
Calculating the Jacobean and Residuals of a Nonlinear
Regression Model

Phil Spector
Statistical Computing Facility

UC Berkeley

1 The Model and Data

Consider the following nonlinear model, used to determine the effectiveness of different doses
of a drug:

y = − b0

1 + (x/b2)b1
(1)

Here y represents the response to the drug and x represents the dose. Thus there is one
independent variable (x), and three parameters (b0, b1, and b2). The following table provides
a small data set for the example:

x y x y
0.1 0.1701 0.9 0.3201
0.2 0.2009 1.0 0.4140
0.3 0.2709 1.1 0.3677
0.4 0.2648 1.2 0.3476
0.5 0.3013 1.3 0.3656
0.6 0.4278 1.4 0.3879
0.7 0.3466 1.5 0.3649
0.8 0.2663

2 Jacobean and Residuals

To calculate the Jacobean, we need to find the first partial derivatives of the residual from
the nonlinear regression with respect to each of the three parameters. This can be easily
done using mathematica (See Figure 1).

1

Figure 1: Mathematica Session to find Derivatives

Since there are 15 observations and three parameters, the Jacobean matrix will have
dimensions 15 × 3. Each row of this matrix will represent the three partial derivatives
evaluated at one individual’s x values, i.e.

J =



− 1
(1+(x1/b2)b1)

b0(x1/b2)b1 log(x1/b2)

(1+(x1/b2)b1)2
− b0b1x1(x1/b2)(−1+b1)

b22(1+(x1/b2)b1)2

...
...

...

− 1
(1+(x15/b2)b1)

b0(x15/b2)b1 log(x15/b2)

(1+(x15/b2)b1)2
− b0b1x15(x15/b2)(−1+b1)

b22(1+(x15/b2)b1)2


(2)

The residuals are computed similarly:

f =



y1 −
(

b0
(1+(x1/b2)b1)

)
...

y15 −
(

b0
(1+(x15/b2)b1)

)


(3)

2

3 Iteratively Finding the Solution

The Gauss-Newton method uses the following formula to iteratively arrive at a set of pa-
rameter values that minimizes the sum of squared residuals:

βi+1 = βi − (J(x, βi)
′J(x, βi))

−1
J(x, βi)

′f(x, y, βi) (4)

where βi represents the vector (b0, b1, b2) at the i-th iteration, J(·) is defined by equation 2
and f(·) is defined by equation 3. The process requires an initial value β0 to get started.

3.1 Starting Values

One method for finding starting values is to perform a grid search. In R, the expand.grid()
function makes this very easy. Assume that x contains the independent variable, and y the
response variable, as shown in the earlier table. First, a function is defined which will
calculate the objective function for the problem, that is, the sum of squared residuals from
the non-linear fit

> ssrfun = function(b)sum((y-(b[1]/(1+(x/b[3])^b[2])))^2)

Next, construct a grid around some reasonable values, and evaluate the function at each of
the grid points:

> points = expand.grid(b0=seq(0,1,l=10),b1=seq(-1,1,l=10),b2=seq(0,1,l=10))

> result = apply(points,1,ssrfun)

Finally, find the minimum value in result, along with the corresponding values from points:

> which(result == min(result))

205

205

> points[205,]

b0 b1 b2

205 0.4444444 -1 0.2222222

3.2 Iterative Evaluation

To carry out the iterative evaluation in R, we need functions to calculate the Jacobean and
residuals, given a set of parameter values:

> getjac = function(b){

+ cbind(-1/(1+(x/b[3])^b[2]),

+ (b[1]*(x/b[3])^b[2]*log(x/b[1])) / (1+(x/b[3])^b[2])^2,

+ -(b[1]*b[2]*x*(x/b[3])^(-1+b[2]))/(b[3]^2*(1+(x/b[3])^b[2]))^2)

+ }

> getres = function(b)y-(b[1]/(1+(x/b[3])^b[2]))

3

Due to the similarity of the updating calculation to that used in linear regression, the lm

function is used to calculate the necessary updates:

> b = c(.4,-1.0,.2)

> bold = c(0,0,0)

>

> while(sum(abs(b-bold)) > 1e-8){

+ bold = b

+ jac = getjac(b)

+ oldres = getres(b)

+ adj = lm(oldres ~ jac - 1)$coef

+ b = b - adj

+ res = sum(getres(b)^2)

+ }

>

> print(b)

jac1 jac2 jac3

0.4222882 -0.9774553 0.1741624

(In practice, it must be verified that the residual sum of squares is actually decreasing with
each iterative adjustment. If not, step halving should be performed, i.e. try using one-half
of the adjustment, then one-quarter and so on until the sum of squared residuals decreases.)

4 Verification using the nls() function in R

As a final check on the computation, we can fit the same model using the nls() function in
R:

> nls(y~b[1]/(1 + (x/b[3])^b[2]),start=list(b=c(.4,-1.0,.2)))

Nonlinear regression model

model: y ~ b[1]/(1 + (x/b[3])^b[2])

data: parent.frame()

b1 b2 b3

0.4222878 -0.9774575 0.1741619

residual sum-of-squares: 0.02341823

4

