing in this section.) In general we are only interested in simplexes that
are nondegenerate, Le. which enclose a finite inner N-dimensional volume. 1f
any point of a nondegenerate simplex is taken as the origin, then the N other
points define vector directions that span the N-dimensional vector space,

In ene-dimensional minimization, it was possible to bracket 8 minimum,
so that the success of & subsequent isolation was guaranteed. Alas| There
k= no analogous procedure in multidimensional space. For multidimensional
minimization, the best we can do is give our algorithm a starting guess, that is,
an N-vector of independent variables as the first point to try. The algorithm
ia then supposed to make its own way downhill through the unimaginable



| 306 |  Chapter 10. Minimization or Maximization of Functions |

complexity of an N-dimensional topography, until it encounters an (at least
loeal) miniemwm.

The downhill simplex method moast be started not just with a single
point, but with WV + 1 points, defining an initial simples. If you think of one
of these points (it matters not which) as being your initial starting point Py,
then you can take the other & points to be

P, =Py + Aey (1.4.1)

where the &;'s are & unlt vectors, and where A 18 a constant. which is your guess
of the problem's characteristic length scale. (Or, you could have different A;'s
for each wector directiomn.)

The downhill simplex method now takes a series of steps, most steps
just moving the point of the simplex where the funetion i largest | “highest
point™) through the opposite face of the simplex to a lower point. These
steps are called reflections, and they are constructed to conserve the volume
of the simplex (hence maintain its nondegeneracy). When it ean do so, the
method expands the simplex in one or another dirsction to take larger steps,
When it reaches a “valley floor.” the method contracts itsell in the transverse
direction and tries to ooze down the valley. If there is a situation where the
simplex is trying to “pasa throongh the eye of a needle.” it contracts itself in all
directions, pulling itself in around its lowest (best) point. The routine name
amoeba is intended to be descriptive of this kind of behavior; the basic moves
are summarized in Figure 10.4.1.

Termination criteria can be delicate in any multidimensional minimiza-
tion routine. Without bracketing nd with more than one independent vari-
able, we no longer have the option of requiring a certain tolerance for a single
independent variable. We typically can identify one “cyele” or “step” of our
mltidimensional algorithm. It i= then poesible to terminate when the vector
distance moved in that step is fractionally emaller in magnitude than some
tolerance tol, Altermatively, we could require that the decrease in the fune-
tion value in the terminating step be fractionally smaller than some tolerance
ftol. Mote that while tol should not ususlly be smaller than the square root
of the machine precision, it is perfectly appropriate to let ftol be of order
the machine precigion (or perhaps slightly larger so as not to be diddled by
roundaff ).

Note well that either of the above eriteria might be fooled by a sin-
gle anomalons step that, for one reason of another, falled o get anywhere.
Therefore, it is frequently a good idea to restart a multidimenatonal minimiza-
tion routine at & point where it claims to have found & minimum. For this
restart, you should reinitialize any ancillary input quantities. In the downhill
simplex method, for example, you should reinitialize N of the N + 1 vertices
of the simplex again by equation {10.4.1), with Py being one of the vertices
of the claimed minimum.

Restarts should never be very expensive; your algorithm did, after all,
converge to the restart poiot once, and now you are starting the algorithm
already there,
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Figure 1004, 1. Passibile citeomss for & step s the dowshill simple: method. The simplex at
the beginning of (b atep, here & tetrahedron, s drssm with solid lines. The simplex at the
end af th step (drawn deshied) can be elther (8] o refleetion away fram the kigh point, (b]
s reflection aed eopansion away from the high peint, [©) a cootraction along one dimension
from the high palst, or [d) & contraction along all dimensions toward the low poist. An
appropriate sequence of suck steps will always converge to a minimom of the function.

Consider, then, our A-dimensional amoebsa;

Sizcluds <mathk h>

ddafine WMAL 000 Thi S G1Revind iUz of TusClion Svaiations, and Thnss
#dafine ALPHL 1.0 SaraivHLErs Salsing Ol Eapatsans Ind CONCRCnons
#dafine HETA 0.5

Fdafine CAMMAL 3.0

Hdefine QET_PEUM for (j=1;j<=ndim;j++) { for (i=1,sus=) 0:ic=apte;i+)y
eum += pli][j]; promljl=sum:}

woid amoabalp.y.ndin,ftol, funk, sfuni)
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flant sep y[] . feol. (*funk)(}:

izt pdis, snfunk;

Multidimengional minemizaticn of the functian fank(x) wheee (1. .pdin] 1= 3 vector In ndis
dimensions, by the downhill simplax mathad of MNelder and Mesd, The matrix pll. .zdie+1]
(1. .ndim] Is imput. Its Bdis+l ross are sdis-dimencional vectors which are the vertices of
the $tarting simplex. Also input Is the vector y[1, .edia+i], whose components must be
pré-intislized to the values of funk evaluated at the edis+i verices (Fows] of p; and ftal
The fractionsl convergence tolerance (0 be achiewed In the Tunction walue (mB1}, On cutput, F
Fng ¥ will Rive bee reget b ndim+l mew points all within £t6l of a minimum function valiss,
;r-d =funk gives 1Re mamber of function evaluations taken.

izt i,§.ile, ikl iski spte=ndia+i;
float yhry, yeave,des, ftal, agsbey()  spama, svector() ;
wadd nrerror() ,fres_vectar();

Lle=]; ForsE et el delir imie which point is Bl hghist {eorat), ne-
ihd = y[i]*5[2] 7 {iahi=3,1) : [(inhi=1,3); PigReEL, afed el [T,
for (i=i;i<=mpia;i=+) { Dy AoODInG DAART TTsl BCHRS IN LN Simsdee.
if (y[1] < ylilal) iles=i;
iz (yl[1] > yl[imi]} {
inhd=ihi;
ihd=i;
} else if Ly[i] > y[inhi])
if (i |= ihi} dnhd=i;

h
rtel=2. Oofaba (y [1hL] -5 [£10] )/ {fake {y [1hi] ) +fuba(y [11a]));
Comm@iitd ik Irdctiosal rings from highesi oo lewest and repern 1T sadsfaciory.
if (rtol < ftel) bresk;
if (enfumk »= BMAX) nrerror(*Toc msny iterationa in AMOEBA®) ;
Begin 3 new eration. First estrapals By 4 facior AUFEL through the Tace of the simpies acss
from rha Bigh poim, Lo refiecr the simplas feom the high poing.
yirreazctry (p.y.paum, ndin, funk, 1hi , nfuslk, - ALFHAD
1f (yeey <= y[ilal)

Cirvis @ resull Beiser than (e best poie, S0 1rp af 3000 0N el iEporaten by & Tecicr QLG

yirysasctrylp, ¥, pous, ndim, funk, ibd , nfusk, GASNAY ;
alee if (yiry >= ylimhil) { Tre refecoed poist is worse than 1hi Secosd-Righast, so

yoave=y [1ki] ; leck Tor an intenmadain lwer polet, |E. 90 @ oni-Sminiosal

ry=aaotTy(p. ¥, paus, ndis, fusk, ibi  nfunk, BETA] ; CONDFRCLN.
if (ytry >= yoava) { Can't seem 1o gt rid of thas high point. Betar con-
for (i=1;i<=mpte;iss] { tract armund the Iwest (DESL] poanL.
if (4 |I= 410} {
for (j=1;]<=ndim;j=s) {
prunli]=0_ E=(p[i] [j1+plila] [§1):

pLAIL] ] =poun[]];
Flil={+funk) (prun);
¥
snfunk += ndis; Hpnn prck of TURCOon asaiualbes.
' GET_PSIM RECOMQAe pras.
i
¥ e Bach Bor the teit of donenesy and the et Icerackon.

g fres_vector (peus,i.mdind:

float ametey(p.y,poes,ndis, fusk, ibi,nfusk, fac)

flost wep, oy, spaus, (ofusk) (), fsc;

int ndim,ihi, *mfunk;

Extrapalates by a factor fse through he face of the simples atross from the high point, tries
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i, and replaces (P Digh DOIAT If Tha Aesw' pOINE i5 BETTAT.
£

imk §:
float facl.fecl,ytry,*ptry.vector();
vold mrearrer{] ,fres_vectori);

pEry=wecteril, ndial;

faci=(] D-fac) adis;

faclafacl-fag;

for (j=1;j<=ndis;{++) piryl]]l=peus(jl+faci-pliki] [jl+fnc2;

yery={sfunk) (ptry] Evikscits the function at the bl psint

#+[*mfunk) ;

if (ytry < ylibd]) { LG DESLEr Than DS Rigeesl, Lhen repals Cha Sgrsst.
Flibd]=ytry;

far ({=1; j<=ndim;{*+) {
prusli] += perylil-plinil [1];
s pline] [§]=peeylil;
¥
Tres_vector{ptry, 1, edis);
raturn ytry;
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We know (E10.1-510.3) how to minimize a function of one variable, If we
start at a point P in N-dimensional space, and proceed from there in some
vector direction n, then any function of N variables f{P) can be minimized
along the line o by our one-dimensional methods. One can dream up varions
multidimensional minkmization methods which consist of sequences of such
line minimizations. Different methods will differ only by how, at each stage,
they choose the next direction n to try. All such methods presume the exis-
tence of a “black-box" subalgorithm, which we might call linmin (given as
an explicit routine at the end of this section), whose definition can he taken
for mow as

linmin: Given as input the vectors P and n, and -
the function f, find the scalar A that minimizes

S(P + in). Replace P by P + An. Replace n by
An. Dwone.




