
An Introduction to R

Phil Spector
Statistical Computing Facility

University of California, Berkeley

September 20, 2002

1 Background

The R language is a project designed to create a free, open source language which can be used as a re-
placement for the Splus language, originally developed as the S language at AT&T Bell Labs, and currently
marketed by Insightful Corporation of Seattle, Washington. While R is not 100% compatible with Splus
(it is often described as a language “which bears a passing resemblance to S”), many Splus programs will
run under R with no alterations. Accordingly, much of the existing documentation for Splus can still be
useful under R, and many authors of code for either language are careful to make sure that their code will
be suitable for both languages.

2 Strengths and Weaknesses

2.1 Strengths

• free and open source, supported by a strong user community

• highly extensible and flexible

• implementation of modern statistical methods

• moderately flexible graphics with intelligent defaults

2.2 Weaknesses

• slow or impossible with large data sets

• non-standard programming paradigms

3 Basics

R is a highly functional language; virtually everything in R is done through functions. Arguments to func-
tions can be named; these names should correspond to the names given in the help file or the function’s
definition. You can abbreviate the names of arguments if there are no other named arguments to the func-
tion which begin with the abbreviation you’ve used. If you don’t provide a name for the arguments to
functions, R will assume a one-to-one correspondence between the arguments in the function’s definition
and the arguments which you passed to the function.

To store the output of a function into an object, use the special assignment operator <- , not an equal
sign. For example, to save the value of the mean of a vector x in a scalar called mx, use

mx <- mean(x)

1

This statement is read as “mx gets mean of x”. At the risk of a loss of readability of your programs, the <-
operator can be abbreviated as an underscore (_). This also means that the underscore symbol can not be
used as part of a variable name.

If you forget to save the output of a function this way, the answer will be temporarily available in an
object with the name .Last.value .

Typing the name of any R object, including a function, will display a representation of that object. You
can explicitly display an object with the functions print or cat . R provides online help through the help
function, or by simply preceding a function’s name with a question mark (?). If you are running R in an
environment that includes a web browser, the statement

help.start()

will provide a web-based interface to the help system. In addition to plain text and HTML versions of the
documentation, R also provides hardcopy documentation through LATEX help files, available by using the
offline=T argument to the help function. If you’d rather learn about a command by studying some
examples, the example function will run one or more examples using the function passed as its argument.
You should quickly get in the habit of consulting the help or example files while you use R, because many
of the functions have a number of useful optional arguments which might not be apparent at first glance.

R supports a number of different data structures, accomodating virtually any type of data. At the sim-
plest level, R supports vectors and matrices. These, however are just one- and two-dimensional examples
of the more general concept of an array; R supports arrays of virtually unlimited dimensions. In addition,
R implements the more traditional “observations and variables” format of rectangular data sets through
objects known as data frames, where character and numeric variables can be freely mixed. Finally, R has a
very general data structure known as a list, which can hold virtually any structure of data imaginable.

Besides numbers and character strings, the symbols T and F (or TRUEand FALSE) are reserved in R to
represent the logical values true and false, respectively.

The objects you create during an R session are temporarily stored in a memory; each time you end an R
session, you must decide whether you want to save the objects you’ve been using. (When you run R non-
interactively, you must specify either the --save or --no-save option at invocation time.) If you choose
to save the objects you’ve created, they are stored in a file called .RData in the current working directory.
(Note that since this file’s name begins with a period, you need to provide the UNIX ls command the -a
option in order to display the file’s name in a directory listing.) When you start up an R session, the program
always looks in the current working directory to see if an .RData file exists (unless the --no-restore
option is specified), and, if you decide to save your working environment at the end of an R session, an
.RData file will be created. Thus, to keep data from different projects in separate places, it suffices to
simply set a different working directory (with the UNIX cd command) for each of your projects.

In addition to the .RData file in your working directory, R searches for data and functions in a number
of system directories. You can see the names of these directories by using the search function. Note that
just typing the name search will display a print representation of the search function; to invoke the
function with no arguments you must type

search()

You can see the contents of any directories in your search path through the objects function. With no
arguments, it will list all the objects in your working directory. The optional argument pos allows you
to specify other directories in your search path by providing the index of the directory as provided by
the search command. The optional argument pattern will restrict the listing of objects to those whose
names contain the string or regular expression specified by the pattern argument. Quoted strings in R
can be surrounded by either single (’) or double (") quotes. Thus, the command

objects(pat="dat")

will list those objects in your working directory whose names contain the string dat . (Notice that, when
using named arguments to a function, you can abbreviate the name of the argument, provided that only
one named argument agrees with the abbreviation.)

2

To use R objects which are stored in an .RData file other than the one in the current directory, pass
a character string containing the full path name of the file to the attach command. In addition, a wide
variety of functions are organized into sections known as libraries. To see which libraries are available
on a given installation of R, type the command library() ; once you’ve found a library of interest,
you can make the functions and documentation in the library available with a command of the form
library(libraryname) . The command library(help=libraryname) will list the functions which
are available, and the help command can then be used in the usual way to get more information about
individual functions in the library.

You can enter UNIX commands in an interactive or batch R program by passing a character string
containing the command to the the system function.

You can interactively debug R functions by passing the unquoted name of the function you wish to
debug to the debug function, and then running the program of interest. See the help file for the debug
function for details on how to use the debugger.

4 Specific Tasks

4.1 Entering and Exiting the Program

To start an interactive session with R, type

R

at the UNIX prompt. On most implementations or R, you can redisplay and edit previous commands using
arrow keys, or emacs-style keystrokes. Inside of R, the interactive prompt is a single greater-than sign (>).

In addition, if you are familiar with the emacs editor, there is a special mode for running R which pro-
vides command recall, variable name completion, simplified access to help files and many other features.
If it is installed, you can access it through typing M-x R, followed by the Return key.

R obeys standard UNIX redirection, so you can execute source files in the usual way, with a command
like this one at the UNIX prompt:

R < infile >& outfile

The R commands to be executed would be in the file infile , and output would be sent to outfile . The
BATCHcommand of R packages this capability in a slightly different fashion. Typing

R BATCH infile outfile

at the UNIX prompt would have a similar effect as the previous command.
To execute R statements from a file from within an interactive session, you can use the source com-

mand. Type

source("infile")

at the R prompt to execute the commands in the file infile .
To exit an interactive R session, type q() . Note that just typing the q without the parentheses will

simply display a text representation of the q function.

4.2 Reading Data

The c function (mnemonic for combine) can be used to read small amounts of data directly into an R object.
For example, you could create a vector called x containing five numbers by using a statement like the
following

x <- c(12, 19, 22, 15, 12)

3

To read white-space-separated data into a vector, use the function scan . The sep argument can be used
for separators other than the default of white space. For example, to read the data in the file datafile into
a vector called x, use

x <- scan("datafile")

With no filename argument, scan reads your input from standard input; terminate the data entry with a
blank line. To read character data into a vector, use the what argument as follows:

chardata <- scan("charfile", what="")

Often the data you are reading from a file or entering at the keyboard is a matrix. The function matrix
can be used to reshape the elements of a vector into a matrix. Since the output of one R function is suitable
as input to another R function, the calls to scan and matrix can be combined. Matrices in R are internally
stored by columns, so if your data is arranged by rows (as is usually the case), you must set the byrows
argument to the matrix function to T. Suppose that the file matfile contained a 10 × 5 matrix, stored by
rows. The following statement would read the matrix into an R object called mat

mat <- matrix(scan("matfile"),ncol=5,byrow=T)

In addition to the ncol argument, there is also an nrow argument which could have be used (with a value
of 5 in the previous example). As shown in the example, if one or the other of these two arguments is
missing, R will figure out the other based on the number of input items it encounters. You can also provide
descriptive labels for rows and columns using the dimnames function.

If your data has a mix of numeric and character variables, you will probably want to store it in a
data frame. To read data from a file directly into a data frame, use the function read.table . To use
read.table , all the variables for a given observation must be on the same line in the file to be read. If
the optional argument headers=T is given, then the first line of the file is interpreted as a set of names to
be used for the variables in the file, otherwise default names of V1, V2, , etc. will be used. The function
data.frame can also be used to create data frames directly from other R objects such as matrices or lists.

It should be mentioned that R does not contain a wide range of functions to handle input data. If your
input data is not suitable for scan or read.table , you may need to consider preprocessing the data with
a program like perl or sas before reading it into R.

4.3 Storing Data Sets

The objects which you create during your R session are stored in memory. Before committing to saving all
the objects at the end of your session, can remove unwanted objects using the rm() function from inside of
R. (See the discussion in Section ??.)

4.4 Accessing and Creating Variables

The basic tools for accessing the elements of vectors, matrices and data frames are subscripts; in R, sub-
scripts are specified using square brackets ([]); parentheses are reserved for function calls. You can refer
to an entire row or column of a matrix by omitting the subscript for the other dimension. For example, to
access the third column of the matrix x , you could use the expression x[,3] . Keep in mind that if you use
a single subscript, R will interpret it as the index into a vector created by stacking all the columns of the
matrix together.

If you’ve assigned row or column names to a matrix with the dimnames function, you can also use
character strings to access parts of a matrix. (Data frames automatically have row and column names
assigned when they are created.) If you used statements like the following to create a matrix:

mat <- matrix(c(5,4,2,3,7,8,9,1,6),nrow=3,byrow=T)
dimnames(mat) <- list(NULL,c("X","Y","Z"))

4

then you could refer to the second column of the matrix as either mat[,2] or mat[,"Y"] . The dimnames
function accepts a list of length 2 containing the row dimnames and the column dimnames; since we only
wished to set dimnames for the columns, the special value NULLwas used for the row dimnames.

While the above techniques will work for data frames as well as matrices, there is a simpler way to
refer to variables by name in a data frame, namely separating the data frame’s name from the name of the
variable with a dollar sign ($). For example, if a data frame called soil contained variables called Ca, K
and pH, you could access the variable pH as soil$pH . Note that, like other identifiers in R, variable names
in a data frame are case sensitive. Alternatively, you can use the attach command to make a data frame
part of your search path, and refer to variable names directly. The dollar sign notation can also be used to
extract named elements out of an R list.

You can create new objects with the assignment operator (<-) mentioned in Section ??. For example, to
create a variable z which would be the ratio of two variables x and y , you could use the statement

z <- x / y

Virtually all operators and functions in R will operate on entire vectors and matrices in a single call. In
the above example, if x and y were each vectors of length n, then z would also be a vector of length n,
containing the ratios of the corresponding elements of x and y .

4.5 Subsetting Data

A variety of subscripting expressions can be used to extract parts of R matrices and data frames. As men-
tioned previously, you can specify a subscript for either rows or columns to extract entire rows and columns
of a matrix. You can also provide a vector of row or column numbers (or names, if dimnames were assigned
to the matrix), to extract subsets of a matrix or data frame. You can also provide a vector of row or column
numbers to extract subsets of a matrix or data frame. The colon operator (:), which generates sequences, is
often useful in this regard; it generates a vector of integers, separated by 1, from its first argument to its sec-
ond argument. (The seq function provides additional capabilities for generating sequences.) For example,
to extract the first, third and fourth variables for the first 10 observations of a data frame or matrix called
data , you could use the following expression

data[1:10,c(1,3,4)]

If dimnames were assigned to the matrix, a vector of names can be substituted for the vector of numbers in
the example just given. A vector of names can be composed using the c function, surrounding the names
with double or single quotes, and separating them with commas.

A further useful feature of numeric subscripts in R is that negative subscripts represent all values except
those specified in the subscripts. So in the previous example, if we wanted all the columns of data , except
for the first, third and fourth, we could use the expression

data[,-c(1,3,4)]

Subscripts with a value of 0 are simply ignored.
Logical subscripts provide a powerful tool for subsetting data in R. When using logical subscripts, they

must be the same length as the object which is being subscripted; those elements in the subscripted object
corresponding to values of TRUEwill be extracted. Thus, to select all the rows of the matrix data for which
the third column is less than 10, the following expression could be used

data[data[,3] < 10,]

Notice the comma after the logical expression, to indicate that we wish to extract those rows for which the
third column of data is less than 10.

5

5 Missing Values

The value NAis used to represent missing values for input in R. An NAcan be assigned to a variable directly
to create a missing value, but to test for missing values, the function is.na must be used.

R propogates missing values throughout computations, so often computations performed on data con-
taining missing values will result in more missing values. Some of the basic statistical functions (like mean,
min , max, etc.) have an argument called na.rm , which, if set to TRUE, will remove the NAs from your data
before calculations are performed. In addition, the statistical modeling functions (like aov , glm , loess ,
etc.) provide an argument called na.action . This argument can be set to a function which will be called to
operate on the data before it is processed. One very useful choice for the na.action argument is na.omit .
This function (which can be called idependently of the statistical modelling functions) will remove all the
rows of a data frame or matrix which contain any missing values.

6 Graphics

R provides two types for functions for graphics: high-level functions, which produce an entire plot with
a single call, and low-level functions, which are used to add additional information to existing graphs.
Among the available high-level routines are barplot , boxplot , contour , coplot (conditioning plots),
hist , pairs (scatterplot matrix), persp (3-dimensional perspective), and plot . Low level routines, which
provide finer control over the details of existing plots include abline (drawing regression lines), axis
(for custom axes), legend , lines , points , polygon , symbols , and text . If you use the example
function with any of the graphical functions, you can have the system pause after each graph by issuing
the command

par(ask=T)

Many aspects of the appearance of graphics can be controlled through graphical parameters, set either
by a call to the par function, or by passing the parameters directly to high- or low-level functions.

The help file for the par function provides a complete list of graphics parameters.
When you issue a high-level plotting command, or make a call to the par function, R will automatically

open a suitable device driver in order to display your plot if one is not already open. In addition, you can
produce output in other formats by explicitly calling an appropriate driver. See the help file Devices for a
list of the available drivers on your system.

One graphics parameter which is often useful is mfrow , which determines the arrangement of multiple
figures on a page. For example, the R statement

par(mfrow=c(3,2))

would result in six plots being placed on the page, with three rows of two columns each. The plots would
be placed by rows; a similar function, mfcol defines the arrangement, put plots the multiple figures by
columns.

To display special symbols (like greek letters or subscripts), the expression function can be used. Run

example(plotmath)

for a demonstration of this capability.

7 Programming

Most functions and operators in R will operate on entire vectors, and the most efficient programming tech-
niques in R are ones which utilize this approach. R does provide loops for more traditional programming,
but they tend to be inefficient, especially for large problems. The for loop is a basic tool which can be used

6

for repetitive processing. It takes the form

for(name in values) expression

where name is a variable which will be set equal to each element of values inside of expression. If
expression contains more than one statement, the statements must be surrounded by curly braces ({ }).
The for loop works for lists as well as vectors.

Logical subscripts, introduced in Section ??, can be used on the left hand side of an assignment statement
to avoid the use of loops in many cases. A simple, but useful, example is replacing occurences of a particular
value with missing values (NA). For example, a double loop could be used to replace all occurences of 9 in
a matrix with NA:

for(i in 1:nrow(x))for(j in 1:ncol(x))if(x[i,j] == 9)x[i,j] <- NA

However, using logical subscripts, the following single statement is much simpler and far more efficient:

x[x == 9] <- NA

Many functions accept vectors as arguments, so loops can often be avoided by using a vector argument.
For example, suppose we wish to form a vector with each of the numbers from 1 to 5 repeated 6 times. One
approach would be to use a for loop:

result <- NULL
for(i in 1:5)result <- c(result,rep(i,6))

However, the same result can be acheived by using vector arguments:

result <- rep(1:5,rep(6,5))

It is worth noting that this gives a very different value from rep(1:5,6) :

> rep(1:5,6)
[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

When processing each row or column of a matrix or data frame, the function apply can be used to
eliminate the need for loops. For example, to calculate the sum of each row of a matrix called mat , the
following call to apply could be used

rowsums <- apply(mat,1,sum)

The 1 in the apply call refers to processing by rows; a 2 results in processing by columns. The third argu-
ment to apply , in this case, sum, is a function which will be applied to each row or column of the matrix in
turn. A similar function, tapply , will apply a function to different subsets of a vector based on the value of
a second vector. For example, suppose the vector score represents tests scores in an experiment, and the
vector group indicates which group each of the observations came from. To calculate the means for each
group, tapply could be called as follows:

group.means <- tapply(score,group,mean)

If the function being passed to apply or tapply requires more than one argument, the additional argu-
ments can be included in the argument list after the name of the function being passed.

For functions like apply and tapply , it is often useful to construct a function to be applied to each row
or column of a matrix, if the function you need is not otherwise available. Often a simple function is all that
is needed, and you can pass the function definition to apply or tapply . For example, suppose we have a
2 column matrix called meanvar whose rows contain a mean and corresponding variance, and we wish to
generate a vector of random numbers from normal distributions with these means and variances. We could
use apply by writing a function which calls the R function rnorm with appropriate arguments as follows:

7

rvars <- apply(meanvar,1,function(x)rnorm(1,x[1],x[2]))

The variable x in the function definition is a dummy variable which will take as its value each row of
the matrix in turn. The returned value, rvars , will be a vector with as many elements as meanvar ,
and the i th element of rvars will be a random number from a normal distribution with mean equal to
meanvars[i,1] and variance equal to meanvars[i,2] .

8 Writing Functions

Writing functions is easy in R, because any statement which you use interactively can be used in a function.
Furthermore, you can access any variable which is available in the calling environment within a function,
but when you change the value of a variable, R automatically creates a local copy, preserving the value of
the variable in the calling environment.

Simple functions can be defined interactively:

sqr <- function(x) x * x

Functions are defined using the function statement. Note that, like all other objects in R, the result of
defining a function must be assigned to a value, in this case the variable sqr . Having defined this function,
you can now use the function sqr anywhere that any other program could be used. If the body of your
function is longer than one line, it must be surrounded by curly braces ({ }).

Although R has an explicit return statement, it is not necessary in many cases, because, in the absence
of a return statement, R functions return the last expression which was evaluated in the function body.
Notice that you can not change the value of arguments passed to a function; once you try to do so, R will
create a local copy of the argument which will be deleted when control returns to the calling program. If
you need to pass back more than one object from a function, you should package the objects you wish to
return in a vector, matrix, list or data frame, and return that object.

For functions longer than one or two lines, it is probably best to use an editor to create and modify your
functions. R provides a number of functions which will open an editor, allow you to create or modify a
function, and, upon closing the editor, return the value of the function. When you use these functions, it’s
important to store the returned value in a variable for later use. Among the editing functions available are
vi , emacs, pico , and xedit . The R function fix allows you to edit a function, and automatically stores
it when you exit the editor. One final option is the use the ESS package in emacs (see Section ??) to manage
your R session and to edit your functions.

One convenient feature of functions in R is that they allow you to specify default values for any of the
arguments to the function. Suppose you wish to create a function which will generate a random sample
from some distribution, and return the mean of that sample. While it would be desirable to vary the number
of observations generated, and the function used to generate them, it would also be convenient if, when
these values are not specified, the function automatically defaults to some predetermined values, say a
sample size of 25, and observations from a normal distribution. By including an equal sign and a default
value in the argument list of a function definition, you can set defaults which can easily be overriden. A
suitable function definition would be:

ranmean <- function(n=25,ranfun=rnorm)mean(ranfun(n))

Now a call to ranmean() will use the default values, while a call to ranmean(100) would generate
the mean from 100 observations, and ranmean(ranfun=rexp) would use a sample of size 25 from the
exponential distribution.

8

9 Dynamic Loading of C Programs

9.1 Data Representation

R allows you to call external programs written either in C or in FORTRAN. In either case, the program
should not be written as a main program, but as a subroutine (in FORTRAN) or a function (in C) which R
will be able to dynamically load into its already executing image. The value returned by a function is not
available to R; all information between R and the external program must be passed through the arguments
of the subroutine or function. To illustrate how to make external programs usable inside of R, a simple
example will be used. Before writing the function, it is important to understand the representations of data
within R and the correspondence to the data types in C and FORTRAN. These relationships are summarized
in the following table:

R C FORTRAN
"single" float* real
"double" double* double precision

"integer" long* integer
"character" char** character

"complex" struct double complex
{ double re,im;}*

"list" char** -

Note that in each case, the address of the data object will be passed to and returned from the function,
never the actual value itself. While this is the natural approach in FORTRAN (which uses call by address
in its parameter lists), C programmers must take extra caution when writing functions to be used in R.
This technique is necessary to allow objects altered in the external function to remain changed when they
“return” to the R environment.

The first step in writing the function is to write the interface within R. To illustrate, suppose we want to
write a function which will call an external program to calculate the cumulative sum of a vector of numbers.
(The R function cumsum() already takes care of this, but we will use this simple task as an example.) We
need only to pass the vector of values to the R function, but we must also pass the length of the vector to
our external program. The interface for a C program could be written as follows:

function(x)
{

dyn.load("./cs.so")
n <- length(as.vector(x))
.C("csum",

as.integer(n),
result = as.double(x))$result

}

The following points should be noted:

• The function dyn.load dynamically loads the named shared object into the already existing version
of R. However, once a module is dynamically loaded, it remains available through the remainder
of the R session. Thus, once the function is debugged and working, the dyn.load call should be
preceded by a check to see if the module was already loaded as follows:

if(!is.loaded(symbol.C("csum")))dyn.load("./cs.so")

• Since the object file stays loaded throughout the R session, it may be necessary to restart R if you need
to reload a new version of your program into R.

9

• Only shared objects are suitable for dynamic loading into R. The details of producing a shared object
are presented below.

• The name of the C source file, the resulting object file, and the R function name need not be the same.
What is important is that the dyn.load function be passed the name of the shared object file, and the
.C() function be passed the function name which is defined in the C program.

• The data object “x” is coerced to a vector before its length is taken. This allows the function to handle
matrices, although it will simply calculate the cumulative sum for all the elements of the matrix, taken
in column-by-column order.

• The arguments “n” and “x” are coerced to an integer and a double precision vector, respectively,
before being passed to the C routine. This will insure that the R interface converts the data to the
appropriate type (if necessary) before calling your C routine.

• The .C() function actually returns a list, with each of the list elements containing one of the argu-
ments. Elements in the list can be named (like result in the example) and referred to using the
usual “$” notation. In this example, the result uses the same storage as the input vector x. The R
interface insures that data stored in the calling frame will not be damaged using this technique, and
it is encouraged.

• Since an R function returns the result of the last statement in the function, the technique outlined
above causes the function to return the appropriate value. It should be emphasized that the original
(calling frame) vector “x” is not overwritten; it has the same value after returning from the function
as it did before the function was called.

The C function for this example is as follows:

void csum(long *n,double *x)

{ long i;

for(i=1;i<*n;i++)
x[i] += x[i - 1];

}

Note that both the vector x and the length n were passed to the C program as addresses. As mentioned
previously, this is a requirement of the R interface.

To compile the function, assuming it is stored in the file filename.c , the following UNIX commands
would be used:

cc -KPIC -c filename.c
cc -G -o filename.so filename.o

If you’re using the GNU C compiler, gcc , these are the appropriate commands:

gcc -fPIC -c filename.c
gcc -shared -o filename.so filename.o

The -KPIC or fPIC option is necessary to create an object file that is appropriate for making a shared object
suitable for dynamic loading into R; the -G or -shared option in the second command produces the actual
shared object.

10

9.2 Using External Subroutine Libraries

As a more complex example of a function, suppose we wish to write a random number generator for the
Weibull distribution, using the NAG subroutine library routine g05dpf . We will model our function after
existing random number generators, and name it nagrweibull , since there is an existing rweibull func-
tion in R. The arguments to the function will be the number of random variables generated, and optionally,
shape and scale parameters, which will both default to 1.0 if not specified.

For more complex functions, the interface plays a more important role. It is here where defaults are set
and parameters should be checked; if illegal or out-of-range data is sent to an external program, the results
will be unpredictable, to say the least. Thus there is a great reward for paying attention to these details in
the interface, before a problem arises in the external function.

If your object file requires external libraries, you must include them in the final compile which produces
the shared object, so that R can find the necessary libraries when the program is run. Thus, if your program
needed the NAG libraries, for example, you would use UNIX commands like the following to create an
appropriate shared object:

cc -KPIC -c prog.c
cc --f77 -G -o prog.so prog.o -lnag

By default, the C library, accessed by -lc , is always included, so you don’t need to specify it explicitly.) If
additional object files were needed to create the shared object for dynamic loading, they would simply be
compiled using the -KPIC option and included on the command line of the final compile command.

The interface for the nagrweibull function could be written as follows:

function(n, shape = 1, scale = 1)
{

dyn.load("./rw.so")
if(shape <= 0)

stop("Shape parameter must be > 0.")
if(scale <= 0)

stop("Scale parameter must be > 0.")

result <- double(n)

.C("rweib",
as.integer(n),
as.double(shape),
as.double(scale),
result = result)$result

}

The same considerations of the previous example apply here, especially regarding the check using
is.loaded once initial testing has shown that the C program is working properly. The function stop() is
used to print an appropriate error message and terminate execution before too much damage is done. The
C program which calls the NAG routine is as follows:

void rweib(long *n,double *a,double *b,double *x)

{ double g05dpf_(double*, double*,long*);
long i,ifail;

for(i=0;i<*n;i++)
*(x++) = g05dpf_(a,b,&ifail);

}

11

Notice that, when calling a routine from a FORTRAN library from within a C program, an underscore must
be appended to the routine name, thus the routine is referred to as g05dpf . This is true whether or not
the function will be called from R. As in the previous example, all arguments to the C function must be
pointers — likewise, all arguments to the FORTRAN function must be pointers. This is why the address
of ifail is passed to the routine instead of ifail itself. Since R does not have access to values returned by
functions, the necessary values are loaded into a vector and then passed back through the argument list of
the function. To create the necessary shared object file, the following commands could be used, assuming
that the program was stored under the filename rweib.c :

cc -KPIC -c rweib.c
cc --f77 -G -o rw.so -lnag

To use gcc, the corresponding commands would be

gcc -fPIC -c rweib.c
gcc -shared -fPIC -o rweib.so rweib.c -lF77 -lM77 -lsunmath -lnag -lm

Three of the referenced libraries in the second command (-lF77 -lM77 -lsunmath) are only necessary
when using gcc under Solaris.

9.3 Dealing with Matrices

If your C or Fortran function will deal with matrices, recall that R, like Fortran, stores it matrices by columns
as a single-dimensioned array. If you don’t store matrices that way in a C program, you will have to write
one conversion program which takes the matrix arguments from R and converts them to the form that you
expect in your C program, and another which takes your results from the C program and converts them to
column-by-column format.

An additional complication when working with matrices is that, by default, the matrix character of an
object is lost in the C or Fortran interface when it returns to the R environment. To make sure this doesn’t
happen, you can use the storage.mode function of R to permanently change the storage mode of the ob-
ject, rather than temporarily coercing it into the appropriate type (with as.double() or as.integer()
for example). For example, suppose we have a C function called matfunc which accepts a pointer to an
n × p matrix of doubles, and two pointers to integer representing the dimensions n and p. If we call such a
function with an R statement like:

newx <- .C("matfunc",x=as.double(x),as.integer(n),as.integer(p))$x

we would find that, upon returning from the .C() function, newx would be a vector of length n ∗ p, and
not a matrix, as it was when it was passed to the .C() function. The solution is as follows:

storage.mode(x) <- "double"
newx <- .C("matfunc",x=x,as.integer(n),as.integer(p))$x

Notice that when you set the storage mode in this way you should not call the as.double function for the
matrix in question.

An alternative solution would be to reconstruct the matrix after the call to .C() ; since the arrangement
of the elements doesn’t change, all that is required is a call to the matrix() function:

newx <- .C("matfunc",x=as.double(x),as.integer(n),as.integer(p))$x
newx <- matrix(newx,n,p)

12

10 Statistical Functions

10.1 Descriptive Statistics

For descriptive statistics, R has individual functions for most common statistics. Interestingly, there is
no built-in standard deviation function; you need to use the square root of the variance. The summary
function, when used on a numeric vector, will provide the minimum, the maximum, and the first, second
and third quartiles. The function stem provides a stemleaf diagram, along with a few descriptive statistics.
For categorical variables, the table function can provide both one-way and multi-way contingency tables.

10.2 Statisical Modeling

R provides a number of functions for statistical modeling, including lm (linear models), aov (analysis
of variance) and glm (generalized linear models). Other modeling routines may be available through li-
braries, for example coxph (Cox proportional hazard models from library survival5), tree (Recursive
Tree models for classification or regression from library tree) and nls (Non-linear regression from library
nls). For more information, use either the “Search” or “Keywords” capabilities of help.start() , as well
as the R Homepage to keep up to date with new libraries as they become available.

For most statistical modeling applications, there is a clear distinction between variables which enter the
model as factors (discrete categorical variables), and regressors (continuous numeric variables). For exam-
ple, in an analysis of variance, regressor variables are entered directly into the design matrix, while factor
variables are entered as one or more columns of dummy variables.

For variables you have identified as factors, R will automatically generate appropriate dummy vari-
ables, and most of the functions which display the results of the analysis will treat these groups of dummy
variables as a single effect. To let R know a variable is a factor, use the function factor . For example, to
change a variable called group to a factor, use

group <- factor(group)

If the variable group were stored in a data frame called mydata , a similar call would be used:

mydata$group <- factor(mydata$group)

Using a data frame for statistical modeling is especially easy, because all the modeling functions accept an
argument called data ; when a data frame is given as a data argument, R will resolve variable names in
that data frame, making your formulas more readable, and eliminating the need to repeat the data frame
name over and over.

To construct a formula in R, you use the tilda (˜), with your dependent variable on the left-hand side
and your independent variables on the right-hand side. You can also construct other terms for the right
hand side using the symbols in Table ?? below. Note that if you want any of the model operators in the
table to behave in their usual fashion inside a formula, the term including the operator should be passed to
the I() function.

R uses an object-oriented approach to statistical modeling. That means that each of the modeling pro-
cedures produces an object which contains an attribute known as the class of the object, and that certain
functions will do the “right” thing when the are called with such an object as their argument.

For example, suppose we have a data frame called corn , containing variables Yield , Block , and
Variety . Since R will automatically treat character variables as factors, it is only necessary to identify
those numeric variables which you would like to be treated as factors; suppose Block is one such variable,
taking on the values 1, 2, 3 or 4. The statement

corn$Block <- factor(corn$Block)

will identify the variable Block as a factor when it is used in a statistical model. Thus, an anaylsis of
variance performed with the following statement:

13

Table 1: Operators Used in Model Formulas

Operator Usual Meaning Meaning in Formula
+ addition Add term
- subtraction Remove or exclude term
* multiplication Main effect and interactions
/ division Main effect and nesting
: sequence Interaction
ˆ exponentiation Limit depth of interactions

%in% none Nesting

corn.aov <- aov(Yield ˜ Block*Variety, data=corn)

would correctly assign 3 degrees of freedom to the main effect for Block , instead of the single degree of
freedom which would result if the variable was treated as a regressor. Functions like print , summary ,
anova , and plot would then all provide meaningful output when passed the corn.aov object.

10.3 Multivariate Techniques

Multivariate techniques are available in R through a several libraries, including mva, which provides cluster
analysis, canonical correlation and principal components analysis, and MASS, which provides discriminant
analysis and multidimensional scaling. As always, the help.start() command is a good starting place
for tracking down the routines you need, and the R Homepage should be consulted to see if what you’re
looking for is available in a recently released library.

11 Resources

11.0.1 The R Homepage

You can learn more about R, and download source code or binaries, as well as a wide variety of user-written
libraries at http://www.R-project.org

11.0.2 Newsgroup Archives:

R news archive: http://www.ens.gu.edu.au/robertk/R
Splus news archive: http://lib.stat.cmu.edu/s-news

11.0.3 Emacs Resources

Information about the ESS project (Emacs Speaks Statistics) can be found at http://ess.stat.wisc.edu/ESS-5.0-README

11.0.4 Books:

While these books have been written for S or Splus, they provide useful information for users of R. Venables
and Ripley’s books, in particular, provide specific information about R.

1. The New S Language: A Programming Environment for Data Analysis and Graphics, by R.A. Becker, J.M.
Chambers and A.R. Wilks, Wadsworth & Brooks/Cole, Pacific Grove, 1988.

2. Statistical Models in S, by J.M. Chambers and T.J. Hastie (eds.), Wadsworth & Brooks/Cole, Pacific
Grove, 1991.

14

3. An Introduction to S and S-Plus, by P. Spector, Duxbury Press, 1994.

4. Modern Applied Statistics with S-Plus. Third Edition, by W.N. Venables and B.D. Ripley, Springer-Verlag,
1999.

5. S Programming, by W.N. Venables and B.D. Ripley, Springer-Verlag, 2000.

6. Scripts and complements for Venables and Ripley’s books (with specific information about R) are
available online at http://www.stats.ox.ac.uk/pub/MASS3/Sprog .

7. Documentation is also available at the R Homepage referenced above.

15

